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Abstract. Computed tomography (CT) has been widely used to acquire volumetric anatomical information in the diagnosis 
and treatment of illnesses in many clinics. However, the ART algorithm for reconstruction from under-sampled and noisy 
projection is still time-consuming. It is the goal of our work to improve a block-wise approximate parallel implementation for 
the ART algorithm on CUDA-enabled GPU to make the ART algorithm applicable to the clinical environment. The resulting 
method has several compelling features: (1) the rays are allotted into blocks, making the rays in the same block parallel; (2) 
GPU implementation caters to the actual industrial and medical application demand. We test the algorithm on a digital shepp-
logan phantom, and the results indicate that our method is more efficient than the existing CPU implementation. The high 
computation efficiency achieved in our algorithm makes it possible for clinicians to obtain real-time 3D images. 
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1. Introduction 

CT is often used to acquire volumetric anatomical information in clinical diagnosis and treatment. 
However, the excessive x-ray imaging dose from frequent scans is a potential concern. However, it 
can be greatly reduced by decreasing the number of x-ray projections. 

The filtered back-projection (FBP) [1] algorithm remains the most widely used reconstruction 
method in CT. When the number of projections is insufficient, artifacts have a great influence on 
image quality and diagnosis rate; this is an inherent defect of the FBP method. As alternatives, 
iterative algorithms, such as Algebraic Reconstruction Technique (ART) [2], Simultaneous Algebraic 
Reconstruction Technique (SART) [3], Simultaneous Iterative Reconstruction Technique (SIRT) [4], 
Multiplicative Algebraic Reconstruction Technique (MART) [5], Maximum-Likelihood Expectation-
Maximization (MLEM) [6], Ordered-Subsets Expectation-Maximization (OSEM) [7], result in less 
image noise, but have a longer reconstruction time. It has been shown that less than ten iterations are 
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sufficient to reconstruct a low-contrast, 3-D object. Compared with the FBP method, the required 
number of projections in iterative algorithms is typically smaller [8, 9]. 

However, most implementations of iterative algorithms are time-consuming, which is unacceptable 
during many medical procedures, particularly those which are invasive. For example, more than 2.5 
hours are required to reconstruct a 1283 volume from 80 projections with the ART method on a 
modern workstation [10]. Therefore, the necessity of a real-time iterative algorithm is evident. In 
recent years, more researchers have paid close attention to the highly parallel computing power of a 
Graphics Processing Unit (GPU) for general purpose computations. The GPU is a competitive 
platform for solving parallel problems. Many issues in medical physics can be formulated as data-
parallel tasks that use the GPU to reduce computing time [11]. 

Iterative reconstruction is computationally challenging, previously viewed as a critical target for 
GPU acceleration. Whereas analytical reconstruction is parallel, iterative reconstruction is 
fundamentally sequential. Hence, algorithms that perform minimal computation within each iteration 
do not perform as well as they could, since the GPU is not parallel. For instance, ART is not suitable 
for the GPU because each iteration only processes a single projection line.  

In this paper, we propose a novel block-wise approximate parallel implementation of ART on 
Computer Unified Device Architecture (CUDA)-enabled GPU. We allot the rays into blocks, the rays 
in the same block are computed parallel. The resulting method has another important feature in that 
GPU implementation is going to meet the industrial and medical demands.  

This paper is organized as follows. The ART algorithm is presented in section 2. The proposed 
algorithm will be discussed in detail in section 3. Computer implementation issues and the results will 
be analyzed in section 4. Computer simulated data will be used to compare the proposed methods. 
Issues with the data will also be discussed. Section 5 provides the summary and the plans for future 
work. 

2. Background: ART algorithm 

Typically, a CT system could be modeled by the following equation: 
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where the observed data is denoted by p=[p1, p2,.., pM]T, original image is f=[f1, f2,.., fN]T, and 

W=(wij) is a non-zero M*N matrix, where wij is the length of the intersection of the i th ray with the j 
th pixel, M is the total number of rays and N is the number of cells. 

The equations correspond to rays from the x-ray source, through the volume, to the detector pixels, 
i.e. the line integral of the linear attenuation coefficient. We consider the problem of reconstructing the 
image  f  from the data P. 

The ART algorithm, based on Kaczmarz’s method [12] for solving linear systems of equations 
Ax=b and first proposed by Gordon et al. [2], is a tomographic reconstruction method to solve the 
problem of K dimensional reconstruction from several (K-1) dimensional projections in electron 
microscopy and radiology. 

