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Abstract. Mental workload is an important component in complex human-machine systems. The limited applicability of 
empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a 
mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure 
pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation 
with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly 
correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human 
factors interface design and reducing human errors.  
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1. Introduction 

With the rapid development of intelligent technology and flight automation, a pilot’s number of 
manual control tasks reduces while the number of monitoring control tasks increases. Whether the 
pilot can perform the flight task successfully largely depends on monitoring a plurality of flight 
indicators and understanding flight information correctly. Fitts, et al. found that 18% of flight 
accidents derived from pilots' errors in comprehensive interpretation of flight indicator information [1]. 
Therefore, researchers propose the mental workload (MW) concept to optimize the display number 
and coding method of flight information on the cockpit display interface, which will decrease human 
error and increase system reliability and operator comfort [2]. Ever since MW was first defined in the 
1970s [1], researchers have expatiated the effects of MW on humans in dynamic systems through 
different angles. Parasuraman, et al. defined MW as the functional relationship between the mental 
resources demanded by a task and the available mental resources provided by the operator [2]. The 
pilot’s MW can be measured by various definitions in different angles. By now, plenty of studies 
belong to empirical workload measures. The disadvantage is that they discover the design problem 
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after the fact, and there is a high economic cost [1]. Prior analysis of the operator’s MW in the human-
machine system can be adopted in both MW prediction and evaluation. The widely used MW 
prediction modeling methods include task network analysis and cognitive structure analysis [3]. 

Task network analysis does not generally need special mathematical modeling technology, but 
instead requires detailed task sequence and demanded time information [3]. For example, the Timeline 
Analysis and Prediction (TLAP) method worked out the timeline through elaborate task analysis and 
calculated MW in a certain time unit, which was the TR/TA (Time Required/Time Available) in the 
time unit [4]. Wichens explained the workload problem by the resources' volume and proposed a 4-
dimensional multiple resources model. An increase in task difficulty or resource shortage affected by 
resource conflicts between many tasks caused a decrease in the total performance [5]. Colombi, et al. 
synthesized a system frame, operator task analysis and workload theory based on the 4-dimensional 
multiple resources model, so that the operator’s MW could be assessed in the early design of Systems 
of Systems (SoS) [6]. Liang, et al. combined task analysis with McCrachen-Aldrich technology and 
divided the task into secondary tasks. Then the MW prediction was performed by quantifying the 
operating procedure from visual, auditory and two other dimensions [7].  

Cognitive structure analysis utilizes foundational cognitive theory to establish a frame structure 
representing a potential object, principle and the operator’s performing mechanism; then the human 
behavior in the complex system can be expressed as relevant factors in the structure [3]. For instance, 
Xie and Salvendy presented and verified a MW conceptual frame under single or multiple task 
environments, including instantaneous MW, average MW, accumulated MW and total MW, as well as 
a prediction model [8]. Cao and Liu conducted a model on the basis of ACTR-QN (integration of 
Adaptive Control of Thought-Rational and Queueing Network), which presented the multi-
dimensional factors of MW, the predict error rate, and total MW [9]. Jo, et al. applied the ACT-R 
cognitive structure to develop a MW prediction model, which mainly considered the activated time of 
8 modules in the ACT-R [10]. The information processing (IP)/perceptual control theory (PCT) model 
stated that MW consisted of time workload (defined as time pressure) and intensity workload (defined 
as task difficulty, such as information amount) [4]. Unlike most task network analysis, cognitive 
structure analysis has no need for detailed task scenarios and task decomposition steps, so it is easier 
to exploit. 

Although the above studies predicted the operator’s MW from considerable angles, they did not 
consider the integrated effects of exogenous task demands and endogenous resource supply on MW. 
Hence, the present study focused on the MW induced by visual information processing of the aircraft 
cockpit display interface and developed a MW prediction model by employing cognitive structure 
analysis and integrating attentional resource allocation and information processing. To verify the 
validity of this model, an empirical study of an abnormal attitude recovery task under different MW 
conditions on the display interface was conducted. NASA-TLX subjective evaluation, performance, 
and eye movement technology were applied to analyze the trend of the subjects' MW and to compare 
it with the theoretical predictions. 

