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Abstract. Frontal vehicle collisions can cause injury to a driver’s cervical muscles resulting from intense changes in muscle 
strain and muscle load. This study investigated the influence of collision forces in a sled test environment using a modified 
Hybrid III 50th percentile dummy equipped with simulated spring-type muscles. Cervical muscle responses including strain 
and load of the sternocleidomastoid (SCM), splenius capitis (SPL), and trapezius (TRP) were analyzed, and muscle injury 
was assessed. The SCM, SPL, and TRP suffered average peak muscle strains of 21%, 40%, and 23%, respectively, exceeding 
the injury threshold. The average peak muscle loads of the SCM, SPL and TRP were 11 N, 25 N, and 25 N, respectively, 
lower than the ultimate failure load. The SPL endured the largest injury, while the injuries to the SCM and TRP were 
relatively small. This is a preliminary study to assess the cervical muscle of driver during a frontal vehicle collision. This 
study provides a foundation for investigating the muscle response and injury in sled test environments, which can lead to the 
improvement of occupant protections. 
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1. Introduction 

Injuries to the head and neck resulting from collisions greatly impact a victim’s daily life [1]. Out of 
all long-term chronic impairments from road accident injuries, 50% occur in the neck [2]. Therefore, 
attention to biomechanical responses and injuries of the head and neck during collisions has increased. 

Head and neck injuries commonly occur because of the interaction between the head and the airbag, 
as well as between the safety belt and the torso. Common types of collision-related neck injuries 
include compression-flexion, compression-extension, stretch-flexion, stretch-extension, and lateral 
bending. These injuries, which cause bone fractures, can also lead to injuries of soft tissues like 
ligaments and muscles [3]. Although muscle injuries are generally minor, they are the major cause of 
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chronic cervical diseases. 
Muscle injuries have two main causes, sharp active contraction and excessive passive stretch [4]. 

Cervical motion during collision has the potential to cause both of these phenomena, meaning that 
collisions can easily result in injury to the cervical muscles. Muscle contractions consist of concentric, 
isometric and eccentric contraction. All types of contraction can cause muscle injuries, but eccentric 
contraction leads to the most severe ones [5]. During collisions, cervical muscles commonly suffer 
isometric or eccentric contraction injuries, while concentric contraction injuries rarely occur. 

Researchers use techniques including cervical finite element modeling, cadaver cervical modeling, 
and volunteer sled tests to study biomechanical responses and injuries in the head and neck during 
collision. Toyota Motor Corporation developed the active human finite element model with three 
dimensional geometry muscles, which is able to study the active mechanical characteristics of muscles 
and enable simulation analysis [6]. Hedenstierna, et al. developed a cervical finite element model with 
human-like muscle distribution and mechanical characteristics to investigate muscle strain during 
collision [7]. Cervical finite element models with vertebrae, muscles, and ligaments can accurately 
describe physical responses and injuries in the head and neck. Ivancic, et al. used the neck from a 
cadaver to develop a dynamic whole cervical spine whiplash model that replicates anterior, lateral, and 
posterior muscle forces. This model’s muscle force replication can produce dynamic responses that are 
nearly identical to those in the human body. Ivancic, et al. evaluated the performance of restraint 
systems during whiplash by combining their whole cervical spine model with a BioRID 
(Biomechanical Rear Impact Dummy) II dummy [8]. However, this model did not consider the active 
characteristics of muscles, and it was unable to measure changes in muscle length and muscle force. 
Because mechanical characteristics inside the human body cannot be fully described by these models, 
biomechanics research often involves volunteer sled tests. Cervical muscle strain during collision can 
only be indirectly acquired due to research ethics; therefore, a high speed motion capture system 
records muscle motions, allowing for the subsequent calculation of strain and assessment of muscle 
injuries [9]. 

Using a modified dummy with an applied muscle model, this study performed frontal sled tests at 
low velocity and measured the strain of cervical muscles during collision were measured. Then the 
muscle loads were calculated, considering the mechanical characteristics of spring-type muscles. 
Finally, the strain and load of muscles were used to assess the injury of cervical muscles. 

