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Abstract. Polylactic acid (PLA)/styrene-ethylene-butylene-styrene (SEBS) composites were prepared by melt blending. Dif-
ferential scanning calorimetry (DSC) and wide angle X-ray diffraction (WXRD) were used to characterize PLA and 
PLA/SEBS composites in terms of their melting behavior and crystallization. Curves from thermal gravimetric analysis 
(TGA) illustrated that thermostability increased with SEBS content. Further morphological analysis of PLA/SEBS compo-
sites revealed that SEBS molecules were not miscible with PLA molecules in PLA/SEBS composites. The tensile testing for 
PLA and PLA/SEBS composites showed that the elongation at the break was enhanced, but tensile strength decreased with 
increasing SEBS content. L929 fibroblast cells were chosen to assess the cytocompatibility; the cell growth of PLA was 
found to decrease with increasing SEBS content. This study proposes possible reasons for these properties of PLA/SEBS 
composites.
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Tissue engineering incorporates many fields that relate to the principles of chemical, biological, and 
materials engineering applied to tissue regeneration. Biomaterials have been studied for various appli-
cations in tissue engineering such as various drug delivery systems, as well as scaffolds [1], or biode-
gradable composites designed for bone tissue [2-4]. Polylactic acid (PLA) is a well-known biode-
gradable thermoplastic which can be produced from renewable resources [5, 6]. PLA is a biomedical 
material with high biocompatibility and good mechanical properties [7, 8]. However, its brittleness 
and slow crystallization limit its usage in many applications. Blending PLA with other polymers [9-
21], fillers [22, 23], or plasticizers [24] has been proven a feasible way to improve the processability 
of PLA in products or for extrusion. SEBS polymers successfully combine elastomeric properties with 
low processing costs. The great aging resistance of SEBS is attributed to the carbon double bond. 
SEBS is commercially available and possesses excellent thermostability [25] making it a prime candi-
date as a toughener for improving the processability and toughness of PLA. Yoo, et al. [26] proposed 
maleated styrene-ethylene/butylene-styrene (SEBS-g-MAH) to improve the impact strength of 
PP/PLA. Chow, et al. [27] also posited the blending of PLA with nano-precipitated calcium carbonate 
composites, which was then toughened with SEBS-g-MAH. Both studies used modified SEBS to en-
hance the toughness of PLA. However, the biotoxicity showed a tenency to increase after modification 
of SEBS. To date, the bicompatibility of pure SEBS blended with PLA has not been reported.   

2. Experimental 

The melt flow index (MFI) of poly (L-lactide) (Nature Works 2002D), with an average molecular 
weight of ~200000, was 4~8 g/10 min (190°C/2.16 kg, ASTM D1238). The MFI of styrene-ethylene-
butylene-styrene (SEBS) (6152H), supplied by TSRC Co. Ltd., Taiwan, was 4~8 g/10 min 
(190°C/2.16 kg, ASTM D1238). Various ratios of PLA/SEBS blends were prepared by melt mixing 
using a Brabender Plasticorder PLE 331 (Brabender, Germany) at 60 rpm and 190°C for 5 minutes.
Thermal gravimetic analysis (TGA), WXRD, and DSC methods were employed to characterize PLA 
and its blends with SEBS. TGA was processed at a rate of 20°C/min. For DSC, the temperature in-
creased at the rate of 20°C/min to observe cold crystallization. The specimen morphology was ob-
served by Hitachi scanning electron microscope (SEM) (model SU1510). Specimens were fixed on a 
sample holder with a conductive double-sided adhesive tape and were then coated with a thin layer of 
gold to improve the image resolution. The samples were photographed at 2.0 K magnification. The 
tensile property was measured by universal testing machine (model QTest 5). Testing was conducted 
with ASTM D638. Specimen film dimesions were 45 mm × 8 mm × 0.2 mm (L × W × T). For WXRD, 
�������	
��
�
������tilized at an operating voltage of 35 KV, a current of 30 mA, and a scan rate of 
1°/min in the range of 10-30°C. The cell culture reactions of PLA, PLA/SEBS, and SEBS were evalu-
ated by in vitro cell culture test, with mouse L929 fibroblast cells were used as a test model.

3. Results and discussion  

3.1. Thermal gravimetric analysis (TGA)

Figure 1 displays the TGA curves for PLA, PLA/SEBS-10, PLA/SEBS-30, and SEBS. It illustrates 
a thermostability increase with the addition of SEBS as the additive thermostability is higher. It is be-
cause the thermostability of SEBS is better than that of PLA. It is reasonable that the thermodegrada-
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tion temperature of pure SEBS is significantly higher than that of PLA and PLA/SEBS composites. 
Table 1 lists the characteristic TGA values, indicating that the temperature of the composites at 5% 
and 10% weight losses and the char residue at 400 significantly increase with the amount of SEBS.

3.2. Differential scanning calorimetry (DSC)

Figure 2 demonstrates that the Tg of PLA decreases slightly with the addition of SEBS. It might be 
that the lower Tg of SEBS weakens the Tg of PLA. Furthermore, PLA/SEBS composites appear to 
exhibit smaller exothermic cold crystallization when the SEBS content is high, as shown in Table 2,
because SEBS inhibits the crystal growth of PLA. In addition, there are two peaks for Tm, which have 
been reported using the melt-recrystallization model [27-29]. The reason for the two Tm peaks might 
be the small and imperfect crystals that change continually into more stable crystals according to the 
melt-recrystallization mechanism. With an increasing amount of SEBS, it is possible to inhibit the in-
tegrity of crystallization. Therefore, the Tm peak area decreases at higher temperatures.

