
Accelerating sino-atrium computer
simulations with graphic processing units
Hong Zhanga,*, Zheng Xiaoa and Shien-fong Linb
aSchool of Electrical Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
bInstitute of Biomedical Engineering, National Chiao-Tung University, Hsinchu, Taiwan

Abstract. Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia
and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used.
However, the large-scale computation usually makes research difficult, given the limited computational power of Central
Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a
simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational
task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time
was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500
SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial
program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was,
the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating
methods and their promising applications in more complicated biological simulations.

Keywords: Sino-atrial node, atrium, graphic processing units, optimization, computer simulations, dynamic model

1. Introduction

Sino-atrial node cells (SANCs) are the primary pacemakers of the heart. Investigations of the
interactions between sino-atrial node (SAN) and the atrium can greatly help us reveal the mechanisms
of SAN automaticity and arrhythmia [1]. As an important quantitative method, simulation of the
cellular mathematical model has been widely used for clinical and research purposes [2, 3]. However,
due to the complex and dynamic natures of cardiac tissue [4], excessive computational loads have to
be implemented given the limited computational power of Central Processing Units (CPUs).

Recently, the utilization of Graphic Processing Units (GPUs) instead of CPUs in cardiac simulations
is being paid more and more attention [5, 6]. Each GPU may contain hundreds of stream
multiprocessors. The inherent data-parallel nature of the cardiac computer simulation makes GPU an
ideal platform. In the present study, the GPU system was nVIDIA GeForce GTX550Ti. CUDA (the
Compute Unified Device Architecture) was used as the developing platform. In CUDA [6], the GPU is
viewed as a computing device suitable for parallel data applications. It has its own device random
access memory and may run a very high number of threads in parallel. Threads are grouped in blocks

*Address for correspondence: Hong Zhang, School of Electrical Engineering, Xi’an Jiaotong University, No. 28 Xianning
West Road, Xi’an, 710049, China. Tel.: +86 29 82668630; Fax: 82668630; E-mail: mhzhang@mail.xjtu.edu.cn

0959-2989/15/$35.00 © 2015 – IOS Press and the authors.

DOI 10.3233/BME-151365
IOS Press

Bio-Medical Materials and Engineering 26 (2015) S739–S746

This article is published with Open Access and distributed under the terms of the Creative Commons Attribution and Non-Commercial License.

S739

and many blocks may run in a grid of blocks. Threads of the same block share data through the fast
shared on-chip memory and can be synchronized through synchronization points.

GPU computation generally uses a CPU and GPU together in a heterogeneous co-processing
computing model. The sequential part of the application runs on the CPU while the computationally
intensive part is accelerated by GPU [7]. In order to enhance the performance of GPUs, a number of
aspects have to be taken into account by a researcher, including the size of the thread block, the
communication between the CPU host and the GPU device, as well as the data partition across various
kinds of memories on GPUs. Although GPUs have been evaluated in a simple ventricular model with
8 state variables [8], detailed information about parallelization and optimization methods was not
mentioned in the report. In addition, the GPU’s application in the modern and much more complicated
cardiac models is still worth discussing, since a different number of equations and state variables
imply different arrangements of memories, registers and threads on GPU. Parallelization and
optimization strategies usually need to be reconsidered in order to maximize performance.

In this paper, based on two types of single cellular models, SAN and atrium, an inhomogeneous
one-dimensional sino-atrium tissue model was developed. The strategies to accelerate simulation with
GPUs were proposed and evaluated. The effectiveness of GPUs in simulations with two different
types of cellular models was demonstrated to show their promising future in more complicated
simulations. The technique can also be applied to other biological phenomena modelled as wave
propagation in an excitable medium.

2. Methods

2.1. Algorithm and parallelization strategies

An inhomogeneous fiber was developed by coupling SANCs [9] to atrial cells [10] through gap
junctions. A monodomain system in Eq. (1) was used to describe the electrical behaviors of the tissue,
in which electrical excitation was considered to propagate along an idealized cable [11]:

 ionmm I
t
VCAV +

∂
∂=•∇ σ (1)

where V is the membrane potential, σ denotes the conductivity of the gap junction, Cm is the mem-
brane capacitance, t is the time, Iion represents the total ionic current and Am is the surface-to-volume
ratio.

