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Abstract. Prediction of protein structural classes is of great significance to better understand protein folding patterns. An 
array of methods has been proposed to predict these structures based on sequences. However, the accuracy is strongly 
affected by the homology of sequences. In the present study, the features based on correlation coefficient of sequence and 
amino acid composition are extracted. Flexible neutral tree is employed as the classification model. To examine the 
performance of this method, four benchmark datasets are selected. Altogether, the results show that a higher prediction 
accuracy of alpha/beta can be achieved by the method compared to others. 
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1. Introduction 

The prediction of protein 3D structure is one of the most significant tasks in computational biology. 
Knowing the protein structure plays an important role in protein functional analysis, binding of protein, 
designing drug and other related fields and applications. The concept of protein structural classes has 
been proposed by Levitt and Chothia on a visual inspection of polypeptide chain topologies in a 
dataset of 31 globular proteins, where these proteins are divided into four mainly structural classes: 
all-alpha, all-beta, alpha+beta and alpha/beta [1]. The decipherment protein structure helps elucidate 
protein functions and further helps in drug design [2].  

A common way to predict the structure of a protein is to first acquire proteins with known structures 
(e.g. by crystallography techniques); then from their sequences, the prediction process can be 
conducted by developing recognition techniques; thereafter, the developed methods can classify 
unknown protein sequences into one of its classes. Unfortunately, though the sequence length of 
different proteins (i.e., the number of amino acids within a protein) usually varies, it turns out very 
often that two proteins with different lengths and low sequential similarities sometimes can be 
categorized to the same class. 

During the past several decades, a large number of algorithms and methods have been proposed to 
predict protein structural classes from protein primary structure [3–5]. There is an effective method for 
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protein structure prediction-fold recognition. General methods for sequence comparison, such as 
sequence-sequence alignment, sequence-profile alignment and the profile-profile alignment [6], might 
fail to recognize homologous templates due to the low similarities between the query sequence and the 
templates. An alternative is to thread the query sequence onto the template structures. Unfortunately, 
these methods, although widely used, may also fail to achieve satisfactory results at the fold level [7]. 
For instance, the reported overall accuracy of these methods employing the general widely used 
dataset 25PDB, whose sequence similarity is only about 25%, are merely about 70%. Recently, 
enormous efforts have been devoted to improve the prediction accuracy of low-similarity dataset by 
selecting novel features based on the correlations of amino acids [8,9]. 

The main goal of increasing protein structure prediction can be broadly divided into two categories: 
1) the exploitation of classifiers, such as  linear discriminated analysis, Bayesian classifiers, K-Nearest 
Neighbor, Hidden Markov Model, Artificial Neural Network, Support Vector Machine and ensemble 
classifiers [10–13]; 2) the development of feature extraction techniques using alphabetical sequence 
(syntactical-based) and/or using physicochemical properties of the amino acids (attribute-based or 
physicochemical-based), for instance, pseudo-amino acid composition (AAC), bigrams, 
autocorrelation and deriving features by considering more physicochemical properties [14–16].   

In this study, the feature of information on cross correlation of amino acids is combined with 
polypeptide composition (PC). A flexible number feature vector is selected and the flexible neural tree 
(FNT) is chosen as the classifier. Ten-fold cross validation tests on four low-similarity datasets have 
proved that our method is effective for the prediction. 

2. Materials and methods 

2.1. Materials  

The structural classification of proteins (SCOP) currently include eleven classes [17]: 1) all-alpha 
proteins; 2) all-beta proteins; 3) alpha/beta proteins; 4) alpha+beta proteins; 5) multi-domain proteins; 
6) membrane and cell surface proteins; 7) small proteins; 8) coiled coils proteins; 9) low-resolution 
proteins; 10) peptides and 11) designed proteins. Our research only focuses on the first four categories, 
because they include the great majority of protein sequences and are the basis for most comparable 
approaches [18–20]. 

Four widely used benchmark datasets, in Table 1, with low similarity are also selected to provide a 
comprehensive and unbiased comparison with the existing prediction methods. The 1189 dataset with 
sequence similarity lower than 40% is taken from [10]; the 640 dataset with 25% similarity is taken 
from [21]; the ASTRAL database (including 7 classes) with 6424 sequences has similarity lower than 
20%. In our research, however, only four major classes are used. The C204 dataset includes 204 non-
homologous proteins. 

