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Abstract. The output of icosahedral symmetry-adapted functions (ISAF) reconstruction algorithm is a virus capsid, where the
density function of every outside point is theoretically zero. However, original ISAF algorithm takes reconstructed map as a
solid sphere and density function of every point in the whole sphere is calculated. The density functions outside virus capsid
may not be always zero, which may sometimes produce noise. In this study, Fourier shell correlation (FSC) is used for proving
that density function calculation of original ISAF algorithm can reduce reconstruction precision. Subsequently, the range of
virus capsid is determined with radial density function curve and the original ISAF algorithm is improved by calculating
density function inside virus capsid. The experimental results on Cryo-electron microscopy (Cryo-EM) data of cytoplasmic
polyhedrosis virus (CPV) indicate that the improved ISAF algorithm can generate more details of virus capsid and achieve a
higher resolution.

Keywords: Single-particle reconstruction, icosahedral symmetry-adapted functions, virus capsid, density function, Fourier shell
correlation

1. Introduction

During the second part of 1960s, DeRosier and Klug [1] reported the principle of reconstruction of
molecule from a set of electron microscopy (EM) images. After many years of research, this method has
been expanded into three major techniques: electron crystallography [2], electron tomography [3] and
single particle technology [4], out of which, single-particle technology has more number of advantages.
It can capture the instantaneous images of biological molecule at different states and is used for studying
both symmetrical/asymmetrical molecules. Most importantly, there is no limitation of molecule size nor
requirement for any crystallization [5].
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Generally speaking, the icosahedral virus is the main area of research for single-particle technology.
There are three types of single-particle technologies: direct Fourier inversion algorithm [6], Fourier-
Bessel algorithm [1], and icosahedral symmetry-adapted functions (ISAF) algorithm [7-10]. For ISAF
algorithm, its basis function has icosahedral symmetry and the calculation region is a sphere that is
close to the shape of icosahedral virus. Thus, ISAF algorithm can easily get the structure near-atomic
resolution compared to Fourier-Bessel synthesis method and direct Fourier inversion method. Recently,
several near-atomic resolution structures of icosahedral viruses are reconstructed with ISAF method,
such as 3.9Å cytoplasmic polyhedrosis virus (CPV) [11], 3.6Å bovine papillomavirus (BPV) [12] and
3.6Å human adenovirus type 5 (Ad5) [13].

The original ISAF algorithm takes molecule as a solid sphere and calculates density function of every
point. However, reconstruction results only a virus capsid and density function of every point outside
virus capsid is theoretically zero. Thus, the calculation result may not be always zero, but sometimes may
produce noise. In this study, it is observed that density function calculation of original ISAF algorithm can
reduce reconstruction precision. To solve this issue, the range of virus capsid (inner and outer radiuses)
must be determined with radial density function curve at first. Subsequently, the density function outside
virus capsid should be assigned to zero.

The above mentioned technique of calculating density function is applied to original ISAF algorithm,
which is based on the computational radius of density function and called as improved ISAF algo-
rithm. To validate this algorithm, it is compared with original ISAF algorithm by using Cryo-electron
microscopy (Cryo-EM) data of CPV. The effective resolution of original ISAF algorithm is 8.6Å (0.5
Fourier shell correlation (FSC) criterion [14]) and 6.8Å (0.143 FSC criterion). However, the one of im-
proved ISAF algorithm is 7.9Å (0.5 FSC criterion) and 6.3Å (0.143 FSC criterion). Further, protrusion,
wrinkle and symmetrical details of virus capsid which was not clearly seen by original ISAF algorithm
is clearly visible by the modified algorithm.

2. ISAF algorithm based on the computational radius of density function

ISAF algorithm [7-10] can achieve the near-atomic resolution structures of icosahedral viruses, and
therefore, further study of this algorithm shall enhance the result.

2.1. Description of ISAF algorithm

ISAF algorithm is composed of four stages [15] i.e. Mapping molecular images, Constructing and
solving fitting equation set, Calculating density function, and Storing reconstructed map into Medical
Research Council (MRC) file. In the third stage, the density function ρ(x, y, z) of mesh point inside
asymmetric unit [15] is calculated by Eq. (1) and then mapped onto other 59 symmetrical areas.