Generally, the current leaving a cardiac surface is considered to be zero in terms of the Neumann
boundary condition; therefore, at the two ends of the tissue, no-flux boundary conditions were used:

 00 =∇=∇ +== lalsxx VV (2)

where x is the spatial coordinate in the string, and ls and la represent the length of the SAN and the
atrium, respectively.

Since the conductivity of the gap junction is discontinuous at the SAN-atrial border, a conservation
of the flux condition given in Eq. (3) was imposed at x= ls:

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing unitsS740

 +− →−→−

∇=∇
0)(0)(

|| laxalsxs VV σσ (3)

where σs and σa represent conductivities in the region of the SAN and atrium, respectively.

To address regional differences between central and peripheral SANCs, the conductances of the gap
junction, capacitance and the size of SANCs were changed via an exponential form [12]. The operator
splitting technique [13] was used to split Eq. (1) into Eq. (4) and Eq. (5), in which the ordinary
differential equation (ODE) describing the behavior of each single cell was solved separately from the
partial differential equation (PDE) describing the electrical diffusion along the fiber. As shown in Eq.
(4), Iion was the function of V and gating variable Y. Since Y indicated the open probability of a
specified channel and was also described by an ODE, a set of ODEs was required to solve for the
intermediate value of V. In simulations, the Euler method was used to solve these ODEs. After
computation, V was used as an initial value for solving coupled PDE.

YVI
Cdt

dV
ion

m

1−= (4)

))((1 V
CAt

V

mm

σ•∇=
∂

∂
 (5)

The operator splitting method allowed us to calculate the ODEs separately from the PDE. For each

time step, the first task was to compute the ODEs of each cell on the tissue one after another. After
getting the membrane voltage of each single cell, the electrical diffusion was computed. Obviously,
with more cells, the bottleneck of the computation was mainly in the ODE part. Therefore, in parallel
strategy 1, the ODEs were assigned to GPU for implementation, in which each thread was responsible
for a single cell, so different threads could be launched at the same time for different cell calculations.
The computation of Eq. (4) was partitioned into segments, and a kernel for each segment was created.
In strategy 1, five kernels were designed and launched one after another to initialize the variables and
parameters of the SANCs and atrial cells in Kernel 1 and Kernel 2, calculate gating variables, ionic
currents and transmembrane potentials of SANCs in Kernel 3 and Kernel 4, respectively. The
computation of the atrial cells was carried out in Kernel 5.

In parallel strategy 2, the PDE solver and boundary conditions (2) and (3) were moved into GPU to
compute, creating a new kernel for the computation of the electrical diffusion. In addition, Kernel 3
and 4 in strategy 1 were combined to compute the tissue of SANC. The initializations of the SANC
and atrial variables were also merged in strategy 2 and implemented by one kernel. Therefore, in
strategy 2, a total of 4 kernels were designed and launched one after another to initialize the variables
and parameters of the SANCs and atrial cells in Kernel 1, calculate gating variables, ionic currents and
transmembrane potentials of the SANCs and atrial cells in Kernel 2 and Kernel 3, respectively. The
computation of the electrical diffusion was carried out in Kernel 4.

In strategy 3, the number of kernels was further decreased by combining Kernels 2 to 4 in strategy 2.
In other words, except for variable initializations, all the other executions were carried out in one large
kernel. During calculations, through the cudaMalloc function, the host first allocated memory for the
parameters used on GPU. Under the control of instructions, the host then copied the values from the

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing units S741

main memory to the global memory on GPU. After that, Kernel 1 was launched to initialize the SAN
and atrial cell variables. Then, a cycle was executed on GPU by launching the second kernel, in which
gating variables, ionic currents, transmembrane potentials and electrical diffusion were computed.
Calculation results were copied back to the main memory for storage and visualization. The cycle
continued until the end of the simulation. Finally, the memory space was released.