 
Table 1  

SCOP class distribution in the datasets used in our research 

Dataset all-alpha all-beta alpha/beta alpha+beta Total 

640 138 154 171 177 640 
1189 223 294 334 241 1092 
ASTRAL 639 661 749 764 2813 
C204 54 61 45 46 204 
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2.2. Feature extraction 

2.2.1. Amino acid composition 
The AAC feature is based on statistical property to analyze protein structure. The feature describing 

a protein sequence is depicted as a vector containing 20 elements, which represents the corresponding 
frequency of amino acids. The amino acid’s fraction is used for AAC prediction. Let P be a protein 
sequence, then P=x1,x2, … xN, where xi belongs to A, i=1,2, … ,N and A is the set of 20 amino acids, 
say, A={a1, a2, … , a20}. AAC is calculated as the amino acid’s fraction of a in the sequence P. 
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where N is the total number of amino acids in the sequence. 

2.2.2. Polypeptide composition 
The PC feature depends on AAC. The feature describing protein sequence is represented as a vector 

containing 20k elements, indicating the corresponding PC frequency. It should be emphasized that PC 
is associated with AAC and itself. For instance, PC-2 is the set of 202 dipeptides, such as AA, AC, 
AD… YY, PC-2={pc-21,1, pc-22,1, … ,pc-220,20}. One can see that a1 is the sum of the numbers from 
pc-21,1 to pc-21,20, so the PC-k is made up of PC-k+1. 
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2.2.3. Correlation coefficient of sequence 
From the viewpoint of molecular biology, traditional AAC methods merely consider the 

composition of the protein sequence information. In fact, the structure of the protein is folding to 
various degrees. Some residues have interactions not only with its adjacent residues but also with the 
residues that are far apart. However, the autocorrelation coefficient of sequence takes into account 
both the position information of protein sequences and the distant interaction between amino acid 
sequences. The feature reflects the structure of proteins. Five characteristics are selected to express 
protein sequence, including hydrophilic, hydrophobicity, volumes of side chains, polarity and 
polarizability of amino acids. In order to take advantage of the features, protein sequences are 
converted into discrete values. The eigenvalues of the 5 characteristics are shown in Table 2. 

Because the eigenvalues differ in some degree, a normalized process should be used. In this 
research, the process of maximum & minimum standardization is introduced. This standardization is 
expressed as  
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The normalized eigenvalues are used for calculating correlation coefficient of sequence. Based on 
the AAC and PC principles, novel correlation information among n amino acid residues is introduced. 
Eqs. (5) and (6) are the expressions of the correlation coefficient of dipeptides and tripeptides, 
respectively. 
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With limited data processing ability for each classifier, the order of this feature is no more than 4. 
Firstly, �, �1 and �2 are the distance between different position amino acids. Secondly, k is the index of 
eigenvalues. Thirdly, L is the amino acids length number of a protein sequence. Finally, the Ai,k, Bi+�,k, 
Bi+�1,k, Ci+�1+�2,k is No.i, No.i+�, No.i+�1 and No.i+�1+�2 position amino acids in a sequence, 
respectively. Therefore, one can see that the feature of cc-2 has 25 elements and the feature of cc-3 has 
125 elements. 

Table 2 

 The eigenvalues of the 5 characteristics 

AA H1 H2 V P1 P2 AA H1 H2 V P1 P2 

A -0.40 -0.5 15 8.1 0.046 M 1.02 3.0 75 5.7 0.221
C 0.17 -1.0 47 5.5 0.128 N -0.92 0.2 58 11.6 0.134
D -1.31 3.0 59 13.0 0.105 P -0.49 0 42 8.0 0.131
E -1.22 3.0 73 12.3 0.151 Q -0.91 0.2 72 10.5 0.180
F 1.92 -2.5 91 5.2 0.290 R -0.59 3.0 101 10.5 0.291
G -0.67 0 1 9.0 0 S -0.55 0.3 31 9.2 0.062
H -0.64 -0.5 82 10.4 0.230 T -0.28 -0.4 45 8.6 0.108
I 1.25 -1.8 57 5.2 0.186 V 0.91 -1.5 43 5.9 0.140
K -0.67 3.0 73 11.3 0.219 W 0.50 -3.4 130 5.4 0.409
L 1.22 -1.8 57 4.9 0.186 Y 1.67 -2.3 107 6.2 0.298

Note: AA represents amino acid; H1 represents Hydrophilic. H2 represents Hydrophobicity; V represents Volumes of 
side chains; P1 represents Polarity; P2 represents Polarizability.

W. Bao et al. / Prediction of protein structure classes with flexible neural tree3800



2.2.4. Selection of the feature sets 
According to the above discussion, the number of these features is so large that it will cost a lot of 

time. From the view of information efficiency, the classifier hardly makes full use of these features. 
The entire features in this research are shown in Table 3. In order to reduce the mutual influence 
between these features, the feature of sequence is normalized. The features of polypeptide 
composition-2, correlation coefficient-2 and correlation coefficient-3 have done some processes like 
Eq. (6).  