2. Methods 

2.1. Selection of muscles 

The cervical muscles can be divided into two groups according to location: the anterior muscles, 
including platysma, sternocleidomastoid, and longus colli; and the posterior muscles, including 
splenius capitis, trapezius, and semispinalis. Many muscles are located around the neck, so researchers 
generally select several major ones to study. For example, one study looked at cervical kinematics 
during collision and demonstrated that the sternocleidomastoid, splenius capitis, and trapezius play 
important roles in cervical motion on the sagittal, coronal, and oblique planes [10]. This research also 
studies the sternocleidomastoid, splenius capitis, and trapezius. 

The following abbreviations will be used in this paper: sternocleidomastoid, SCM; splenius capitis, 
SPL; and trapezius, TRP. 
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2.2. Modified dummy with applied muscle model 

During collisions, the head’s momentum and kinetic energy will vary due to different weights, 
resulting in different muscle strains and muscle loads. However, this study did not consider the 
influence of head weight as an important factor. Thus, this study used the Hybrid III 50th percentile 
dummy, which is the most widely-used dummy in automotive engineering. The dummy weighs 78.15 
kg in total and 4.54 kg in the head, which are representative figures for the average body size of an 
adult male. Future studies will use Hybrid III 5th and 95th percentile dummies, which represent small 
and large human body sizes, to investigate the influence of head weight on muscle strain and muscle 
load. 

A modified dummy with an applied muscle model was used to study muscle response characteristics 
and assess injuries. This dummy was created by equipping the Hybrid III 50th percentile dummy with 
an applied muscle model consisting of the spring-type muscle module and muscle fixtures, described 
below. 

The spring-type muscle module includes three pairs of extension springs which represent the SCM, 
SPL, and TRP, respectively. The term “Hill-type model” is commonly used to describe the mechanical 
characteristics of muscles. In this model, the combination of active and passive tension creates muscle 
force or tension [11]. The extension spring produces a reaction force while being stretched, similar to 
the mechanical characteristics produced by a muscle’s passive component. Meanwhile, the spring can 
exert initial tension, representing the active tension produced by the active component of a muscle. 

The extension springs in the spring-type muscle module are based on a simplification and fitting of 
the Hill-type model, considering the similarities of mechanical characteristics between the extension 
springs and the Hill-type model. These springs represent the combination of active and passive forces, 
but only the passive force changes during collision. Therefore, the active force stands constant, and the 
passive force increases with deflection, bringing a reaction force to the motion of the head and neck. 
The total tension of spring-type muscles consists of the constant active force and the variable passive 
force. 

Muscle fixtures were used to connect the spring-type muscle module to the Hybrid III 50th 
percentile dummy. The springs representing the SCM and SPL were connected through the upper neck 
ring and the lower neck ring, and the springs representing the TRP were connected between the lower 
neck ring and the shoulder ring. These muscle fixtures ensured the accuracy of the muscles’ origin and 
insertion locations and avoided interactions between the spring-type muscle module and the neck 
structure of the dummy. The muscle fixtures only induced a slight influence on the collision response. 

The currently available Hybrid III 50th percentile dummy possesses the basic structure of a human 
body, including a skeleton and skin, and it has good biofidelity. However, significant differences 
remain between responses in the dummy and a human, such as the muscle activation state that occurs 
when a driver faces an emergency, which is not incorporated in the Hybrid III 50th percentile dummy. 
A modified dummy was used to replicate accurately the muscle activation generated by a human’s 
instinctual physiological reaction when facing imminent collision. This dummy included an 
independent muscle model that considers active and passive mechanical characteristics together. This 
applied muscle model designed to include the driver’s instinctual physiological reaction was installed 
outside the cervical structure of the existing dummy, leaving the existing structure intact, compared to 
the model used by Hedenstierna, et al. and the whole cervical model designed by Ivancic other models 
[7, 8]. 
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Fig. 1. The modified dummy with applied muscle model: (a) elevation view; (b) rear view. 

 
This modified model also has certain limitations. First, differences of mechanical characteristics 

exist between the extension spring and the muscle, as the spring’s parameters are derived from an 
approximation of the simplified Hill model; however, this is the most effective method to simulate the 
mechanical characteristics of muscles in sled test conditions. Second, the muscle model was designed 
based on muscle activation characteristics acquired from a series of tests simulating collisions under 
25 km/h, suggesting that the muscle model should be designed differently for sled tests at other frontal 
collision speeds. Future studies will consider this design aspect and take the influence of collision 
speed into account. 

