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Abstract. A grid-driven gridding (GDG) method is proposed to uniformly re-sample non-Cartesian raw data acquired in PRO-
PELLER, in which a trajectory window for each Cartesian grid is first computed. The intensity of the reconstructed image at
this grid is the weighted average of raw data in this window. Taking consider of the single instruction multiple data (SIMD)
property of the proposed GDG, a CUDA accelerated method is then proposed to improve the performance of the proposed
GDG. Two groups of raw data sampled by PROPELLER in two resolutions are reconstructed by the proposed method. To bal-
ance computation resources of the GPU and obtain the best performance improvement, four thread-block strategies are adopted.
Experimental results demonstrate that although the proposed GDG is more time consuming than traditional DDG, the CUDA
accelerated GDG is almost 10 times faster than traditional DDG.
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1. Introduction

Since the concept and principle of magnetic resonance imaging (MRI) was presented by Lauterbur,
researchers in this field have typically focused their efforts on acquiring data under time-varying gra-
dients [1]. Although data acquired uniformly under a on-off gradient can be reconstructed straightfor-
wardly by Fast Fourier Transform (FFT), fast gradient switch is not feasible in practice [2]. Therefore,
acquiring data with non-Cartesian trajectories under smoothly switched gradients have become the focus
of intensive investigation by diverse groups of researchers in this field [3]. As signals from central part of
the k-space determine the contrast and signal-to-noise ratio (SNR), the multi-strip central oversampling
method, namely PROPELLER, is able to correct physiological and motion artifacts and therefore has
been successfully applied in high-end MR equipments [4, 5].

To reconstruct images from raw data acquired with non-Cartesian trajectories, Direct Fourier trans-
form (DFT) and data-driven gridding (DDG) are two most important methods [6]. In DFT, intensities
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of the reconstructed image are weighted sums of raw data where the weightings are estimated by a pre-
defined density compensation function (DCF) [7, 8]. Although images reconstructed by DFT are usu-
ally used as a standard to evaluate other reconstruction methods, its high computational requirement is
the greatest obstacle for its application in practice. Therefore, DDG methods are used to re-sample the
non-uniform raw data onto Cartesian grids. The uniform result is then transferred by FFT to reconstruct
the MR image. As one of the most popular methods, convolution interpolation gridding has been widely
studied due to its effectiveness and robustness [9]. In convolution interpolation gridding, raw data are
convoluted with a predefined diffuse kernel, which is equivalent to re-sample values of the raw data onto
the related grids. The interpolation weightings are used to compensate the non-uniform sampling density
[8]. Although infinite sinc function is considered as the optimal choice of convolution kernel, it has to be
replaced by a finite one in practice [10]. Therefore, an investigation on finite convolution functions was
developed by Jackson et al. where the Kaiser-Bessel function is asseverated as the best choice [11]. In
DDG, a convolution window is first computed for each trajectory point. Raw data at this point will then
be convoluted to distribute its energy to Cartesian grids in the window with convolution kernel and DCF
as the weightings. Therefore, it is time consuming for DDG to uniformly re-sample the raw data.

Due to its ever-increasing in computing power and powerful capabilities in general purpose computing
power, the graphics processing unit (GPU) has been widely used in medical image processing [12].
Nevertheless, only few researches concerning acceleration of MR reconstruction using GPU. A GPU
accelerated method was proposed by Stone et al. for advanced three-dimensional reconstruction [13].
Yang et al. tried to accelerate traditional DDG using CUDA (which is the paralell computing architecture
of NVIDIA) and found out an inconsistent problem in the CUDA accelerated [14]. Then, a reverse
gridding algorithm was proposed and was accelerated using CUDA [14].

In this paper, a grid-driven gridding (GDG) method is first proposed. The proposed method creates a
trajectory window for each Cartesian grid (which means grid-driven). The intensity of the reconstructed
image at this grid is the weighted average of raw data in this window, which is accomplished by convo-
lution. To improve performance of the proposed GDG, a CUDA accelerated method is then proposed.
Experimental results show that the proposed GDG is almost 10 times faster than traditional DDG. The
rest of this paper is organized as follows. In section 2, a grid-driven gridding method is presented in
PROPELLER trajectory. The CUDA acceleration of the proposed GDG method is presented in Section
3. Experimental results are given in section 4. This paper is discussed and concluded in section 5 and 6.

