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Abstract. A new fabrication process for designing nerve conduits with a porous ionic cross-linked alginate/chitosan compo-
site for nervous regeneration could be prepared. New designed nerve conduits with a porous ionic cross-linked algi-
nate/chitosan composite were developed for nervous regeneration. Nerve conduits (NCs) represent a promising alternative to 
conventional treatments for peripheral nerve repair. NCs composed of various polysaccharides such as sodium alginate were 
designed and prepared by lyophilization as potential matrices for tissue engineering. The use of a porous ionic cross-linked 
alginate/chitosan composite could provide penetration channels that would lead to the products' increasing penetration rate 
properties. Furthermore, the use of a porous ionic cross-linked alginate/chitosan composite also has a highly cross-linked 
structure, which would give the products relatively good mechanical properties. Furthermore, the drug could be incorporated 
into nerve conduits as a new drug-carrying system for nerve regeneration because of its porous and cross-linked structures.
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1. Introduction

Repairing damaged nerves is a common clinical problem [1]. Artificial nerve conduits (NCs) that
bridge the gap between severed peripheral nerve stumps are widely accepted as a useful alternative 
that creates a favorable micro-environment for nerve regeneration [2]. In general, natural-derived ma-
terials are useful in biomedical and clinical applications because the natural-derived materials provide
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good cell compatibility and suitable interaction. Good cell compatibility and interaction resulted from 
the common hydrophilic property. However, natural-derived materials always suffer from batch-to-
batch variability. Extensive purification and characterization before use is necessary and important.
Natural-derived materials with good mechanical strength are difficult to find. Therefore, additional 
modifications, such as physical and chemical cross-linked reactions, are necessary to meet well me-
chanical requirements for biomedical and clinic application such as artificial nerve conduits (NCs). 

Polysaccharides are widely employed in biomedical and clinic applications because of their excel-
lent cell compatibility. Alginate is a kind of polysaccharide material that might be good for the clinic 
application of artificial nerve conduits (NCs). The good cell compatibility of alginate is due to the free 
carboxylic groups of alginate. For the application of artificial nerve conduits (NCs), it is necessary to 
enhance the mechanical properties of alginate. Calcium salt could be used to adjust mechanical
strength through physically cross-linked reactions. Also, alginate could be used as a hydrogel inside 
the nerve conduit for clinic application of nerve regeneration [3]. On the other hand, a natural-derived 
material such as chitosan is another polysaccharide that has been considered for fabrication of artificial 
nerve conduits (NCs). To adjust their mechanical properties for clinical use, the natural-derived mate-
rial of chitosan could be reinforced with additional cross-linked agents such as chitin [4] or formalde-
hyde [5] to prevent the nerve conduit from collapsing. The design, synthesis and development of new 
functional materials were studied to provide suitable materials for biomedical applications such as 
polyacrylate, polyester, polyurethane, polyamide, polyimide, polyester, polynorborene, polytetrafluo-
roethylene, polydiphenylacetylenes and polymeric resins [1-21]. Also, surface modification technolo-
gy was considered to change the surface microenvironment of the materials [22-26]. Therefore, a suit-
able material and fabrication process can be selected, designed and established.

Scheme. 1. The chemical structures of (A) sodium alginate (NaAL), (B) chitosan (Ch) and (C) partially HCl quaternary am-
monium chitosan (HClQCh).
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2. Experimental 

2.1. Materials

The materials of sodium alginate (NaAL), chitosan (Ch) and partially HCl quaternary ammonium 
chitosan (HClQCh) were employed in this study. The chemical structures of sodium alginate (NaAL),
chitosan (Ch) and partially HCl quaternary ammonium chitosan (HClQCh) are shown in Scheme 1.

2.2. Preparation of porous ionic cross-linked alginate/chitisan composite 

The preparation of the porous ionic cross-linked alginate composite and the porous ionic cross-
linked alginate/chitosan composite was achieved as shown in Scheme 2.

Scheme. 2. Schematic diagram for new fabrication process of designed nerve conduits (NC) (5’) with a porous ionic cross-
linked alginate/chitosan composite.

Scheme. 3. Schematic diagram for new fabrication process of designed nerve conduits (NC) (7”) with a highly ionic cross-
linked alginate/chitosan composite.
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Fig. 1. Morphology of (A) an ionic cross-linked alginate sponge (ICAS) and (B) a new designed nerve conduit (5’) with a 
porous ionic cross-linked alginate/chitosan composite, derived from a crinkled ionic cross-linked alginate sponge (crinkled 
ICAS) and combined with chitosan (Scheme 2).

2.3. Preparation of highly ionic cross-linked alginate/chitosan composite 

The preparation of a highly ionic cross-linked alginate/chitosan composite and a porous ionic cross-
linked alginate/chitosan composite was achieved and shown in Scheme 3.