More formally, the ART correction for voxel j, to be performed for each correction step k, is written 
as follows [2]: 
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Here, � is a relaxation factor. Often, a positive constraint is applied to the voxels based on the 

assumption that negative attenuation values are not possible. 

3. Method 

The ART algorithm can be simplified as follows:  
 

Algorithm 1:ART algorithm 
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   2.2 : Repeat steps 2.1.1- 2.1.3 for all angles
3.iteration will be in progress until convergence

 

 
This process is our first choice, but it can't be ideally mapped to the GPU hardware. 
More often than not, each ray line from the source to the detector unit can be computed with each 

GPU thread directly. However, if we were to perform this forward-projection and backward-projection 
operation by the ray-driven algorithm in the GPU reconstruction implementation with each thread in 
charge of updating value of voxels along a ray line, a memory conflict problem would occur. This 
issue is due to the possibility that different GPU threads may update the same voxel value 
synchronously.  As a result, we must wait until one thread finishes updating before we can update 
another, severely limiting the exploitation of GPU's massive parallel computing power. 

For each ray line, the ray line goes through a small number of volume voxels, since W is a sparse 
matrix. In this paper, we assign the sequence for the rays to be performed, allotting rays into blocks. 
This means that the rays in the same block are computed parallel. We should make sure the rays in the 
same block do not have the possibility of updating the same voxel value by different GPU threads. 

In order to explain why the rays cannot be computed parallel, how to allot the rays, and why the 
rays in the same block can be computed parallel, we use a 2D fan beam as an example. Then we 
extend to a 3D CBCT, another modality which can also be similar. 
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3.1. 2D fan beam case 

In Figure 1, the X-ray source moves in an ideal circle within the centre of the objection, (u-1), u and 
(u+1) are three units in the detector. L1, L2, L3 represent three rays from the source to the detector unit. 
The three rays all go through the pixel fi,j, and thus cannot be computed parallel. 

As described in Figure 2, if we try to make the rays sparse enough, no two of the rays would go 
through the same pixel, we can compute the rays parallel. Thus, we put rays into a subset, whose step 
is large enough. In this means, we allot the detector units into blocks. The detector units in a block are 
sparse enough to make sure that each set of rays goes through a different pixel.  

Let us assume that each projection view has N number of rays. S represents a set of total number of 
rays presented in a projection view, and M is the number of blocks and the step to choose, such that: 

 
                                                          { }1 2, ,..., MS S S S=                                                                       (3) 
 
where S1={1, M+1, 2*M+1,...,N-M+1}, S2={2, M+2, 2*M+2,...,N-M+2},.., Si={i, M+i, 2*M+i,...,N-

M+i}, n=N/M is the number of detector units in each block, S1, S2, .., SM are the block. In each block, 
the forward and backward operation can be computed parallel. However, the blocks cannot be 
computed parallel, and need to be computed one by one. This makes the approximate parallel time-
efficient. 

 

1u −
u

1u +
,i jf

S

Detector

y

x

1l

3l
2l

 
Fig. 1. The three rays can't be computed parallel. 
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Fig. 2. The five rays can be computed paralle. 
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Fig. 3. Allot the 1D projection. 

 
As described in Figure 3, if we assume Nblock=3, the detector units are allotted into three blocks by 

the following rule: the detector number is ranged from 1 to N, units with number 3*n+1 (n=0,1,...) are 
allotted into the first block, units with number 3*n+2 (n=0,1,...) are allotted into the second block, and 
so on. 

3.2. 3D cone beam CT case 

According to Figure 4, the X-ray source moves in an ideal circle on the around z-axis, the (s, t) - 
system signifies the rotated (x, y)-system, � is the angle of rotation. The (u, v)-system denotes the 
detector projection 2-D-coordinate system. Source position s, the origin o and the detector center-point 
D are in the same line. SDD is the constant source-to-detector distance. SAD is the constant source-to- 
z-axis distance. 

It is easy to extend the 2D fan beam case to a 3D cone beam case. Similarly, u_step denotes the step 
in u direction, v_step means the step in v direction. We allot the detector units into u_step*v_step 
blocks, allot the detector units into patches with size of u_step*v_step, and for each patch, units are 
allotted to the corresponding location in the block. 