2. Grid-driven gridding

Let M, Mgrg, R, and C be the raw data, the gridding result, the equal spaced Cartesian grids, and the
convolution kernel, respectively. The DDG can be then expressed as Mprg = [M(u,v) ® D x C(u,v)] o
R(u,v) where (u,v) are the k-space coordinates of sampling trajectory .S, D is the density compensation
function defined by D = S(u,v)/(S(u,v) * C(u,v)), and * is the convolution operator.

2.1. Data acquisition

In PROPELLER, raw data are acquired in k-space with [NV concentric rotated strips. Each strip consists
of L phase encoded lines, which are at the center of M, parallel linear trajectories in phase encoding
direction. Each trajectory line is filled with M, sampling points in frequency-encoding direction. The
overlap of neighbouring strips emerges into a central circle in k-space. Let K be the size of field of
view (FOV) and Re(x) and Im(*) are the components of x in frequency-encoding direction and phase
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encoding direction, respectively. The first trajectory strip 57 can then be computed using Re(S1(u,v)) =
—Re(K)/2 + Re(K)/M, x wand Im(Si(u,v)) = —Im(K)/2 4+ Im(K)/M, x (M, — L/2 + v)
where 0 < u < M, and 0 < v < L. The next strip S;; is achieved by rotating .S; anticlockwise with 6
radian, in which 6 is the inner angle between two adjacent strips given by 7/N.

2.2. Uniform re-sampling

To uniformly re-sample the raw data acquired with PROPELLER, a convolution window with size
W for each grid in the first strip is first computed in the proposed GDG method. The convolution win-
dow is clockwise rotated with an angle - until the final convolution window in trajectory matrix S is
achieved where + is the inner angle between the i-th strip and the first one given by v = i x (7/N).
For grid point G(u,v), the lower and upper bounds of the convolution window can be computed by
irmin = ((G(u,v) — G. — W)) © G ® K and irmaz = ((G(u,v) — G. +W)) © G ® K. Rotation
of the convolution window with an angle v clockwise is equal to anticlockwise rotate it with —~, which
can be accomplished by right multiplying the window with a unit matrix consisting of cos and sin values
of —v. Bounds of the convolution window are updated by the lower and upper bounds of the rotation
result. The bounds irmin and irmaz are then used to computed a coordinate range of the convolu-
tion window in frequency-encoding direction |umin,umaz| and a coordinate range in phase-encoding
direction in the form of [vmin,vmaz] where umin = (Re(irmin) + Re(K)/2) x My/Re(K),
umax = (Re(irmax)+ Re(K)/2) x M, /Re(K ), vmin = (Im(irmin)+Im(K)/2)x M, /Im(K)—
My, — L/2, and vmar = (Im(irmax) + Im(K)/2) x My/Im(K) — M, — L/2. For any ele-
ment (m,n) in [(umin,vmin), (umax,vmax)], the corresponding coordinates (p,q) which are in
the trajectory matrix S can be given by p = m + ¢ x L and ¢ = n, respectively. In the proposed
GDG, the Euler distance between trajectory S(p, q) and grid position G(u,v) is then computed using
dk = K ® (G(u,v) — G.) @ G — S(p, q). If |dk| is less than |W}| where |Wy| = K @ W @ G, raw data
M (p, q) is convolution interpolated to accumulate the contribution to the grid point G(u, v). It is obvious
that there might be an overlap among different convolution windows which may result in a read-read
conflict. But this will not influence the consistency of the re-sampling result.

3. Acceleration with CUDA

It is obvious that the proposed GDG method is more complicated than traditional DDG. Therefore, a
CUDA accelerated method is proposed to improve the performance of the proposed GDG in this section.
The accelerated method takes full advantage of the data parallel property of uniform sampling. It also
resolves the inconsistency pointed by Yang et al. when traditional DDG is directly accelerated using
multithreading [14]. The pseudo-code of the CUDA accelerated GDG can be given in Algorithm 1.

Different from traditional DDG, the proposed CUDA accelerated GDG creates thread-block according
to the Cartesian grids. Therefore, it is possible for thread-block scheduler to create only one FIFO (First
In First Out) queue. One block in this queue at a time is transferred to processors. The processors corre-
sponds to streaming multi-processors (SMs) of the GPU. Processors directly operate data M, S, and D,
which is marked with the bold blue arrow in the lower right corner of Figure 1.