3. Results and discussion

3.1. New designed nerve conduits with porous ionic cross-linked alginate/chitisan composite

We describe the preparation and characterization of nerve conduits made of alginate and a partially 
HCl quaternary ammonium chitosan complex. These nerve conduits fulfilled mechanical demands 
without further additives or chemical crosslinking reactions. The highly crosslinked alginate/ chitosan 
NC were expected to be suitable for cell in-growth and supplying nutrients through the wall of the NC. 
Polyelectrolyte complexes could be used for the delivery of proteins. Because of the agglutination 
characteristics of oppositely charged polymeric materials, the complex was firstly treated with the spe-
cial method; that is, the sodium solution was lyophilized and the alginate sponge was obtained (Figure 
1). After being treated with calcium ions, the crinkled ICAS hollow product (Scheme 2) was treated 
with chitosan HCl solution for 10 min. The ionic cross-linked alginate/chitosan complex was further 
lyophilized. The porous structure was obtained and is shown in Figure 2. The chitosan was partially 
quaternized with an HCl solution and the partially HCl quaternary ammonium chitosan (HClQCh) was 
obtained (Scheme 1). The partially HCl quaternary ammonium chitosan (HClQCh) provides multiple 
ammonium groups and ionic association between alginate and partially HCl quaternary ammonium 
chitosan. Nerve conduits with an outer diameter/inner diameter of 8 mm/5 mm were obtained (Figure 
1).

3.2. New designed nerve conduits with a highly ionic cross-linked alginate/chitosan composite

In this study, the fabrication process for designing nerve conduits with a porous highly ionic cross-
linked alginate/chitosan composite was designed to obtain various NC porosity and density. The 
mixed solution of sodium alginate and chitosan was prepared as shown in Scheme 3. After lyophiliza-
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tion, a porous ionic cross-linked alginate/chitosan sponge was obtained. Physical fabrication of the 
porous ionic cross-linked alginate/chitosan sponge was carried out, and a crinkled porous ionic cross-
linked alginate/chitosan sponge (5”) was developed. To enhance strength and mechanical properties, 
an additional ionic cross-linking reaction was employed using an aqueous solution of CaCl2, because
these calcium ions can form a compacted highly ionic cross-linked structure that is a kind of porous 
ionic cross-linked alginate/chitosan composite with CaCl2 (5”). Finally, novel nerve conduits (NC) (7”)
with highly ionic cross-linked alginate/chitosan composite could be obtained (Figure 3). When the 
concentration of CaCl2 was adjusted, a series of nerve conduits (NC) (7”) with different degrees of 
ionic cross-linked structures was designed.  The different microstructures could be observed by treat-
ment with low and high CaCl2 (aq) concentration. The micrograph of the new nerve conduits with the
porous crinkled ionic cross-linked alginate/chitosan composite and low and high CaCl2 (aq) concen-
tration treatment are shown in Figure 4(A). By treating with a low CaCl2 (aq) concentration, relative 
low cross-linked density and loose structures could be obtained and found in Figure 4(A). By treating 
with high CaCl2 (aq) concentration, relative high cross-linked density and compacted structures could 
be found in Figure 4(B). These results would be due to the high ionic cross-linking reaction of the de-
signed nerve conduits with the porous ionic cross-linked alginate/chitosan composite in the CaCl2 (aq) 
solution with high concentration and ionic strength. When the designed nerve conduits with the porous 
ionic cross-linked alginate/chitosan composites were treated with CaCl2 (aq) solutions, calcium ions 
could interpenetrate the porous ionic cross-linked alginate/chitosan structures. Furthermore, additional
ionic cross-linking reactions among calcium ions with the anionic groups of alginate would be carried 
out. Varying CaCl2 (aq) concentrations provided different amounts of free cationic calcium ions and 
ionic strength. The strong additional ionic cross-linking reaction lashed the original porous structure of 
the designed nerve conduits, and the compacted structures were constructed from ionic interactions.
Comparing the difference of two kinds of scaffolds (NC (5') and NC (7")), the nerve conduit (5’)
might be more suitable for nervous regeneration because of its smooth porous structure. In this study, 
the method for preparing a nerve conduit (7”) could provide a solution to increase nerve conduit struc-
ture strength through additional ionic cross-linking reaction.

Fig. 2. Micrograph of new designed nerve conduit (5’) with double layers and porous microstructure.
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Fig. 3. The morphology of a new designed nerve conduit (7”) with a porous ionic cross-linked alginate/chitosan composite 
derived from a crinkled ionic cross-linked alginate/chitosan sponge (crinkled ICAS) and additional cross-linking reaction 
with CaCl2 (Scheme 2).

Fig. 4. (A) Micrograph of new designed nerve conduit (7”) with a porous highly ionic cross-linked alginate/chitosan compo-
site treated with low CaCl2 (aq) concentration. (B) Micrograph of new designed nerve conduit (7”) with a porous highly ionic 
cross-linked alginate/chitosan composite treated with high CaCl2 (aq) concentration.

4. Conclusion

In this study, new designed nerve conduits (NCs) with a porous ionic cross-linked alginate/chitisan 
composite were successfully prepared for nerve regeneration. We developed a biodegradable nerve 
conduit made of a hydrophilic complex sponge, which consisted of oppositely charged chitosan and 
polysaccharides such as alginate. Furthermore, a new fabrication process for the designed nerve con-
duits was successfully established and developed. NCs composed of various polysaccharides, such as 
sodium alginate and chitisan, were designed and prepared as potential matrices for tissue engineering
via lyophilization. Swelling ability and biocompatibility were served to characterize the NCs. The use 
of a porous ionic cross-linked alginate/chitisan composite, therefore, appears to allow the formula to 
manipulate both the mechanical properties and penetration rate properties of the products. Furthermore, 
a kind of new drug-carrying system with porous ionic cross-linked structure for nerve regeneration 
was successfully designed and established by incorporating drugs.

(B)(A)
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