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Abstract. This study investigated the correlation between AQP4 expression and DTI in rat brainstems after diffuse axonal 
injuries (DAI). Forty rats were imaged before injury and reimaged at 3, 6, 12, 24 and 72 h post-injury. A control group of 8 
rats was imaged and sacrificed for histology but not injured. After brain injury, AQP4 expression and ADC values in the 
brainstems increased gradually, reaching peak values at 24 h and 12 h, respectively. FA values decreased within 72 h. There 
was a negative correlation between ADC values and brainstem AQP4 expression at 12 h, and a positive correlation at 24 h or 
72 h (P <0.01), respectively. Changes in the ADC and FA values in the brainstems indicated brain edema and severe axonal 
injuries. The correlations between AQP4 expression and time-dependent ADC values aid in understanding brain edema 
development after DAI.
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1. Introduction

In a series of experiments on human test subjects proved that the major component contributing to 
traumatic brain swelling and increased intracranial pressure (ICP) was not vascular engorgement, but 
rather a decreased CBF [1]. Thus, swelling and increased ICP relates to diffuse cytotoxic brain edema. 
Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in 
astrocyte endfeet membranes facing the blood–brain and brain–cerebrospinal fluid interfaces. 
Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water 
balance. In cytotoxic edema, AQP4 deletion slows the rate of water entry into the brain. In vasogenic 
edema, AQP4 deletion reduced the rate of water outflow from brain parenchyma [2-4].

Diffusion tensor MR imaging (DTI) can provide information about brain microstructures by 
quantifying isotropic and anisotropic water diffusion in detecting axonal injuries. Experimental 
evidence has shown that water diffusion has a directional asymmetry (anisotropy) in organized tissues, 
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such as muscles or brain white matter [5-12]. In white matter tracts, where most or all of the axons 
align in parallel, diffusion parallel to the axons is greater than diffusion perpendicular to the axons. 
Two DTI parameters, axial diffusivity and relative anisotropy, reflect the brain’s structural integrity 
and the information of brain edema, and could represent the pathology change of the brain edema and 
axon injury post-DAI in vivo. Among biophysical mechanisms contributing to ADC changes,
membrane permeability to water could play a substantial role [13]. In this study, we investigate the 
relationship between the AOP4 expression and ADC changes according to DAI pathological
conditions.

2. Materials and methods

2.1. Animal model

Forty-eight male Sprague-Dawley rats, (weighing 280-320 g), were maintained under standard 
laboratory conditions with 12-hour light/dark cycles. Rats were treated in compliance with NIH 
guidelines for the care and use of laboratory animals. After one week of stabilization on an ad lib diet, 
rats were randomly assigned to five DAI groups and one control group. Rats were anesthetized with 
an intraperitoneal chloral hydrate injection (0.3 ml/kg i.p.). A total of 40 anesthetized adult rats were 
injured using the impact-acceleration model of Marmarou [1]. To deliver DAI, animals were placed 
on a 20 cm thick sponge bed in a prone position. The injury was then induced by dropping a weight of 
500 g from a height of 1.8m onto the steel disk. Rebound impact was prevented by sliding the flexible 
sponge bed from the tube immediately. Following termination of the procedure, a plastic skull cap 
was secured over the impact site, the skin incision was sutured closed, and rats were returned to their 
normal environment and were provided with food and water. DAI rats were sacrificed at five different 
time points (3, 6, 12, 24, and 72 h) after imaging post injury. A control group of 8 rats was imaged and 
sacrificed for histology, but not injured. All procedures complied with the Shantou University Guide 
for Care and Use of Laboratory animals, and were approved by the Shantou University Medical 
College Animal Use Committee.

2.2. Imaging

Conventional MRI and DTI were performed in all rats. The body temperatures of all rats were 
maintained throughout MRI acquisition. Five separate parallel groups of 8 rats per experimental 
group (DAI group) were imaged at 3, 6, 12, 24, and 72 h after injury. Images were obtained using a 
1.5TMR imaging system (GE Signa) equipped with high performance gradients. MRI parameters 
were as follows: T1 weighted images (T1WI) were obtained using TR (repetition period)/spin-echo 
time (TE) =1290 ms/23.2 ms, NEX = 2, section thickness = 3 mm , matrix = 256 × 256, and field of 
view (FOV) = 12 cm × 12 cm. T2 weighted images (T2WI) were obtained using a fast spin echo 
sequence, TR/TE = 4420 ms/107.9 ms, NEX = 2, section thickness = 3 mm, matrix = 256 × 256, FOV 
= 12 cm × 12 cm. TSE factor=10 DTI was obtained with a single-shot echo planar imaging (EPI) 
sequence by using 25 diffusion-encoding directions, TR/TE = 6000 ms/107.7 ms, NEX = 2, section 
thickness = 3 mm, spacing=0, matrix =128 × 128. Display field of view (DFOV) = 6 cm × 6 cm, and 
the b value was 1000 s/mm2.