As SMs are relevant to thread-blocks and there is a thread-block scheduler, threads in each block
are controlled by a thread scheduler. Convolution interpolation is implemented by streaming processors
(SPs) of the GPU through scheduling the thread queue as shown in Figure 2. In fact, SPs are the ultimate
executive units for a CUDA enabled GPU. The proposed CUDA accelerated GDG guarantees that SPs
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Algorithm 1 CUDA accelerated grid-driven gridding

Input: M, S,D,C, W
Output: Mrs

- function __ global GriddingKernel( M rsdev, Mdecv, Sdevs Ddevs Cdevs Waewv)

1. Compute the index of current thread in the Cartesian grids from the block index and the block inside index.
2. For this grid point, compute the convolution window.
3. Accumulate the contribution of raw data in the convolution window with D and C' as the weightings.

- function CudaGridDrivenGrid(Mrs, M, S, D, C, W)

1. Detect the number and performance of GPUs performance and configure CUDA run-time parameters

2. Allocate global memory on the GPU for M, S, D, C, Mrs and load them (except Mrs) from system memory to GPU
memory via cudaMemcpy function with macro cudaMemcpyHostToDeive.

3. Create thread-blocks by dividing Mrs with thread-block size. Note that Mrs should be expanded to integral multiples
of thread-block size and filled the expansion with 0.

4. Invoke GriddingKernel with parametric configuration <<< By, Ty, My, S, >>>, where B, is the block number, T,
indicates thread number inside each block, M,, represents shared memory size required inside each block, and S, is the
processing stream number.

5. Copy re-sampling result M rs back to system memory via cudaMemcpy function with macro cudaMemcpyDeviceToHost.

in one SM write the same element of Mpg. However, if traditional DDG was accelerated with CUDA
directly, it would like to write a number of different elements of Mpg.

4. Results

We implemented the proposed method on a general PC with CUDA 1.1, where the CPU is Intel
®Core(TM)2 E6550 2.33GHz and the GPU is NVIDIA GeForce 8800 GT with 112 CUDA cores,
512MB 256-bit memory, and 64 GB/sec bandwidth. The reason to accelerate the proposed GDG on
Geforece 8800 GT with CUDA 1.1 is that they are standard configuration of the first release of the Neu-
soft Ltd. Superstar 1.5T MRI system besides that CUDA is downward compatible and we do not need
to update our hardware. In this section, CPU implementations are all written in language C and run on
single core straightforward. To perform a fair compare, single precision are used both in CPU and GPU
implementations due to the non-support of double precision in CUDA 1.1. Two groups of k-space data
are used to validate the proposed GDG. These data are both acquired by Neusoft Superstar 1.5T MRI
system using PROPELLER trajectory with N = 17 and L = 24. The parameter M, is set to be 960
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Fig. 1. The CUDA acceleration of the proposed GDG. Fig. 2. The thread model inside each thread-block.
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Fig. 3. Final reconstruction results of water phantom 1 and water phantom 2 reconstructed by traditional DDG (left) and the
proposed CUDA accelerated GDG (right).

and 1024, respectively. While the lower one is named water phantom 1, the higher one is called water
phantom 2. To compare conveniently, 512 x 512 is considered as the re-sampling resolution for both of
the data. Figure 3 shows final reconstructed by transferring the re-sampling results with FFT.