Figure 1 shows the modified dummy with the applied muscle model. 

2.3. Sled tests 

The objects of this study were to analyze muscle response characteristics and to assess injuries, so 
six sled tests were performed using the modified dummy with the applied muscle model. During the 
tests, the dummy was positioned in a seat with a safety belt. The characteristics of the seat and belt 
were controlled to account for their influence over the collision response; the tests used a rigid seat 
and a general safety belt, which eliminated the influence of a seat cushion, belt force limitation, and 
belt pre-tension. The sled tests used lower velocities because the load cells integrated within the 
dummy are easily damaged. In summary, the sled tests were controlled as follows: (1) 25 km/h frontal 
collision; (2) general safety belt, with no force limiter or pre-tensioner; (3) rigid seat, with no headrest 
or cushion; and (4) modified dummy with muscle fixtures and spring-type muscle modules. 

In this study, characteristics of cervical muscle response included muscle strain and muscle load. 
Muscle strain is defined as the variation between instant muscle length and static muscle length. Static 
muscle length, L0, is defined as the free length of the extension spring, while the instant muscle length, 
L’, is defined as the instant distance between the origin and the insertion of the spring-type muscle. 
When the spring-type muscle is at the static muscle length, the initial tension of the spring is equal to 
the active muscle force, indicating that passive muscle force is not present if the spring is not stretched. 
Thus, the authors hypothesized that the static muscle length is equal to the muscle fiber length, Lf. 
Muscle deflection,�� � , is defined as the difference between the instant muscle length and the static 
muscle length, calculated as � � =L’-L0. Therefore, the muscle deflection is positive if the spring-type 
muscle lengthens. Muscle strain is calculated as the ratio of the muscle deflection to the static muscle 
length. Muscle load, F, is defined as the load that the spring-type muscle experiences during collision, 
or F=F0+k*� �, where F0 is the active muscle force, k is the spring rate, and � � is the deflection of 
the spring. F0 and k of SCM, SPL and TRP represent differences in the physiologic characteristics of 
muscles.  
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Four high speed cameras recorded motions at the origin and insertion points of the cervical muscles 
during collision. The length of the spring-type muscles was conceptualized as the distance between the 
origin and the insertion points, so muscle strain could be calculated. The cameras were located in the 
left, right, left front, and right front of the collision area. The left-sided and right-sided muscle 
responses were averaged because they were nearly identical [9]. The cameras recorded motions within 
a span of 400 ms. This period was divided into two phases for the purpose of analyzing cervical 
muscle response characteristics: (1) In phase 1 (P1), which ranged from 0 ms to 211 (24) ms, the 
dummy moved forward to the extreme position and then retracted to the initial position; (2) in phase 2 
(P2), which ranged from 211 (24) ms to 400 ms, the dummy moved backward to the extreme position 
and then rebounded to the initial position. Values are shown as mean (SD). 

2.4. Statistical analysis 

One-way analyses of variance (ANOVA) were performed to determine whether peak muscle strains 
and muscle loads differed significantly among muscles. If ANOVA found significant differences, post 
hoc pairwise comparisons were performed using the Turkey Honest Significant Difference method. In 
all analyses, the level of significance was set as 0.05. 

3. Results 

3.1. Muscle strain 

As Figure 2 shows, SCM strain decreased in P1 and then increased to its peak value in P2. Peak 
SCM strains ranged from 20% to 25%. Unlike the SCM, SPL and TRP strains increased to their peak 
values in P1 and then began to decrease (Figure 2). The peak strains of SPL and TRP ranged from 
36% to 47% and from 20% to 25%, respectively. Strain values for SCM and SPL were negative in P1 
and P2, respectively, meaning that the lengths of SCM and SPL were smaller than the static muscle 
lengths. The peak strain of the SPL was significantly larger than that of the SCM or TRP, but the 
differences between the SCM and TRP were not significant (see Table 1). During collision, the SCM, 
SPL and TRP strains ranged from -18% to 25%, -6% to 47%, and 12% to 25%, respectively. 