2. Model development 

The aircraft cockpit is a special operating environment containing highly dense flight information. 
70% of information is delivered visually, so the pilot's MW mainly comes from monitoring visual 
information tasks. The present study concentrates on modeling and optimizing the MW caused by 
monitoring information on the cockpit display interface. 
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With the cockpit display interface divided into n areas of interest (AOI), the total MW equals the 
addition of MW from n AOIs. In spite of individual differences, MW has two main determinants: 
exogenous task demands as specified by factors such as task difficulty, accuracy, and time requirement, 
and endogenous supply of attentional or processing resources such as perceiving, updating memory, 
and decision making [1]. In the present study, information amount, time pressure, and the integrated 
performance value of visual coding are applied to quantize exogenous task demands, while the 
attentional allocation factor quantizes the endogenous resource supply. 

The information amount may be adopted to measure task difficulty. The information amount that a 
pilot completes per unit of time can be applied to evaluate information processing effectiveness, which 
can be used to compare the different MW that pilots face [4]. Flight information can be quantified by 
information theory, which states that the information amount is affected by the number of possible 
events, event probability, and event sequence; as a result, the average information amount appearing 
with time Hi is shown as Eq. (1) [11]. Shown in Eq. (2), the information probability of AOIi Pi 
represents the information number in AOIi and the coefficient related to the information value. P1i is 
the value of information in AOIi with respect to all the AOIs. P2i is the SNR of information in AOIi. 

 
[ ]2log (1/ )i i iH P P=                                                                (1) 

1 2* Pi i iP P=                                                                      (2) 
 
Time pressure has been considered to have an important effect on pilot safety concerning 

information processing. It refers to the mental stress generated when operators feel the impossibility of 
finishing a task smoothly because of the limited available time [12]. Time pressure can be quantified 
as the available time set by the system, which may be represented by the operating time from the 
information presentation to perception, understanding, and finally performance. According to the 
definition of the rate of information transmission [4], [11], the average information amount can be 
multiplied by time pressure, which may avoid the quantization problem of the weight coefficient in the 
linear additive model. 

In addition, a series of studies indicate that proper visual coding helps pilot perceive and understand 
flight information easier, which in turn reduces MW during cognitive processing [13]. The present 
study establishes a Multi-dimensional Visual Coding Evaluation Model for the cockpit display 
interface by considering character size, color matching, interface layout, and other visual coding 
characters that affect MW, taking advantage of meta-analysis and integrated performance values, and 
involving further statistical analysis of previous experimental results [14]. The integrated performance 
value Ci of visual coding based on this model is shown in Eq. (3), where wi

j is the weight coefficient of 
AOIi, Vi

j is the integrated performance value of visual coding j, and  represents the fuzzy weighted 
averaging operator. 
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As for the endogenous resource supply, attentional resources required by the tasks can be allocated 
by continuously monitoring visual information spontaneously and independently [15]. In the 
perception stage, the more attentional resources a pilot allocates on the AOI, the more cognitive 
resources are occupied, which leads to higher MW. Attentional allocation factor fi can represent the 
operator’s endogenous MW consumed by paying attention to the AOI. Eq. (4) is the attentional 
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resource A of n AOIs. Eq. (5) shows that the attentional allocation factor fi equals the ratio of the 
attentional resource of AOIi to the total attentional resource [15]. Besides, to be consistent with MW 
modeling, the sum of fi is supposed to be n, where n refers to the number of AOIs. 

 
1 2( , ,..., ,... )i nA A A A A=                                                               (4) 

1

n
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f n A A
=

= �                                                                       (5) 

 
The visual system captures information and the neural systems transfers it to the brain, so the 

attentional resource allocated to AOIi is Eq. (6) [15]. All the information has a probability �i to be 
noticed for one fixation. The information will occupy some attentional resources if it is noticed; 
abnormal information in AOIi may apply highlighting, flashing, and other display formats to help 
pilots perceive and respond quickly. Salience Si is quantified by display formats; effort Ei refers to the 
effort operators take to gain information by eye or head movements. It restrains attentional resource 
allocation to some extent and can be measured by the relative distance between AOIs; Vi is the 
information importance attribute associated with the task [15], as in Eq. (7). �i is the probability of the 
information potential cognitive condition in AOIi, and ui is the information importance attribute of 
AOIi. Since there is a certain ambiguity in humans' subjective cognitions, fuzzy entropy hi is used to 
reflect the operator’s mental activity in the information cognition in AOIi [15]. 
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Starting with exogenous task demand and endogenous resource supply, the above four factors have 

a corporate affect on the potential MW of a pilot required from the display interface. The MW for the 
aircraft cockpit display interface is found by putting the calculations of each factor in Eq. (8).  
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The integrated performance value of visual coding is i 0C ≥  with unit 1, the average information 

amount is i 0H ≥  with unit bits, the time pressure is 0iT >  with unit s, and the attentional allocation 

factors is 0if ≥  with unit 1. As a consequence, MW is 0MW ≥  with unit bits/s. 
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3. Experimental method 

3.1. Subjects 

Thirty-two Beihang University graduates (twenty-eight males and four females with a mean age of 
24.6) with a background knowledge in aviation participated in the experiment. Each participant was 
right-handed and possessed normal or corrected to normal vision with no color blindness or weakness. 
All subjects gave their full informed consent before the experiment. 