In CUDA, the minimal execution unit is thread and a number of threads form a block. Threads in the
same block share the memory and are able to be synchronized. Therefore, it is necessary to find out the
best threads allocation strategy to utilize the hardware resource reasonably. Although more threads in
the same block can make use of the latent read-write efficiency of the shared memory, too many threads
allocated in one block will cost too much time for thread scheduling. Moreover, the number of threads
in the same block is also limited by specific hardware. On the contrary, thread reduction can improve
efficiency of each block. But this might not take full advantage of the computational resources and will
bring additional pressure to SMs in resource scheduling. A performance analysis on the proposed CUDA
accelerated GDG is taken with thread-block being set to be 16 x 16, 12 x 12, 8 x 8, and 4 x 4, respectively.
From Figure 4, we can see that DDG and GDG achieved their best performance when the thread-block is
16 x 16 and 8 x 8, respectively. As mentioned earlier, the proposed GDG generates a convolution window
for each Cartesian grid. Thus, the CUDA accelerated GDG has to create 512 x 512 = 262144 threads
or more (if there is a filling operation as mentioned earlier). And there are at least 408 x 960 = 391680
threads in CUDA accelerated traditional DDG. Due to the rotation operation to compute the final con-
volution window, the CUDA kernel function of the proposed CUDA accelerated GDG is much more
time consuming than CUDA accelerated DDG. Hence, the proposed CUDA accelerated GDG is more
easily influenced by executive efficiency of each thread rather than scheduling time. Thus, the smaller
the thread-block is, the less the re-sampling time is. On the other hand, also restrained by computational
resource and increase of block scheduling, performance of the proposed CUDA accelerated GDG will
decline when thread-block size achieves a certain degree (8 x 8 in Figure 4). However, CUDA accel-
erated traditional DDG is more easily influenced by thread-block scheduling than the proposed CUDA
accelerated GDG. The smaller the block is, the more blocks there are. Therefore, scheduling cost more
time and results in re-sampling time increase as shown in Figure 4.

As mentioned earlier, resolutions of the experimental data are 408 x 960 and 408 x 1024, respectively.
High resolution data results in more threads than low resolution data in CUDA accelerated traditional
DDG. Thus, uniformly re-sampling the high resolution data is more time consuming as show in Figure 5.
Moreover, as more easily affected by block scheduling than computation commands existing in each
thread as mentioned earlier, time performance of CUDA accelerated traditional DDG becomes much
worse while the number of thread-block increases as shown in Figure 5. However, the proposed CUDA
accelerated GDG creates threads based on the resolution of the sampling grid. Thus, the total thread
number is always equal to 512 x 512 except for the filling zero operation at block 12 x 12. But the filling
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is the same for both of the data. Therefore, time performance of the proposed CUDA accelerated GDG is
almost the same in re-sampling these two data with the same thread-block strategy as shown in Figure 6.
Performance comparison between the proposed GDG and traditional DDG is given in Figure 7. As
traditional DDG is much more easily influenced by the resolution of raw data, it cost 0.500 seconds to re-
sample the 408960 data onto a 512 x 512 grid but 0.533 seconds for the other data. As the proposed GDG
is much more complicated, it needs 1.313 seconds to re-sample the low resolution data and 1.401 seconds
for the high resolution one. However, CUDA accelerated traditional DDG receives its best efficiency
0.030 seconds for the low resolution data at block size 16 x 16 and 0.033 seconds for the higher one.
Whereas the proposed CUDA accelerated GDG is not influenced by the resolution of raw data but the re-
sampling grid. Thus, it achieves the best performance 0.058 seconds at block size 8 x 8 for both of these
two data. For the low resolution data, speedup ratio of traditional DDG is 16.667 and grid-driven gridding
reaches up to 22.638. But for the high resolution data, the numbers are 16.152 and 24.155, respectively.
As CUDA accelerated traditional DDG will results in an inconsistency, performance comparison of the
proposed CUDA accelerated GDG with the traditional DDG is meaningful. As shown in Figure 8, the
ultimate speedup ratio is nearest to 10 (9.190 in fact) for water phantom 2.

5. Discussions

In the Neusoft Superstar 1.5T MRI system, images are reconstructed slice by slice. Although re-
sampling can be accelerated using streaming SIMD extensions (SSE) in which the CPU is able to per-
form multiple operations at the same time on each core, we accelerated it in another way in this paper.
The re-sampling time of the CUDA accelerated DDG and GDG are all recorded from the beginning
to the end, which includes data transferring between the CPU and GPU. Hence, if newer GPUs with
higher memory transferring efficiency and computing power are used, the CUDA implementation can
run without modification to give a greater speedup.

6. Conclusion

A grid-driven gridding algorithm has been proposed to uniformly re-sample the non-Cartesian data for
magnetic resonance image reconstruction. The proposed method computes a trajectory window for each
Cartesian grid. The intensity of the reconstructed image at this grid is the weighted average of raw data
in this window, which is accomplished by convolution. To improve performance of the proposed GDG
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method, a CUDA accelerated method is then proposed. Experimental results show that the proposed
GDG is correct and is almost 10 times faster than traditional DDG.
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