3. Classification algorithm construction 

3.1. Flexible neural tree  

Flexible neural tree (FNT) is a special kind of artificial neural network with flexible tree structures. 
This kind of structure is put forward by Chen [22,23]. It is relatively easy for a FNT model to obtain 
near-optimal structure using tree structure optimization algorithms. Here, a FNT model is employed as 
the predictor. A tree-structural based encoding method with specific instruction set is selected to 
represent a FNT model. Flexible Neuron Instructors use function set F and terminal instruction set T to 
generate a FNT model, described as follows. 
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where +i (i=1, 2 … N) denotes non-leaf nodes’ instructions and has i arguments, the x1, x2 … xn are leaf 
nodes’ instructions and has no arguments. 

The output of a non-leaf node is calculated using a FNT model shown in Figure 1. From this point 
of view, the instruction +i is also called a flexible neuron operator with i inputs.  

The output of a flexible neuron +n is calculated as follows and the total excitation of +n is given by  
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In Eq. (9), xj (j=1,2, …, n) are the inputs to node +n. The output of the node +n is then calculated by  
 

Table 3 

 Feature representation 

Feature set ID Feature set name Abbr. Features 
1 sequence length L 1 
2 amino acid composition ACC 20 
3 polypeptide composition-2 PC-2 400 
4 correlation coefficient-2 cc-2,4 16 
5 correlation coefficient-3 cc-3,5 125 
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Fig. 1. Non-leaf node of flexible neural tree with a terminal instruction set T={x1,x2,…,xn}. 

 

Fig. 2. Typical representation of FNT with function instruction set {+2,+3,+4,+5,+6} and terminal set {x1,x2,x3}, which has 
four layers. 
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A typical FNT model is illustrated in Figure 2. Its overall output can be computed from left to right 

by a depth-first method recursively. 
General learning algorithm of FNT 
− Step 1. Initialize the values of parameters used in the particle swarm optimization (PSO) 

algorithms. Set the elitist program as NULL and its fitness value as the biggest positive real 
number of the computer at hand. Create the initial population. 

− Step 2. Construct optimization using PSO algorithm, in which the fitness function is calculated by 
root mean square error (RMSE). 

− Step 3. If the better structure is found, then go to step 4, otherwise go to step 2. 
− Step 4. Optimize parameters using PSO algorithm. 
− Step 5. If the maximum number of local search is reached, or no better parameter vector is found 

for a significantly long time (100 steps), then go to step 6; otherwise go to step 4. 
− Step 6. If the satisfied solution is found, then stop; otherwise go to step 2. 
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3.2. Prediction assessment 

In statistical analysis, two methods can be used to examine a predictor for its effectiveness in 
practical application, namely, independent dataset tests and 10-fold cross validation tests. During the 
process of the 10-fold cross validation tests, 10% of all proteins are treated as test data and others as 
train data. The overall accuracy (OA) is computed for each dataset. In addition, the following two 
standard performance measures are used to evaluate the prediction accuracy, that is, Sensitivity (Sens) 
and Specificity (Spec).  

4. Discussion and results  

All experiments are performed on a basis of 4 test datasets using 10-fold cross validation tests and 
report the Sens and Spec for each structural class, as well as the overall accuracy (OA). As shown in 
Table 4, one can find that the accuracies for these datasets reach above 80%. And when comparing the 
four structural classes, it can also be found that the prediction in alpha/beta class is always the highest 
(with accuracies of over 92% for these datasets). However, it seems to be less effective to predict the 
all-alpha class as the prediction accuracy is relatively low (72.49% for 1189 dataset) in comparison 
with the other classes, which may be due to its non-negligible overlap with other classes. 

Throughout the research, one can see that only a portion of features can be preserved. The other 
features show no obvious effect on classification. The preserved features are shown in Table 5. The 
feature of sequence length is also normalized. 

 
Table 4 

 The summary of Sens (%) and Spec (%) in different datasets 

Dataset Class Sens (%) Spec (%) 

640 

all-alpha 76.92 84.62 
all-beta 81.25 89.38 
alpha/beta 94.73 95.27 
alpha+beta 83.87 93.64 
OA 84.51  

1189 

all-alpha 72.49 87.52 
all-beta 82.65 92.46 
alpha/beta 93.04 98.45 
alpha+beta 77.24 92.62 
OA 82.56  

ASTRAL 

all-alpha 74.31 85.25 
all-beta 77.29 90.23 
alpha/beta 93.82 96.82 
alpha+beta 84.81 89.32 
OA 83.06  