3.2. Materials 

The ergonomics experiment was carried out on the two primary flight display (PFD) interfaces, as 
shown in Figure 1. According to the practical flight tasks and cockpit PFD interface, the experimental 
program was established by GL studio virtual instrument simulation software. The experimental 
interface was presented on a 17-inch LCD monitor with a resolution of 1440×900. During the 
experiment, environment average illumination remained at about 600 Lx.  

The subjects' blink frequency and fixation time were recorded with the non-contact eye tracker 
system Smart Eye Pro with an accuracy of better than 1° and a 60Hz sampling rate. A 4-point 
calibration and validation was performed before the start of the each experimental session. Blinks and 
fixations with durations less than 10 ms and 100 ms, respectively, were not considered in the analysis. 
Subjects were asked to complete the NASA-TLX [16] subjective questionnaire at the end of the 
experiment. 

3.3. Experiment task 

The experiment simulated the abnormal attitude recovery task during take-off, cruise, and landing, 
which required subjects to continuously monitor numerous information related to flight attitude 
controlling on the display interface, including pitching angle, rolling angle, air speed, pressure altitude, 
and heading angle. As soon as the information was beyond the limits set by normal flight conditions, 
the subject needed to respond within the prescribed time.  

3.4. Experiment design 

The experiment adopted a 2*2*2 three factors mixed design. The two interfaces (one is interface a,  
 

  
Fig. 1. PFD interface a (left) and PFD interface b (right). Interface a simulated B787 PFD with proper simplification and 
abstraction, while interface b was the optimized interface based on the multi-dimensional visual coding evaluation model. 
They were both divided into four AOIs. 
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the other is interface b), representing different visual coding characters, were between-subjects. The 
amount of information (two conditions: one monitoring five pieces of information and the second 
monitoring two pieces of information), standing for the information amount, and the two time 
conditions (one with a presentation time of 1.5 s and the other with a presentation time of 3 s), 
standing for the time pressure, were within-subjects. The subjects were randomly assigned into two 
groups, so that each subject participated in a total of four experiments. The Latin square design was 
applied to reduce both the practice effect and the fatigue effect. 

4. Results 

The attentional allocation factors fi were obtained by calculating the attribute values of effort and 
salience for four AOIs on two interfaces and integrating probability and the importance of different 
information. Theoretical prediction MW was figured out in Table 1. The statistic results in Table 1 
indicate that a decrease in the amount of information and an increase in time with the optimized 
interface led to better performance, a lower NASA-TLX subjective score, higher blink frequency, and 
shorter fixation time. This, in turn, led to a decrease in MW, just as the MW prediction model 
predicted. Before the experiment, the basal levels of eye movement between the two groups were 
recorded. And the main effect of between-subject design was insignificant for both blink frequencies 
(p=0.952) and fixation time (p=0.803), respectively. The eye movement tracking results were analyzed 
to get the fixation heat map under two interfaces, shown in Figure 2. Fixations were mainly distributed 
in four AOIs, and its distribution proportion was larger in AOI3 of interface 1 than AOI3 of interface 2. 

RMANOVA by SPSS 13.0 showed that on the 0.05 significant level, the main effect of the 
information amount was significant for accuracy (P<0.001), subjective score (P<0.001), and fixation 
time (P=0.022), but insignificant for blink frequency (P=0.130). The time factor significantly affected 
accuracy (P<0.001), subjective score (P<0.001), blink frequency (P=0.001), and fixation time 
(P=0.012). However, accuracy (P=0.555), subjective score (P=0.407), and fixation time (P=0.663) 
were insignificantly modulated by the display interface, and blink frequency (P=0.079) was critical 
insignificantly modulated by the display interface.  

