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Abstract. Minimization of the peak stresses and fracture incidence induced by mastication function is considered critical in
design of all-ceramic dental restorations, especially for cantilever fixed partial dentures (FPDs). The focus of this study is on
developing a mechanically-sound optimal design for all-ceramic cantilever dental bridge in a posterior region. The topology
optimization procedure in association with Extended Finite Element Method (XFEM) is implemented here to search for the
best possible distribution of porcelain and zirconia materials in the bridge structure. The designs with different volume
fractions of zirconia are considered. The results show that this new methodology is capable of improving FPD design by
minimizing incidence of crack in comparison with the initial design. Potentially, it provides dental technicians with a new
design tool to develop mechanically sound cantilever fixed partial dentures for more complicated clinical situation.
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1. Introduction

All-ceramic dental bridge, or namely fixed partial denture (FPD), has been used for many years to
replace missing teeth attributable to its outstanding aesthetics and excellent biocompatibility [1, 2].
However, using it for a cantilever structure is still questionable in clinic due to their weak structural
strength especially in the case of posterior region [3, 4]. Although implantation becomes increasingly
popular and favorable in treating such a group of patients, it may be restricted due to quantity and
quality of surrounding bone, cost and other complications. In order to overcome the above-mentioned
strength problem, zirconia has proven one of the most appropriate choices used as a framework
material to improve mechanical characteristics in all-ceramic dental bridges. Nevertheless, it remains
challenging for dental technicians or clinicians to figure out what is the best possible allocation of
porcelain and zirconia materials for the abovementioned dental bridge structures.
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A number of relevant studies on FPDs have focused on technical complications, fracture mechanism
and stress peaks within the prosthetic devices. In the all-ceramic three-unit FPDs, the highest stresses
were found at the gingival region of the connector [5], where crack could be likely initiated from and
propagated toward the loading point in the center of the pontic [6, 7]. The model with a greater radius
at the gingival embrasure exhibited a lower stress concentration. The average failure load increased by
140% if the radius at gingival embrasure increased from 0.25 to 0.9 mm [5]. However, the curvature at
occlusal embrasure had little effect on the fracture resistance of the three-unit FPD. Structurally, it
remains largely under-studied how to reduce the risk of fracture incidence by optimizing topological
configurations of different ceramic materials in a systematic manner.

This study aims to combine the topology optimization technique with fracture analysis using the
extended finite element method (XFEM) for the design of three-unit cantilever bridges. On one hand,
topology optimization has proven a rather powerful design tool to determine an optimal distribution of
a prescribed amount of materials under different load cases within a given design domain [8]. Much
effort has been devoted to the advances in modern topology optimization algorithms over the last three
decades, and topology optimization has been extensively used in a wide range of engineering
problems recently [9]. On the other hand, crack initiation and propagation in dental bridges can be
modeled using continuum-to-discrete element method (CDEM) [10-13] or XFEM which signifies
numerical techniques particularly suitable to the simulation of crack initiation and propagation in an
automatic fashion [14]. XFEM has been used successfully in biomechanical applications recently [15-
18]. One of the advantages of XFEM is that the finite element (FE) mesh can be created independently
of any possible cracking geometry, where remeshing operation is not required to track the cracking
path precisely [19]. Lured by such features, XFEM is considered particularly suitable to be integrated
into topology optimization in a fixed grid FE framework.

Unlike traditional topology optimization that uses standard FEM, this study proposes to employ
XFEM for topology optimization to enhance fracture resistance in all-ceramic cantilever dental
bridges. The optimized designs will be of lower risk of fracture, thereby potentially improving the
longevity of all-ceramic dental prostheses from an engineering perspective.

2. Materials and methods
2.1 Finite element modeling

A set of micro-CT (computerized tomography) images of human mandible section was used for
capturing the geometry of bone segments and tooth structures. The finite element models were
constructed using image processing program ScanlP (Simpleware Pty Ltd) and solid modeling
software SolidWorks 2012 (Dassault Systémes Solidworks Corp.). A three-unit cantilever bridge was
constructed for replacing a missed second premolar tooth as shown in Figure 1.

The bridge considered here is of an onlay configuration [18]. The model comprised two adjacent
teeth as abutments, dentine, pulp, periodontal ligament (PDL), cortical bone and cancellous bone as
native tissues. In this study, 2D plane stress models were considered for a demonstrative purpose [13],
which was meshed in four-node quadrilateral elements with a global size of 0.2 mm. A convergence
test was conducted to ensure that reduction of mesh size is insignificant to mechanical responses [20,
21].

In this study, all the materials were assumed as isotropic, homogeneous and linear elastic as used in
numerous previous fracture analyses [11-13] (Table 1). The pressure distributed equivalent to a total
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Fig. 1. FE model of a three-unit cantilever FPD. Fig. 2. Flowchart of the BESO algorithm.

Table 1

Mechanical properties of materials are used in this study [23, 24]

Materials Young’s modulus £ Poisson’s ratio Tensile strength Strainenergy release

(GPa) v ors(GPa) rate G. (J/m?)

Porcelain 69 0.26 0.045 13.3
Zirconia 210 0.32 0.44 144

Dentine 18 0.31

Pulp 0.01 0.49

PDL 0.0703 0.45

Cortical bone 13.7 0.3

Cancellous bone 1.37 0.32

force of 250 N was applied to the central fossa of the pontic and two adjacent teeth as shown in Figure
1. In the FE analysis, the load was increased linearly over the defined time duration of one second
until fracture occurred. The boundary of bone segments was kinematically fixed [11, 13]. The average
thickness of the veneering ceramics was set to be 0.5mm for ensuring good aesthetic appearance [22].