2.3. Data processing
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Images were post-processed offline using DTI postprocessed software (Functool 4.5.5 software) of 
an Advantage workstation for Windows (AW4.3, GE Healthcare). After correction for movement and 
EPI-induced distortion artifacts by Functool 4.5.5 software, the diffusion tensor was calculated for 
each voxel, which automatically computed the FA and ADC maps. The region of interest was about 5 
mm2 and was traced on the brainstem in the original DTI transverse slice image to avoid influence 
from subjective factors. The average value of FA and ADC values were measured by two experienced 
radiologists blinded to the animals’ statuses.

2.4. Histology

Rats were sacrificed for histological examination immediately following MRI exams. Animals
were overdosed with chloral hydrate intraperitoneally, transcardially perfused with 0.1 M
phosphate-buffered saline (PBS). Brains were extracted from the skull, and then fixed with 4%
paraformaldehyde (PFA) in 0.1 M phosphate buffer (300–400 ml) for 24 h. The brains were then 
embedded in ���������	��
	���������	���	�������	�	 ��	��������	����	��	��	� microtome (Rm 
2016, LEICA, Germany). Sections were stained with hematoxylin and eosin (HE) or Bielschowsky’s 
silver stain.

2.5. Immunostaining

The sections were being washed with PBS, and then treated with 0.3% hydrogen peroxide for 10 
min to deactivate endogenous peroxidase. After being washed 3 times, 5 min each, with 0.01 M PBS, 
sections were blocked in 10% goat serum for 10 min at room temperature. Then sections were 
incubated with ready to use rabbit anti-AQP4 (BA-1560, Wuhan, China) overnight at 4oC, followed 
by a 30 min incubation at 37oC with biotinylated goat anti-rabbit secondary antibody (ZDR-5306,
Beijing, China).

Image acquisition was performed using an Olympus digital camera and dedicated software. AQP4 
quantification was using an Image-Pro Plus 6.0 microimage analysis system.

2.6. Statistical analysis

Statistical analyses were performed using SPSS19.0 software (SPSS, Chicago, IL, USA). ADC and 
FA values and AQP4 expression were reported as the mean ±standard deviation (X±SD) in each 
group. For comparisons within each group and between groups, we used Student's t-test. Correlations 
between DTI parameters and AQP4 expression were calculated using the Pearson test. A P<0.05 
value was considered significant.

3. Results

3.1. Conventional MRI results

T1WI and T2WI maps showed clear brain parenchyma structure. There were no difference in signal 
intensity between the control group and DAI group.

3.2. DTI imaging
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Fig. 1. ADC value of control group and DAI groups. Fig. 2. FA value of control group and DAI groups.

The ADC value in the control group was 0.896±0.121 × 10�3 mm2/s. In the DAI group, ADC values 
showed a slight increase at 3 h, and an obvious increase at 3-12 h; they reached a peak (1.584±0.200 
× 10�3 mm2/s) at 12 h, and then decreased. The ADC decreased obviously at 72 h �����������!�"	
mm2/s, Figure 1), which was lower than that in the control group. An LSD-t test was run at each time 
point compared to the control group sample, which was considered significant (P <0.05) at 6 h and 12 
h post-DAI, and obviously significant (P<0.01) at 72 h. The FA value in the control group was 
0.421±0.006. In the DAI group, it continually decreased and reached a minimum value (0.255±0.005) 
at 24 h after injury (Figure 2). An LSD-t test was run at every time point compared to the control 
group sample, which was considered obviously significant (P<0.01). 

3.3. Histological

3.3.1. HE
No pathologic changes in the brainstem were detected in the control rats. The DAI group showed 

expanded cells, expanded extracellular cell space, weakly stained plasma, enlarged axon space, 
axonal retraction bulbs, and shrunken endotheliums.

3.3.2. Bielschowsky’s silver stain
The axons of silver stain were well distributed and regularly arranged without being twisted or

disrupted in control rats. In the DAI group, axons were swollen, twisted, and partly disorganized; 
generated axonal retraction bulbs were observed. There were many axonal retraction bulbs at 3 h 
post-injury; they increased obviously at 24-72 h.