ρ(r, θ, ϕ) =

∫
F(R,Θ,Φ)exp(−2πi�R · �r)R2sinΘdRdΘdΦ = 4π

[ LM∑
l=0mod2

(−i)l
u(l)∑
u=1

( ∫ ∞

0
fl,u(R) jl(2πRr)R2dR

)
S l,u(θ, ϕ) +

LM∑
l=1mod2

(−i)l
u(l)∑
u=1

( ∫ ∞

0
fl,u(R) jl(2πRr)R2dR

)
S l,u(θ, ϕ)

] (1)
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(a) 2ZAH (b) 3E5S (c) RHDV (d) 1QGT

Fig. 1. Four typical molecular structures.

2.2. Precise reduction of original ISAF algorithm for calculating density function

For original ISAF algorithm, the density function ρ(r, θ, ϕ) of every point in the entire sphere must
be calculated. However, the reconstruction result is only a virus capsid as shown in Figure 1. Thus,
calculating ρ(r, θ, ϕ) inside virus capsid is enough and can improve the resolution of reconstructed map.
This statement can be proved as follows:

Proposition: S denotes size of molecular image, rM = 1
2 S . The inner and outer radiuses of virus

capsid are rS and rE . It is clear that 0 ≤ rS ≤ rE ≤ rM. FS COld is FSC curve [14] of reconstructed map
by calculating ρ(r, θ, ϕ), 0 ≤ r ≤ rM. And FS CNew is the one by calculating ρ(r, θ, ϕ), rS ≤ r ≤ rE . RM is
the maximum Fourier radius. Thus, for any R ∈ [0,RM], FS C(R)New ≥ FS C(R)Old is held.

Proof: The structural factor of point �R = (R,Θ,Φ) is Fourier transform of density function ρ(�r) =

ρ(r, θ, ϕ), as shown by:

F(�R) = F(R,Θ,Φ) =

∫
ρ(�r)exp(2πi�R · �r)dv =

∫ 2π

0
dϕ

∫ π

0
sinθdθ

∫ rp

0
ρ(r, θ, ϕ)exp(2πi�R · �r)r2dr (2)

where r ∈ [0, rP]. Let rP = rM, the Eq. (2) can be written as accumulation:

F(�R)O =

2π∑
ϕ=0

π∑
θ=0

rM∑
r=0

ρ(r, θ, ϕ)exp(2πi�R · �r)r2sinθdrdθdϕ (3)

Let I(�R, r1, r2) =
2π∑
ϕ=0

π∑
θ=0

r2∑
r=r1

ρ(r, θ, ϕ)exp(2πi�R · �r)r2sinθΔrΔθΔϕ, and Eq. (3) is expressed as:

F(�R)O = I(�R, 0, rS − 1) + I(�R, rS , rM) + I(�R, rE + 1, rM) (4)

The ρ(r, θ, ϕ), r � [rS , rE] may not be zero in real F(�R)O, which produces noise. Thus, noise component
N(�R) denotes I(�R, 0, rS −1)+ I(�R, rE +1, rM), and signal component N(�R) denotes I(�R, rS , rM) So, Eq. (4)
is written for short:

F(�R)O = F(�R)N + N(�R) (5)

It is clear that F(�R)N and N(�R) are signal and noise component of F(�R)O.
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In the opinion of FSC curve [14], the reciprocal space is divided into a series of shells. Initially, the
full data set is split into two half data sets to produce two independent density maps. Secondly, the
correlations of them at different shells are computed and finally, the resolution is determined. With this
method, FS C(R)Old is given by:

FS C(R)Old =
∑
�Ri∈R

F1
(
�Ri
)
O
· F∗2

(
�Ri
)
O

/√√∑
�Ri∈R

∣∣∣∣F1
(
�Ri
)
O

∣∣∣∣2 ·
∑
�Ri∈R

∣∣∣∣F2
(
�Ri
)
O

∣∣∣∣2 (6)

where F1
(
�Ri
)
O

and F2
(
�Ri
)
O

are structure factors, and "*" denotes complex conjugation.
The numerator in Eq. (6) is as follows:
∑
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(
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)
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(
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)

N
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(
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)

N
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(
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)

N
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)
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(
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)

N
· N1

(
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)

+
∑
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(
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)
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(
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) (7)

With [16], the sums of cross terms between signal and noise are small compared to the one of other
terms and can be ignored, i.e.