Fig. 1. TGA curves for PLA, PLA/SEBS-10, PLA/SEBS-30, and SEBS.

Table 1

TGA for PLA, PLA/SEBS-10, PLA/SEBS-30, and SEBS

Sample Td 
5 wt% ( )

Td 
10 wt% ( )

Char residue at 
400 

PLA 281.6 311.7 0.58%
PLA-SEBS-10 292.0 312.0 4.45%
PLA-SEBS-30 306.8 324.1 10.94%
SEBS 324.1 338.7 0.58%

Table 2

Characteristic values of the DSC curves for PLA and PLA/SEBS composites

Tg ( ) Tcc ( ) �Hc Tm ( )
PLA 60.2 99.8 23.49 143.8 153.7
PLA/SEBS-10 59.8 102.8 22.68 145.1 154.8
PLA/SEBS-30 59.7 111.9 21.29 145.8 154.3
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Fig. 2. DSC for PLA, PLA/SEBS-10, and PLA/SEBS-30.

Fig. 3. (a) Cold crystallization and (b) melt crystallization of WXRD patterns for PLA and PLA/SEBS composites.

3.3. Wide-angle X-ray diffraction (WXRD)

As demonstrated in Figure 3, the WXRD pattern for PLA displays two peaks 16.6ºC and 19.1�C,
��
�����������
	����������������� form of PLA. Pure PLA and different PLA/SEBS composites still 
exhibit two important peaks at the same 2� positions, indicating that the addition of SEBS does not 
alter the PLA crystal form [22]. Figure 3(a) indicates that the peak height of PLA decreases with in-
creasing SEBS during cold crystallization, because SEBS hinders PLA crystallization. However, Fig-
ure 3(b) shows that the melt crystallization of PLA/SEBS-10 and PL/SEBS-30 is similar to that of 
pure PLA. 

3.4. Morphology 

SEM images of the fracture surfaces of PLA and PLA/SEBS composites are shown in Figure 4. As 
shown in Figure 4(a), the fracture surface morphology of PLA is relatively brittle and smooth. In con-
trast, relatively ductile withdrawn debris was found on the fracture surface of SEBS, as shown in Fig-
ure 4(d). After blending SEBS with PLA, some SEBS droplets were found dispersed in the PLA ma-
trix, with the SEBS content at 10 phr, as shown in Figure 4(b). These interesting morphological results 
further support the concept that SEBS molecules are not miscible with PLA molecules. When the 
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amount of SBS is 30 Phr, as shown in Figure 4(c), more phase-separated SEBS can be observed in the 
PLA, possibly due to incompatibility between PLA and SEBS. 

3.5. Tensile property  

The tensile strength and elongation at break of PLA and PLA/SEBS composites are plotted in Fig-
ure 5. The tensile strength and elongation at break of PLA are 53.9 MPa and 4.3%, respectively. After 
blending SEBS with PLA, PLA/SEBS composites are formed which exhibit a slight increase in elon-
gation at break. Becuase SEBS is an elastic polymer, SEBS improves the toughness of PLA. In con-
trast, the tensile strengths of PLA/SEBS composites are decreased significantly with increasing 
amounts of SEBS. Their blend incompatibility results in poor tensile property, which is consistent with 
the result in Figures 4(a), 4(b), and 4c).

3.6. Biocompatibility 

Cell culture experiments with mouse L929 fibroblasts were used to determine the cell compatibility 
of PLA, PLA/SEBS-10, PLA/SEBS-30, and pure SEBS. The cells on the surface of the specimens 
were cultured for three days, when the actin filaments of fibroblasts on each surface were stained for 
cell growth assay. As shown in Figure 6, results of the cytocompatibility show that cell growth in PLA 
decreases slightly with an increasing amount of SEBS. The cell growths in both specimens are better 
than those in the SEBS specimen.

Fig. 4. SEM images of (a) PLA; (b) PLA/SEBS-10; (c) PLA/SEBS-30; and (d) SEBS.
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Fig. 5. Tensile properties of PLA and PLA/SEBS composites.

Fig. 6. Staining of fibroblast cells cultured for three days on (a) PLA; (b) PLA/SEBS-10; (c) PLA/SEBS-30; and (d) SEBS.

4. Conclusion  

The melt-blending method was adopted to mix various ratios of PLA and SEBS using a Brabender 
Plasticorder. TGA values demonstrated that the thermostability of PLA/SEBS composites increased 
with the addition of SEBS, as the thermodegradation temperature of pure SEBS is higher than that of 
pure PLA. WXRD results indicated that adding SEBS to PLA did not change the characteristic peaks 
and crystal form of PLA; the intensity of the characteristic peaks was reduced with the addition of 
SEBS for cold crystallization, but the intensity of all specimens was similar for melt crystallization. 
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The elongation at break was improved while the tensile strength was reduced with an increasing 
amount of SEBS. The cytocompatibility of pure PLA and PLA/SEBS composites was determined to 
be better than that of SEBS specimen alone.
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