3.3.3. AQP4 expression

Fig. 3. AQP4 expression of control group and DAI groups.
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In the control group, the IOD of brainstem AQP4 was 0.228 ± 0.021. In the DAI group (Figure 3), 
the AQP4 immunoreactivity was strongly upregulated compared to the control group, reaching a peak
at 24 h (0.369 ±0.028, P < 0.01). 

3.4. Correlation between DTI imaging and AQP4 expression

In the DAI groups, there was a significant positive correlation between the AQP4 expression with 
ADC values in 12 h and 72 h (r=0.691 and r=0.608; P<0.01), and no correlation at 24 h (P>0.05). In 
72 h after injury, the negative correlation of the AQP4 expression with FA values was 
significant(r=-0.946; P<0.01). Besides, there was no correlation between ADC and FA values in 72 h
after DAI (P>0.05).

4. Discussion

AQP4 is expressed in glial cells at the blood-brain and the brain-CSF interfaces, which play an 
important role in maintaining brain water homeostasis [3]. Research has confirmed that increased 
AQP4 expression is implicated in brain edema [14, 15]. Animal research regarding acute intoxication 
brain edema found that AQP4 expression increases in the brain parenchyma from the model, which 
means AQP4 plays an important role in brain edema formation [16]. The injury mechanism of DAI is 
complicated. Following TBI, various mediators are released, which enhance vasogenic and/or 
cytotoxic brain edema. The axon injury is not the primary change caused by external force, but the 
step-change from brain ischemia and edema [17]. The development of a neural axon injury is 
implicated in the secondary change caused by brain edema. The expression of AQP4 protein after
DAI is time-dependent and possibly implicated in the formation and resolution of DAI-induced 
cerebral edema. 

The histological feature in our study by using Marmarou’s DAI model showing that there is 
obviously edema in the brain stem 3 h post-injury, reaching a peak in 24-72 h. In this study, it was 
discovered that the AQP4 expression of brainstems increased first, then decreased after DAI, which 
may be implicated in the type, level, and time of brain edema. Thus, we sought to establish that MRI 
correlates to traumatic axonal injury in an animal model where direct histological evaluation could be 
performed. When axonal injury occurs, the ADC temporarily increases in 40-60 minutes post-injury, 
then decreases and reaches to nadir at 7-14 d in the severe DAI model of rats [18]. The FA value 
decreases with tissue destruction because the FA value mainly reflects tissue integrality. The 
decreased degree of FA post-DAI relates to the axonal injury degree [19]. Our observation of 
decreased FA provides evidence of brainstem axonal injuries after DAI, consistent with prior studies 
using DTI to show reduced FA following TBI [7, 19]. We hypothesized that water movement through 
AQP4 could affect the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) 
measurements. Decreased ADC values reflect cytotoxic edema, which may be due to increase AQP4
expression; increased ADC values reflect vasogenic edema. We found a significant increase of ADC 
and AQP4 expression at 12 h post-DAI. We believe that the direct injury from the external force leads 
to the destruction of BBB and vasogenic edema, which takes the principal place. This injury increases 
extracellular fluid, brain extracellular space enlargement, and increases water diffusion. The ADC 
increased and FA decreased at the time. The vasogenic edema continued to exist and the AQP4 
expression increases at 12 h or 24 h post-DAI in our study. On one hand, the AQP4 cleared the 
intercellular fluid to reabsorb fluid to BBB by transcellular transport. On the other hand, part of the 

W. Zheng et al. / Detecting diffuse axonal injury in rat brainstems by diffusion tensor imaging and AQP4 expression S1173



water went into the cell caused by the AQP4, which facilitates the formation of cytotoxic brain edema. 
The proportion of cytotoxic brain edema began to increase, causing an ADC decrease. For the 
influence of vasogenic and cytotoxic brain edema, there is no statistical significance between AQP4 
expression and ADC in this stage. The vasogenic edema released and the AQP4 up-regulation 
decreased 24 h and 72 h after injury. The organism down-regulates the AQP4 to release the 
facilitation of AQP4. The continued effect of vasogenic and cytotoxic edema decreased AQP4 and 
ADC.

5. Conclusion

Consistent with DTI predictions, there was histological detection of axonal injuries in the brain 
stem. ADC measurements in the brainstem correlated with AQP4 after DAI. Changes in AQP4 
expression and time-dependent ADC values were helpful for reflecting the classification between 
vasogenic brain edema and cytotoxic brain edema. This research provides guidance for clinical 
treatment for different types of brain edema.
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