∑
�Ri∈R

F1
(
�Ri
)

N
· N∗2

(
�Ri
)
≈ 0,

∑
�Ri∈R

F∗2
(
�Ri
)

N
· N1

(
�Ri
)
≈ 0

The numerator in Eq. (6) can be approximately expressed as:
∑
�Ri∈R

F1
(
�Ri
)
O
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(
�Ri
)
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∑
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(
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)
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(
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)

N
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(
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(8)

With the same approximation in [16], the denominator in Eq. (6) are as follows:

∑
�Ri∈R
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(
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)
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Thus, FS C(R)Old is shown as follows:

FS C(R)Old =

∑
�Ri∈R

F1
(
�Ri
)

N
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(
�Ri
)

N
+
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With [14], FS C(R)New is expressed as:

FS C(R)New =
∑
�Ri∈R

F1
(
�Ri
)

N
· F∗2

(
�Ri
)

N

/√√∑
�Ri∈R
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(
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)
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So:

FS C(R)Old
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From [17], it can be seen that:

∑
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where N is the number of sampling points in shell whose radius is R, F1
(
�Ri
)

N
=

√
1
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∑
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Taking above equations into Eq. (13), we can get:

FS C(R)Old
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The numerator and denominator are divided by

√ ∑
�Ri∈R

∣∣∣∣N1
(
�Ri
)∣∣∣∣2 ·

√ ∑
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√
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√
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(16)

where S NR1(R) and S NR2(R) are signal-to-noise ratios at the Fourier radius of R. Generally speaking,
S NR1(R) + S NR2(R) ≥ 2

√
S NR1(R) · S NR2(R) is held. Adding 1 + S NR1(R) · S NR2(R) on each side,

we can get:

G. Wang and F. Xu / Precise improvement of ISAF reconstruction algorithm based on the computational radius 3791



S NR1(R) + S NR2(R) + 1 + S NR1(R) · S NR2(R) ≥ 2
√

S NR1(R) · S NR2(R) + 1 + S NR1(R) · S NR2(R)

(17)

Fig. 2. The flow chart of improved ISAF algorithm.

That is [1 + S NR1(R)] · [1 + S NR2(R)] ≥ [
√

S NR1(R) ·
√

S NR2(R) + 1]2

The square-root of above inequality is
√

S NR1(R) + 1 ·
√

S NR2(R) + 1 ≥
√

S NR1(R) ·
√

S NR2(R) + 1
Taking above inequality into Eq. (16), we can get: FS C(R)Old

FS C(R)New
=

√
S NR1(R)·

√
S NR2(R)+1√

S NR1(R)+1·
√

S NR2(R)+1
≤ 1

Therefore, original ISAF algorithm may produce noise and reduce reconstruction precision. But the
loss of accuracy can be regained by calculating density function of point inside the virus capsid. There-
fore, the range of virus capsid must be estimated in advance.

2.3. Measurement of inner radius and outer radius of virus capsid

The radial density function curve is suitable for calculating inner radius rS and outer radius rE of virus
capsid. Generally speaking, density function outside virus capsid is noise and its average approaches
zero. However, the inside part of virus capsid is composed of signal and noise and its average is far from
zero. Thus, the mean density functions of inside and outside virus capsid are different. The range of virus
capsid can be determined as follows.

(1) Two arrays DenVal[] and NoVal[] are constructed. DenVal[r] and NoVal[r] are mean density
function and the number of sampling points at shell “r”. The initial values are both zero.

(2) The molecular structure is reconstructed by calculating ρ(r, θ, ϕ), 0 ≤ r ≤ rM.
(3) ρ(r, θ, ϕ) is loaded and carried out with the following steps.
a. The distance between (x, y, z) and origin (0, 0, 0) is d =

√
x2 + y2 + z2. If d ≥ rM is held, ρ(x

′
, y
′
, z
′
)

of next mesh point (x
′
, y
′
, z
′
) is loaded and go to label "a".

b. The integral part is Id = [d] and fractional part is Fd = d − Id.
c. The density information of point (x, y, z) is distributed to DenVal[] and NoVal[].