As Figure 2 shows, the SCM, SPL, and TRP began at a stretch of 7% (0%), 18% (1%), and 15% 
(0%), respectively. The SCM was stretched from a relatively small strain in P1 to larger strain in P2, 
with the strain increasing from -16% (2%) to 21% (3%) with a total variation of 36% (6%). In contrast, 
the SPL and TRP were both stretched to a large strain in P1. The strain on the SPL increased from 
18% (1%) to 40% (3%), with a variation of 23% (4%). The strain on the TRP increased from 15% 
(0%) to 23% (2%), with a variation of 8% (2%). Values are shown as mean (SD). 

The times of peak strains in the SPL and TRP occurred near the same point in P1, while the time of 
peak strain in the SCM occurred in P2. When the SPL and TRP were at their peak strains, the SCM 
was at its minimal strain. Conversely, the SCM was in its peak strain when the strains of the SPL and 
TRP were relatively small. This suggests that the motion phase of the SCM is opposite to those of the 
SPL and TRP. 

3.2. Muscle load 
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Fig. 2. Muscle strain and muscle load: a, b, and c represent the strain on the SCM, SPL, and TRP, respectively; e, f, and g 
represent the load on the SCM, SPL, and TRP, respectively. Individual results are shown in thin lines, and the average value 
is shown as a thick line. 
 

Table 1 

Times of peak muscle strains and muscle loads 

 Strain Force 
 Peak (%) Time (ms) Peak (N) Time (ms)
SCM 20.53(3.41) 317(17) 10.59(1.24)# 317(17) 
SPL 40.41(3.42)* 136(21) 24.85(0.95) 136(21) 
TRP 22.54(1.86) 123(30) 24.70(0.70) 123(30) 

Note: Values are shown as mean (SD); *: SPL was significantly different from SCM and TRP; #: SCM was significantly different from SPL 
and TRP. 
 

The muscle load was calculated based on the muscle strain, so the motion phase and the time of 
response were identical to those discussed previously. The load on the SCM decreased in P1 and then 
increased to its peak value in P2, while the loads on the SPL and TRP increased to their peak values in 
P1 and then began to decrease (see Figure 2). Over the six tests, the peak loads of the SCM, SPL, and 
TRP ranged from 8 N to 13 N, 23 N to 27 N, and 23 N to 26 N, respectively. The peak load on the 
SCM was significantly smaller than those on the SPL and TRP, but the difference between the peak 
loaks of the SPL and TRP was not significant (see Table 1). During collision, the loads on the SCM, 
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SPL, and TRP ranged from -3 N to 13 N, 12 N to 27 N, and 21 N to 26 N, respectively. 
The loads on the SCM, SPL, and TRP when the collision began were 6(0) N, 19(0) N, and 22(0) N, 

respectively. The load on the SCM increased from a small strain in P1 to large strain in P2. During this 
process, the load increased from -3(1) N to 11(1) N. The loads on the SPL and TRP reached their 
greatest values in P1, increasing from 19(0) N to 25(1) N and from 22(0) N to 25(1) N, respectively.  

4. Discussion 

4.1. Muscle strain 

Research shows that eccentric muscle contractions result in force decreases and morphological 
evidence of injuries [12-15]. The force deficits are related to muscle strain [13-15] and muscle force 
[12, 14, 15]. Force deficits are also influenced by the initial muscle fiber length during the stretch [15]. 

In single lengthening contractions, strain as low as 5% to 10% can injure Type II muscle fibers, and 
higher strains may injure Type I fibers [16]. Studies of intact muscles usually apply strains of 20% to 
25% to cause injury [12, 13]. Strains of 30% to 50% induce significant force deficits [14]. Brooks [17] 
demonstrated that a single stretch of only 30% strain can produce a significant force deficit for active 
muscles, whereas a larger strain is required for passive muscles.  

In the six sled tests, the strains on the SCM, SPL, and TRP were 20% to 25%, 36% to 47%, and 
20% to 25%, respectively; all of these exceeded the threshold for muscle injuries, especially the 
average peak strain of the SPL, which reached 40% and caused a force deficit of at least 10% [14, 17]. 
The average peak strains of the SCM and TRP were lower, so the magnitudes of the force deficits 
were smaller. 