2.2. Program optimization

The strategy with the shortest execution time was selected as the starting point for optimization. In
order to improve its performance, the entire CUDA program was first analyzed through the NVIDIA
Visual Profiler, after being compiled with VS2010. The GPU system and CUDA in this study had a
computing capability 2.0; therefore, each multiprocessor could accommodate up to 1536 threads, 8
blocks and 48 warps. In order to make the workload of the threads occupy the entire multiprocessor,
the number of threads should be greater than Threads Per Multiprocessor divided by Thread Block,
that is, 1536/8 = 192. Each thread required 32 registers, and each multiprocessor had 32768 registers;
therefore, each multiprocessor could have 1024 threads. In the present simulation, two blocks with 512
threads in each block were used.

Additionally, a large amount of time would be consumed if the data were copied to the memory on
GPU and then back to the main memory during each operation. To reduce the data exchange, after a
large amount of calculations on GPU, a data transfer between the host and the device was launched.
This allowed more data to be copied back to the main memory during one exchange operation. Due to
the limited storage capability of the shared memory on GPU, there was an up limit for data storage. In
the present study, a data exchange was arranged for every 500 time step computation on GPU.

The data partition across various memories should also be considered in order to reduce the memory
access time. In each strategy, Kernel 1 was used to initialize the variables of the single cell, so these
initial data had to be placed in the global memory in order to be accessed by all threads. Since the
read/write speed of the global memory was slow, shared memory and registers were also utilized to
store frequently used data to reduce the access time.

3. Results and discussion

3.1. The efficacy of parallelization

The NVIDIA Visual Profiler was used to measure the running time of each designed strategy to test
its efficacy. Figure 1(a) shows a 1.6s simulation of real world cardiac time on tissue made up of 200
SANCs and 30 atrial cells. The result illustrated that strategy 3 was the fastest, and strategy 1 was the
slowest. Compared with strategy 2, the PDE solver in strategy 1 was calculated on CPU. This made
the parallelization degree low, while the data transfer between the host and the device frequent, thus
resulting in a long running time. For strategy 3, due to combination of three kernels in strategy 2, the
calls among multiple kernels and the access to memories were reduced, making the whole execution
time short. The result suggested that to improve efficiency, the program must be well-organized to
maximize the parallelization degree and reduce the calls among different tasks.

Figure 1(b) displays the time taken at different stages in strategy 3. As noticed, the computation
time of gating variables, ionic currents, voltages and electrical diffusion counted for 96.3% of the total
computation time, while the execution time on CPU took 2.1% of the time. The variable initialization

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing unitsS742

Fig. 2. Ex
execution
program ru
optimizati

was 0.1%
was 0.5%
was only

The ex
program
optimize
2(a), for
executio
The larg
further im
non-opti
by 80%
executio
reduced
CUDA

t (
 s

)

xecution time an
time for strate
unning on CPU
on for strategy

%. The data
%. Obviousl
y responsible
xecution tim

m running on
ed program w
simulations

on time of the
ger the tissu
mproved by
imized CUD
after the CU

on time for
to 8.922s. In
program, th

 Strategy

 28. 36

Fig. 1. The ex

t (
 s

)

nd speedup rati
gy 3 before (la

U (cross). (b): th
3.

a exchange th
y, the compu

e for the calls
me taken by s
n CPU are s
with respect t

on the fiber,
e CUDA pro

ue was, the m
optimization

DA program d
UDA program

the non-opt
n this situatio
he data nee

y1 Strategy2

5

 21.258

(a)

xecution time fo

SAN

io for different
abeled with circ
he speedup ratio

hrough the m
utation on G
s of the kerne
strategy 3 be
shown in Fig
to the serial p
, including e

ogram was m
more signifi
ns. For a sim
decreased by

m was optimi
timized prog
on, the CUD
ded to be

2 Strategy3

 16.374

or 3 strategies (

NC number
(a)

tissue sizes. In
cle) and after (
o of the CUDA

memory cop
GPU domina
el functions,

efore and afte
gure 2(a). T
program is il

either 200 or
much shorter t
icant the acc

mulation with
y 62% relati
ized. Howev

gram was 10
A program t
transferred

(a) and the time

CP
2

n all situations,
triangle) optim

A program relati

py occupied
ted the whol
 memory allo
er optimizati

The speedup
llustrated in F
500 SANCs
than that of t
celeration be
h 500 SANCs
ve to the ser

ver, for a sim
0.36s. After
took more tim
between CP

e taken at differ

SAN_atriu

PU time
2.1%

inter GP
0.5%

Sp
ee

du
p

ra
tio

30 SAN

N
O

the number of
mization, and the

ive to the serial

1.0%. The G
le running ti
ocation and d
ion and the t
ratio for the

Figure 2(b).
with adjoini

the program
ecame. GPU
s, the execut
rial program

mulation with
being optim

me than the s
PU and GP

 (b)

ent stages in str

um_computing

PU Synch
%

init_
0.1

NCs 200 SANC
(b)