C204 

all-alpha 89.46 92.64 
all-beta 93.02 95.35 
alpha/beta 99.27 98.21 
alpha+beta 94.32 98.07 
OA 94.65  
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Table 5 

The preserved features are summarized 

Feature set ID Feature set name Abbr. Features 
1 sequence length L 1 

2 correlation coefficient-2 (Hydrophilic, Volumes of side chains, 
Polarizability ) cc-2,3 9 

3 correlation coefficient-3 cc-3,5 125 
 

Table 6 

The comparison of the accuracies between all features and selected features 

Dataset Features Accuracy 
  all-alpha (%) all-beta (%) alpha/beta (%) alpha+beta(%) Overall (%)
640 all features 77.82 80.42 92.32 82.53 83.62 
 selected features 76.92 81.25 94.73 83.87 84.51 
1189 all features 73.52 80.53 91.18 75.78 81.31 
 selected features 72.49 82.65 93.04 77.24 82.56 
ASTRAL all features 74.31 77.29 93.82 84.81 83.06 
 selected features 73.58 77.94 94.01 86.34 83.51 
C204 all features 89.46 93.02 99.25 94.32 94.65 
 selected features 90.27 94.01 99.01 89.46 94.62 

4.1. Analysis of the selected feature vector 

Among 135 rational designed features which are used in the vector based on the prediction four 
protein classes, each of the features plays an essential role in obtaining better prediction accuracy. On 
the one hand, the features, such as ACC and PC-N, play an important role in protein sequence. On the 
other hand, protein sequence homology can achieve a more accurate expression through these selected 
features in Table 6. 

4.2. Comparison with existing methods 

There are a large variety of methods for protein structure classification. Thus the prediction 
efficiency and accuracy of our method are compared with other recently reported prediction methods.  
Other methods shown in Table 7 are used to test the four experimental datasets, and the comparison 
results show that our method displays the highest prediction accuracies as revealed in Table 7. 
However, the accuracies of all-alpha are lower than the methods of second structure. 

5. Conclusion 

In the current study, newly designed features and a FNT model are proposed to predict the protein 
sequences with low similarity. Compared with existing methods, the proposed method shows higher 
prediction accuracy in the four experimental datasets. Next, we will focus on the combination between 
correlation coefficient of sequence and secondary structure sequence. Furthermore, it will be 
interesting to improve the accuracy of classification model of all-alpha.  
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Table 7 
The comparison between our method and other methods 

Dataset Algorithm all-alpha (%) all-beta (%) alpha/beta (%) alpha+beta (%) Overall (%)
1189 Bayes classifier [7] null null null null 53.8 
 Logistic regression [17] 57.0 62.9 25.3 64.6 53.9 
 PseAAC [18] 48.9 59.5 26.6 81.7 56.9 
 RQA+PCC [19] 63.0 77.5 24 88.5 63.6 
 MODAS [20] 92.30 87.10 65.40 87.90 83.50 
 SCPERD [21] 89.10 86.70 53.80 89.6 80.60 
 RKS-PPSC [24] 89.20 86.70 65.60 82.60 81.30 
 PSIPRED [25] 93.72 84.01 66.39 83.53 81.96 
 This method 72.49 82.65 77.24 93.04 82.56 
640 IB1 [25] 53.62 46.10 68.93 34.50 50.94 
 Naive Bayes 5 [25] 55.07 62.3 80.26 19.88 54.38 
 Logistic regression [24] 69.57 58.44 61.58 29.82 54.06 
 PseAAC [21] 73.91 61.04 81.92 33.92 62.34 
 RQA&PCC [24] 59.17 60.83 75 56.67 62.92 
 SCPRED [24] 90.60 81.80 66.70 85.90 80.80 
 RKS-PPSC [25] 89.10 85.10 71.40 88.10 83.10 
 PSIPRED [26] 93.72 84.01 66.39 83.53 83.44 
 This method 76.92 81.25 83.87 94.73 84.51 
C204 PseAAC [25] 95.92 93.10 72.92 71.43 83.82 
 PsePSSM [26] 98.00 96.83 89.13 86.67 93.14 
 SerialCombination [25] 100.00 98.36 85.71 83.33 92.65 
 Serial fusion [26] 100.00 98.36 85.71 88.88 93.63 
 Parallel fusion [26] 100.00 98.39 87.50 91.11 94.61 
 This method 89.46 93.02 99.27 94.32 94.65 
ASTRAL SCPRED [24] 93.13 78.33 64.27 83.38 79.14 
 RKS-PPSC [25] 94.06 83.38 71.47 85.01 83.01 
 PSIPRED [26] 94.53 77.49 71.47 87.28 82.33 
 This method 74.31 77.29 93.82 84.81 83.06 
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