We assume the projection as Puv (1� u �nu, 1� v �nv), nu is the dimension in u-direction and nv is 
the dimension in v-direction. Then, the blocks are Blockmn (1� m � u_step, 1� n �v_step), the detector 
pixel Pij (i=k*u_step+m, j=l*v_step+n) is allotted into the block Blockmn, where k=0,1,2,...,nu/u_step-
1, l=0,1,2,...,nv/v_step-1. 
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Fig. 4. Ideal and original geometry. 
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Fig. 5. Allot the 2D projection. 

 
As shown in Figure 5, we assume u_step=2, v_step=2, so the block dimensions are 2*2. We name 

the four blocks as block_11, block_12, block_21, block_22. The detector projection is split into 
patches with dimensions 2*2. Then, the detector unit in each patch is allotted into corresponding 
blocks. 

4. Experiments and discussion 

4.1. Implementation flowchart 

The parallel implementation for cone beam geometry over a circular scanning trajectory is discussed 
in this section. 

For each angle �: 
(1)    Calculate u_step and v_step; 
(2)    Allot the projections into u_step*v_step block; 
(3)    For each block, perform reconstruction on the GPU. 

 
Algorithm 2: CUDA kernel 
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As implied in Eq. (3), in the CUDA parallel kernels, each thread is launched for each ray. This 

calculates the projection value of this ray, updating the voxels that the ray passes through. 
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4.2. Experiments on shepp-logan phantom 

A NVIDIA K4000 card is used in this paper. The GPU card has a total of 768 processor cores, and 
is equipped with 3 GB GDDR5 memory. 

We test our reconstruction algorithm with the shepp-logan phantom [13]. The phantom is generated 
with dimensions of 256*256*256 voxels with a voxel size of 0.5*0.5*0.5 mm3. The x-ray imager is 
modeled as an array of 960*768 with detector size of 244*195 mm2. The source-to-axes distance is 
700 mm and the source-to-detector distance is 1000 mm. To estimate the computation efficiency, we 
compare the computation time between GPU framework implementation and CPU framework 
implementation. The forward-projection and backward-projection procedures are enforced by Joseph’s 
ray tracing algorithm [14]. 

We use 60 projections to complete reconstruction. In all cases, the projections are taken along 
equally spaced angles, which cover an entire 360 degree rotation.  

 

   (a) 

   (b) 

   (c) 
Fig. 6. Results of 3D shepp-logan phantom. Row (a) shows the standard digital image to be reconstructed; Row (b)-(c) shows 
the reconstructed image by CPU framework and GPU framework. The first through third columns show the coronal, sagittal, and 
transaxial views, respectively. 
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Fig. 7. Horizontal profiles through the center of coronal view images.  

 
Table 1 

The execution time needed for reconstruction 

Computation 
Time t (sec) CPU (per projection, average  GPU (per projection, average  

 40s 2s 

 
Slices of reconstructed images after 5 iterations are shown in Figure 6. Together with the 

corresponding slices of the phantom, columns 1–3 show the coronal, sagittal, and transaxial views of 
the images, respectively. Row (a) in Figure 6 shows the digital phantom images. Row (b) shows the 
3D reconstructed image by the CPU framework. Row (c) shows the 3D reconstructed image by the 
GPU framework. Because the model is very simple, it does not support high-quality images. The 
outcome of the GPU framework is nearly the same with the outcome of the CPU framework. 
Horizontal profiles through the center of the coronal view images are plotted in Figure 7, which 
further illustrates the similarity of the different reconstruction frameworks. 

The ART implementation in CUDA 5.0 wastes approximately 2.0 second per angle per update to 
complete the forward-projection and the back-projection.  

As we can see from Table 1, compared with the computational time of almost 40 s in CPU 
implementation, our GPU implementation on a NVIDIA Tesla C1060 GPU card has tremendously 
enhanced efficiency (~20 times faster). 

From the experiment above, we can see that the GPU framework achieves the same outcome, but in 
much less time than the CPU framework. 

5.  Conclusion 

In this paper, we have developed a block-wise approximate parallel implementation method for the 
ART algorithm on a CUDA-enable GPU.  
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The result on a shepp-logan phantom indicates that our algorithm has improved the time efficiency 
by a factor of 20 over the existing CPU implementation method. These findings make the iterative 
CBCT reconstruction approach applicable in clinical environments. 

Due to its reconstruction time of less than 10 minutes, our GPU implementation is already 
applicable for specific usage in the clinical environment. 
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