Non-optimized
Optimized

f atrial cells is
he time taken by
l program befor

GPU synchr
ime, as the h
data exchang
time taken by

he non-optim
As noticed i
ing 30 atrial
written in se

U efficiency
tion time tak

m. The time d
h only 30 SA
mized, the t
serial progra

PU before a

rategy 3 (b).

96.3%

_SANC_atrium
1%

Memory
1.0%

Cs 500 SAN

30. (a): the
y the serial
re and after

onization
host CPU
ge.
y a serial

mized and
in Figure
cells, the

erial code.
could be
en by the
decreased

ANCs, the
time was
am. In the
and after

m

y Copy

Ns

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing units S743

computa
with res
Therefor

 The r
CUDA p

Figure
Compare
2.7%, w
CPU and

3.2. Th

Figure
As notic
upstroke
characte
interactio
the actio
atrial cel

atrium

SAN

ation. This p
pect to the
re, for very s
results in Fig
program. Wit
e 3 displays
ed with the n

while the runn
d GPU reduc

e effects of a

e 4 presents t
ced, compare
e velocity, a
eristics in ac
ons among a

on potential
lls to fire. Th

m

Fi

Fig.

process requi
time saved b

small-scale si
gure 2(b) ill
th larger tiss
the time tak
non-optimize
ning time on
ced by 60%.

atrium on SA

the electrical
ed with the p
and prolonge
ction potenti
adjoining cel
propagated f

hus, the leadi

(a)

ig. 4. Electrica

CPU time
0.5%

. 3. The time tak

ired a certain
by GPU, the
imulations, G
lustrated tha
ues, the opti

ken at differe
ed results in

n CPU decrea

N

l propagation
peripheral ce
ed action po
ials, SAN w
lls via gap ju
from the upp
ing pacemak

l propagations a

SAN_atrium_

inter GPU
0.1%

ken at different

n amount of
e data transf
GPU showed
at the speedu
imization bec
ent stages in

n Figure 1(b)
ased by 76.2

ns along the
ells, the cent
otential dura
was able to s

unctions. W
per central S

ker site is loc

along a fiber. (a

100ms
100mV

_computing 98.

Mem
0.4

U Synch
%

t stages in strate

f time. If the
fer time mig
d less signific
up ratio coul
came more e

n strategy 3 a
), the compu
2%. The time

developed ti
tral SANCs

ation and cy
synchronize
ith the prese
SANCs to th
cated at the u

a) with atrium.

.9%

mory Copy
4%

init_SANC_a
0.1%

egy 3 after optim

e tissue is no
ght be too la
cance.
ld be elevate
ffective.
after the pro
tation time o
e taken by th

issue with an
were charac
cle length. D
their firing

ence of the a
he lower peri
upper central

(b)

(b) without atri

atrium

mization.

ot large enou
arge to be n

ed by optim

ogram was op
on GPU incr
he data copy

nd without th
cterized by d
Despite the
 rate by ele

atrium in Fig
riphery and d
 SANCs. Wi

ium.

100m

ugh, then
neglected.

mizing the

ptimized.
reased by

y between

he atrium.
decreased
different

ectrotonic
gure 4(a),
drove the
ithout the

ms
100mV

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing unitsS744

presence of the atrium, the electrical wave propagated in the reverse direction (Figure 4(b)). A shift of
the leading pacemaker site from the center to the periphery occurred. Additionally, the pacemaker rate
became rapid compared to Figure 4(a). The characteristics of the action potential and the significant
effect of atrial load on the activity of SANCs were all in good agreement with other reports [12, 14],
thus demonstrating the correctness of our computation with GPU.