2.2 Description of XFEM

In this paper, the criterion of maximum principal stress-based damage initiation was adopted. The
FE formulation is enriched by the additional shape functions using partition of unity as follows [25],

u” (x) = Zu,.Ni (x) + Zal.Ni (x)H(x) + ZNI. (x)[ibl[fﬁ (x)} )

iel iel iel

where / is the set of nodes in the mesh, u; is the conventional degree of freedom at node i. N, is the

shape function associated with node i. / 7 is the subset of nodes enriched by the Heaviside function
H(x). The functions F;(x),/ =1,...,4 are used for modeling the crack tip given as
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In the XFEM fracture modeling, crack could take place from the element with the high tensile stress.
When the maximum principal stress reaches a predefined tensile strength of the material (i.e. 45MPa
for the porcelain and 440MPa for the zirconia, respectively [15]), crack initiates in such completely-
damaged elements. Then the crack propagates for releasing energy [25], for which the strain energy
release rate (Table 1) was used here [26]. In the homogeneous medium, the crack will propagate in the
direction perpendicular to the maximum principal stress.

2.3 Description of topology optimization method

In this study, the objective of topology optimization was to prevent the structure from cracking by
designing mechanically strong multilayer all-ceramic configuration for the cantilever FPD structure.
To make the material usage fully functional for fracture resistance, the overall performance index (P/)
is defined in terms of elemental P/ as its peak tensile stress to the fracture strength a° as follows:

1 1 e Pc e, Pz
win 1= L e Y Ly ey [ et
N =l Ny e =l orgc “=! o5y

where o[¢ is the first principal stresses in porcelain, o is the first principal stresses in zirconia,

orsc 1s the tensile strength of porcelain and o7y is the tensile strength of zirconia.

Since stress criterion was involved, the non-gradient bidirectional evolutionary structural
optimization (BESO) method was employed. The basic idea is to start from an initial porcelain-only
design; and then gradually replace fractured or weaker porcelain material by using stronger zirconia
material until the P/ is minimized (Figure 2). More details about BESO the algorithm can be consulted
from the literature [27].

3. Results and discussion

The peak principal stress distribution in the three-unit cantilever bridge prior to fracture is exhibited
in Figure 3(a). The peak principal stress in the three-unit cantilever bridge occurred at the occlusal
embrasure between pontic and the first molar as circled in Figure 3(a). The region with a high-stress
concentration in the model could be a potential site of damage and crack initiation [15].

The fracture pattern of the initial design is shown in Figure 3(b), in which the crack initiated at the
occlusal embrasure and propagated perpendicularly to the gingival embrasure between the pontic and
the first molar. Note that the fracture pattern predicted by XFEM showed good agreement with clinical
recommendation that gingival embrasure must be prepared carefully for multi-unit FPDs.

Using the BESO procedure, Figure 4 shows the optimization histories of the performance index
evolution vs BESO iteration. As more and more porcelain material was replaced by zirconia in the
optimization (see the corresponding topological variation, where porcelain was plotted in light blue
and zirconia in dark blue), the objective PI decreased gradually. From the inserts of topological
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(Figure 4), the cracks were observed in the early stage, where objective PI increased. But it decreased
smoothly when no cracks occurred after iteration 9. Note that the final convergent optimum was
obtained at iteration 90 with a given volume fraction (30%).
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Fig. 3. (a) first principal stress contour within three-unit cantilever bridge structure; and (b) fracture site and cracking path.
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Fig. 4. The histories of the objective performance index (PI) and volume fraction for the three-unit cantilever bridge: (a)
iteration 2, (b) iteration 15, (c) iteration 40, (d) iteration 60, and (e) final optimized topology at iteration 90.

Table 2

The optimal configurations of cantilever dental bridge under different constraints of volume fractions

Volume fraction at 20% Volume fraction at 30%

e W

Volume fraction at 40% Volume fraction at 50%
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Fig. 5. The peak first principal stress of various optimized designs with different volume fractions.

Table 2 summarizes the final optimum designs of the three-unit cantilever bridge subject with
different volume fractions at ¥y =20%, 30%, 40% and 50%, respectively. It is seen that the zirconia
material was gradually added to the areas of occlusal embrasure between the pontic and two abutments.

The topology optimization adopted here implemented the fracture-mechanics-driven XFEM to
search the best possible allocation of ceramic materials for the posterior cantilever dental bridge. This
allows simulating the cracking and modeling fracture path in an automatic fashion. The results showed
that the peak tensile stress substantially decreased in the optimal design in comparison with the initial
design as shown in Figure 5. The novel topological designs (Table 2) may be implemented using
additive manufacturing technology of ceramic and followed by a proper sintering process.

Predictability of such mechanically weak FPD structures as the cantilever bridge indicates a key
feature in the design and fabrication of dental prostheses. XFEM provides an effective tool to simulate
crack initiation and propagation, which has been well integrated into topology optimization procedure
here. It has been shown that the optimal design of layered ceramic FPD configuration potentially
reduces the onsite of fracture failure, thereby enhancing its longevity of treatment.

4. Conclusion

In this study, the topology optimization technique was combined with the extended finite element
method (XFEM) to search the best possible bi-material configuration for enhancing fracture
resistance. Through the non-gradient bidirectional evolutionary structural optimization (BESO)
procedure, the cracked weak porcelain material in the highly stressed region was gradually replaced
with strong zirconia material. As a result, all the cracked sites were eliminated from the structure and
the fracture resistance is enhanced. The proposed XFEM based topology optimization technique can
be extended to other designs of prosthetic devices, where fracture is a main concern.
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