Pearson correlation analysis between the theoretical predictions and the four experimental indices 
suggested that, under eight MW conditions, predictions were positively correlated with subjective 
scores (r2=0.806, P=0.002) and fixation time (r2=0.632, P=0.018), and negatively correlated with 
accuracy (r2=0.778, P=0.004) and blink frequency (r2=0.566, P=0.032). On right side of Figure 2,  

 
Table 1 

Modeling predictions and experimental results under different MW conditions (mean ± SD) 

MW condition Prediction/bits/s Accuracy/% Subjective Score/point Blink Frequency/Hz Fixation Time/s
1 4.734 75.2±6.8 66.763±10.533 0.199±0.111 406±98 
2 2.645 81.8±7.6 45.738±13.890 0.268±0.144 360±138 
3 4.108 79.8±6.7 51.288±12.990 0.237±0.135 374±130 
4 2.296 86.8±4.1 37.531±14.844 0.268±0.152 318±138 
5 3.831 79.9±8.6 56.469±8.857 0.311±0.163 357±87 
6 2.141 82.9±5.8 46.929±12.220 0.360±0.206 354±84 
7 3.302 81.6±6.2 48.229±11.656 0.315±0.174 347±85 
8 1.845 83.9±7.0 38.784±16.335 0.381±0.209 341±75 

Note: MW conditions are 1(1,1,1), 2(1,1,2), 3(1,2,1), 4(1,2,2), 5(2,1,1), 6(2,1,2), 7(2,2,1), and 8(2,2,2),where parenthesis means (display 
interface, information amount, time). 
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Fig. 2. Attentional fixation heat map (left) and trend of modeling and experimental results (right). 
 
trends of accuracy and subjective score were compared with the trend of predictions. 

5. Discussion and conclusion 

The significance and trend of experimental subjective scores, performance, and eye movement 
tracking indicate that the experimental measure indices have certain sensitivity for MW measurement. 
Both the information amount and time pressure have a significant effect on MW. NASA-TLX is a 
multi-dimensional MW evaluation scale developed by NASA. Because its validity matches the 
performance, NASA-TLX is widely harnessed in measuring and diagnosing MW [16,17]; the 
information cognitive performance is one of the intuitive indices to estimate display interface design. 
Ideal design should maintain efficient cognition under different information amount conditions. The 
accuracy of the abnormal attitude recovery task can be taken as a symbol of information cognitive 
performance [18]. The physiological indices' blink frequency and fixation time are sensitive to visual 
monitoring workload. Related studies found that a higher operator MW will give rise to a lower blink 
frequency and more fixation time [17-19]. The absence of the display interface effect on the 
experimental indices in the present study may be because interface 1 simulates the B787 PFD interface 
that has already been put into use, is widely recognized, and meets the airworthiness requirements. 
Compared to the optimized interface 2, interface 1 will not significantly increase the pilot’s MW. 

The correlation between the MW theoretical prediction and the experimental results suggests that a 
large amount of information, high time pressure, and improper visual coding may result in a 
significant increase in the operator’s MW, which verifies the validation of mental workload prediction 
based on attentional resource allocation and information processing. The predictions are highly 
correlated with subjective score and performance (r2=0.81/0.78), but not highly correlated with the eye 
movement tracking results (r2=0.63/0.57). One reasonable explanation of these results is that 
physiological measurements are less sensitive than subjective evaluation and performance. The other 
possible explanation is that the initial setting of the eye tracker excludes the data with blink durations 
less than 10ms. Otherwise, the difference between the visual coding designs of two display interfaces 
is relatively small; hence, the prediction is at a higher level under different information amounts and 
time pressure conditions than under the two display interfaces. In conclusion, at the early stage of 
aircraft cockpit display interface design, mental workload prediction based on attentional resource 
allocation and information processing can predict the pilot’s MW when monitoring the display 
interface and conducting human-rating analysis of cockpit display interface and flight tasks.  
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In contrast to most existing mental workload models, the mental workload prediction based on 
attentional resource allocation and information processing raised in the present study adds the 
attentional allocation factor and considers the relationship between attentional resource allocation and 
MW; this all provides the model with better prediction precision. Moreover, the model combines the 
attentional resource demand factor and information processing factor and is quantified by exogenous 
task demands and endogenous resource supply, which can account for the lack of interference from 
time-consuming but minimally resource-demanding tasks. Therefore, this model has an expanded 
scope of application compared to IP model. So far, since the model has not taken advantage of the 
conflicts within task types and multiple tasks, subsequent research will focus on optimizing the mental 
workload prediction model. 
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