4. Conclusions

Detailed accelerating strategies for sino-atrium simulations on a GPU platform were discussed and
presented in this paper. It was suggested that the iterative and inherent data-parallel natures of the
tissue model make NVIDIA GPU an ideal architecture for computation, even if different cellular types
were involved in the simulation. By evenly distributing the workload and balancing the data
partitioning among threads to maximize the parallel degree while optimizing access to memory and
reducing the frequency of data exchange, an optimal performance from GPU was achieved. The
results indicated the correctness and effectiveness of the proposed strategies.

Acceleration of tissue simulation including both the SAN and the atrium with GPU was first
examined in this paper. Although the developed tissue model was simple, it proved that with more
cells, the accelerating efficiency from GPU would become more significant. Therefore, the proposed
parallelization and optimization strategies provide a promising approach for more complicated
biological simulations.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 81271661,
30870659), the Health Foundation of Shaanxi province in China (08D23), the Scientific Research
Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS),
and the Fundamental Research Funds for the Central Universities.

References

[1] P.S. Chen, B. Joung and T. Shinohara, The initiation of the heart beat, Circulation 74 (2010), 221–225.
[2] H. Zhang, B. Joung, T. Shinohara, X. Mei, P.S. Chen and S.F. Lin, Synergistic dual automaticity in sinoatrial node cell

and tissue models, Circulation Journal 74 (2010), 2079–2088.
[3] H. Zhang, S.F. Lin and Z. Yang, Vulnerability during short-term memory induced response in canine ventricle, Bio-

medical Materials and Engineering 24 (2014), 893–899.
[4] D.C. Michaels, D.R. Chialvo, E.P. Matyas and J. Jalife, Chaotic activity in a mathematical model of the vagally driven

sinoatrial node, Circulation Research 65 (1989), 1350–1360.
[5] R.D. Yu, Y. Zhang, S.Y. Zhang, P. Chiang, Y.Y. Cai, J.M. Zheng and K.H. Mak, A framework for GPU-accelerated

virtual cardiac intervention, International Journal of Virtual Reality 8 (2009), 37–41.
[6] R.D. Yu, Y. Zhang, S.Y. Zhang, P. Chiang, Y.Y. Cai, J.M. Zheng and K.H. Mak, GPU accelerated simulation of

cardiac activities, Journal of Computing 5 (2010), 1700–1705.
[7] G. Jayshree and P. Jitendra, GPGPU processing in CUDA architecture, International Journal of Advanced Computing 3

(2012), 105–105.
[8] D. Sato, Y.F. Xie, J.N. Weiss, Z.L. Qu, A. Garfinkel and A.R. Sanderson, Acceleration of cardiac tissue simulation

with graphic processing units, Medical & Biological Engineering & Computing 47 (2009), 101–1015.

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing units S745

[9] H. Zhang, A.V. Holden and I. Kodama, Mathematical models of action potentials in the periphery and center of the
rabbit sinoatrial node, American Journal of Physiology - Heart and Circulatory Physiology 279 (2000), 397–421.

[10] D.W. Hilgemann and D.Noble, Excitation-contraction coupling and extracellular calcium transients in rabbit atrium:
Reconstruction of basic cellular mechanisms, Proceedings of the Royal Society of London 230 (1987), 163–205.

[11] M. Potse, B. Dube and J. Richer, A comparison of monodomain and bidomain reaction-diffusion models for action
potential propagation in the human heart, IEEE Transactions on Biomedical Engineering 53 (2006), 2425–2435.

[12] A. Garny, P. Kohl, P.J. Hunter, M.R. Boyett and D. Noble, One-dimensional rabbit sinoatrial node models: Benefits
and limitations, Journal of Cardiovascular Electrophysiology 14 (2003), S121–S132.

[13] J. Geiser, Stabilization theory of iterative operator-splitting methods, International Journal of Computer Mathematics
87 (2010), 1857–1871.

[14] B. Joung, L. Tang and M. Maruyama, Intracellular calcium dynamics and acceleration of sinus rhythm by beta-
adrenergic stimulation, Circulation 119 (2009), 788–796.

H. Zhang et al. / Accelerating sino-atrium computer simulations with graphic processing unitsS746