It remains unknown whether more severe injuries result from longer or shorter initial fiber lengths. 
However, the magnitude of a force deficit increases with an increase in relative displacement [15]. At 
the beginning of collision, a muscle suffers an active force and a certain passive force. These induce 
initial strains and initial loads that are different for each muscle. The cervical flexion in P1 caused the 
SCM to stretch to its peak strain from a lower strain value than it began with. The SPL and TRP were 
stretched from their initial lengths, so the variations in strains were small. These results suggest that 
the SCM might suffer more severe injuries than the SPL or TRP. 

The SCM strains were larger in P2, while the strains of the SPL and TRP were larger in P1, 
meaning that the SCM showed a reverse motion phase to that of the SPL and TRP. This is a result of 
the physiological structure of the muscles. The SCM is an anterior muscle and resists the cervical 
extension in P2, whereas the SPL and TRP are posterior muscles and resist the cervical flexion in P1.  

The strains of the SCM and SPL were negative in P1 and P2, with intervals ranging from 86 (7) ms 
to 184 (3) ms and from 235 (32) ms to 338 (43) ms, respectively. These indicate that the muscle 
lengths during these intervals were smaller than the static muscle lengths, but not that the muscles 
were shortening. Rather, the likely cause is the limitation of the extension spring itself, which does not 
generate force or even deform when the instant length is smaller than the free length. A small 
subsidence existed after the peak strain of the SPL, but this cannot be well explained. Further studies 
must investigate and eliminate these limitations. 

4.2. Muscle load 

Muscles are injured when the muscle load is greater than the ultimate failure load. Muscle injury 
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can even occur under 70% of the ultimate failure load [18]. Because stretch tests on the human body 
are restricted for ethical reasons, the ultimate failure load is calculated from animal testing. 
Mathematical models can also estimate the maximal isometric force for different muscles [19]. The 
inputs of these models are the maximal force of the neck in different directions, which can be 
measured in volunteers. 

Separate from the estimations achieved with volunteers and mathematical models, cervical muscle 
loads during collision can be directly measured using the modified dummy from this study. The 
average peak muscle loads for the SCM, SPL, and TRP are 11(1) N, 25(1) N, and 25(1) N, 
respectively (see Table 1). These values are lower than the ultimate failure loads, which are amplified 
according to differences in physiological characteristics [18, 20]. These are even lower than the 
maximal isometric forces estimated by the biomechanical model, 170N for the SCM, 68N for the SPL, 
and 81N for the TRP [19]. These results indicate that the SCM and SPL can suffer greater strains and 
muscle loads during collision. 

5. Conclusions 

During collision, cervical muscles are exerted to protect the driver’s head and neck from injury. 
Cervical muscles can be injured at the same time. This study performed low-velocity frontal sled tests 
using a modified dummy with an applied muscle model to measure muscle strains. Subsequently, 
muscle loads were calculated based on the mechanical characteristics of spring-type muscles. Finally, 
cervical muscle injuries were assessed using the muscle strain and muscle load data. This is a 
preliminary study to assess the cervical muscle of driver during a frontal vehicle collision, and more 
works will be performed in the future. This study found that: 

(1) The average peak muscle strains of the SCM, SPL, and TRP were 21%, 40%, and 23%, 
exceeding the threshold for injury. 

(2) The average peak muscle loads of the SCM, SPL, and TRP were 11N, 25N, and 25N, lower 
than the ultimate failure load. 

(3) Simulated cervical muscles were injured during collision; the SPL suffered the greatest injury, 
while injuries to the SCM and TRP were relatively small. 

Acknowledgments 

This study was supported by the 973 Program under Grant No. 2012CB723802; Specialized 
Research Fund for the Doctoral Program of Higher Education under Grant No. 20120061110028; Jilin 
Provincial Research Foundation for Technology Guidance under Grant No. 20130413058GH and 
Grant No. 20150204055GX. 

References 

[1] J. Yang, Overview of research on injury biomechanics in car-pedestrian collisions, Chinese Journal of Automotive 
Engineering 1 (2011), 81–93. 

[2] M. Von Koch, A. Nygren and C. Tingvall, Impairment pattern in passenger car crashes, a follow-up of injuries resulting 
in long-term consequences, Proceedings of the Fourteenth International Technical Conference on Enhanced Safety of 
Vehicles, Munich, Germany, 1994. 

Z. Gao et al. / Study of cervical muscle response and injury of driver during a frontal vehicle collisionS626



[3] X. Li and L. Dai, Advances in biomechanical study on cervical spine injuries, Chinese Journal of Orthopaedic Trauma 6 
(2004), 920–923 

[4] G.Y. El-Khoury, E.A. Brandser, M.H. Kathol, D.S. Tearse and J.J. Callaghan, Imaging of muscle injuries, Skeletal 
Radiology 25 (1996), 3–11. 

[5] A.J. Sargeant and P. Dolan, Human muscle function following prolonged eccentric exercise, European Journal of 
Applied Physiology and Occupational Physiology 56 (1987), 704–711. 

[6] M. Iwamoto, Y. Nakahira and T. Sugiyama, Investigation of pre-impact bracing effects for injury outcome using an 
active human fe model with 3d geometry of muscles, 22nd International Technical Conference on the Enhanced Safety 
Vehicles, Stuttgart, Germany, 2011, pp. 11–0150. 

[7] S. Hedenstierna, P. Halldin, K. Brolin and H. von Holst, Development and evaluation of a continuum neck muscle 
model, Journal of Biomechanics 39 (2006), S150. 

[8] P.C. Ivancic, M.M. Panjabi, S. Ito, P.A. Cripton and J.L. Wang, Biofidelic whole cervical spine model with muscle 
force replication for whiplash simulation, European Spine Journal 14 (2005), 346–355. 

[9] J.R. Brault, G.P. Siegmund and J.B. Wheeler, Cervical muscle response during whiplash: Evidence of a lengthening 
muscle contraction, Clinical Biomechanics 15 (2000), 426–435. 

[10] S. Kumar, Y. Narayan and T. Amell, Analysis of low velocity frontal impacts, Clinical Biomechanics 18 (2003), 694–
703. 

[11] M. Nordin and V.H. Frankel, Biomechanics of skeletal muscle, in: Basic Biomechanics of the Musculoskeletal System, 
D. Leger, ed., Lippincott Williams & Wilkins, Philadelphia, 2001, pp. 148–174. 

[12] K.K. McCully and J.A. Faulkner, Characteristics of lengthening contractions associated with injury to skeletal muscle 
fibers, Journal of Applied Physiology 61 (1986), 293–299. 

[13] R.L. Lieber and J. Friden, Muscle damage is not a function of muscle force but active muscle strain, Journal of Applied 
Physiology 74 (1993), 520–526. 

[14] S.V. Brooks and J.A. Faulkner, Severity of contraction-induced injury is affected by velocity only during stretches of 
large strain, Journal of Applied Physiology 91 (2001), 661–666. 

[15] K.D. Hunter and J.A. Faulkner, Pliometric contraction-induced injury of mouse skeletal muscle: Effect of initial length, 
Journal of Applied Physiology 82 (1997), 278–283. 

[16] P.C. Macpherson, M.A, Schork and J.A. Faulkner. Contraction-induced injury to single fiber segments from fast and 
slow muscles of rats by single stretches, American Journal of Physiology-Cell Physiology 271 (1996), 1438–1446. 

[17] S.V. Brooks, E. Zerba and J.A. Faulkner, Injury to muscle fibres after single stretches of passive and maximally 
stimulated muscles in mice, The Journal of Physiology 488 (1995), 459–469. 

[18] C.T. Hasselman, T.M. Best, A.V. Seaber and W.E. Garrett, A threshold and continuum of injury during active stretch of 
rabbit skeletal muscle, The American Journal of Sports Medicine 23 (1995), 65–73. 

[19] S.P. Moroney, A.B. Schultz and J.A. Miller, Analysis and measurement of neck loads, Journal of Orthopaedic Research 
6 (1988), 713–720. 

[20] L.K. Kamibayashi and F.J. Richmond, Morphometry of human neck muscles, Spine 23 (1998), 1314–1323. 

Z. Gao et al. / Study of cervical muscle response and injury of driver during a frontal vehicle collision S627