DenVal[Id] = DenVal[Id] + (1 − Fd)ρ(x, y, z),NoVal[Id] = NoVal[Id] + 1 − Fd,

DenVal[Id + 1] = DenVal[Id + 1] + Fdρ(x, y, z),NoVal[Id + 1] = NoVal[Id + 1] + Fd.

d. ρ(x
′
, y
′
, z
′
) of next mesh point (x

′
, y
′
, z
′
) is loaded and go to label "a".

(4) The mean density functions in different shells are DenVal[r] = DenVal[r]/NoVal[r], 0 ≤ r ≤ rM.
(5) The radial density function curve "DenVal[r] − r" is drawn. The inner radius rS and outer radius

rE can be determined by analyzing this curve.

2.4. ISAF algorithm based on the computational radius of density function

If the range of virus capsid is calculated and then applied to original ISAF algorithm, the reconstruction
precision is improved. For brevity in expression, this algorithm is called improved ISAF algorithm in
the following paper. Its flowchart is shown in Figure 2. In this figure, the boxes with dashed line are
additional operations compared with the original ISAF algorithm.
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Fig. 3. Cryo-EM images of CPV.
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Fig. 4. The radial density function curve.

(a) Original one (b) Improved one

Fig. 5. The internal structures of two methods.

(a) Original one (b) Improved one

Fig. 6. The external structures of two methods.

3. Results and discussion

CPV belongs to genus cypovirus and has icosahedral symmetrical property. The structure of CPV at
resolution of 3.9Å was reconstructed and the full atomic model of CPV capsid has been built by Lingpeng
Cheng, etc [9]. We are provided 2000 images of this data set honourablly. Figure 3 shows 9 images at
different defocuses.

The density map was reconstructed with original ISAF algorithm at target resolution of 6.09Å. And its
radial density function curve was shown in Figure 4. This curve is unstable before 25 and become stable
from 25 to 183.

Original ISAF algorithm and improved ISAF algorithm are both tested. The internal and external
structures are shown in Figures 5 and 6. Inside the molecule, original ISAF algorithm has produced lots
of noise and wrong structures. Thus, the protrusion and wrinkle look blurred. In addition, the one from
original ISAF algorithm has lots of noise outside virus capsid. The five-fold axis could not be seen clearly.
However, the one from improved ISAF algorithm has avoided above weakness, protrusion, wrinkle and
symmetry can be seen clearly.

It is reported that the sharp mask of reconstructed map from original ISAF algorithm may produce
an artificially improvement. But the improvement of improved ISAF algorithm is not due to this effect.
To validate this point and test accuracy, the FSC curves [14] at target resolution of 6.09Å are shown in
Figure 7. On the one hand, with 0.5 FSC criterion, the effective resolution of original ISAF algorithm and
improved ISAF algorithm are 8.6Å and 7.9Å. On the other hand, with 0.143 FSC criterion, they are 6.8Å
and 6.3Å. In addition, the FSC curve of improved ISAF algorithm is always above the one of original
ISAF algorithm, and is different from the one with sharp mask.
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Fig. 7. The FSC curves of reconstructed maps at the target resolution of 6.09Å.

4. Conclusion

For ISAF reconstruction algorithm, the calculation precision of density function affects resolution. In
fact, the reconstructed map is virus capsid and density function of point outside virus capsid is zero.
However, original ISAF algorithm takes reconstructed map as a solid sphere and calculates density func-
tion of all points. The density functions outside virus capsid may not be all zero, which could produce
noise. And the resolution is reduced. To solve this problem, the range of virus capsid must be determined
and the density functions of points within this range only are calculated.

In this study, the range of virus capsid is determined with the radial density function curve. The im-
proved ISAF algorithm only calculates density function within this range and can improve reconstruction
precision.

The Cryo-EM data of CPV was used for validation. The results show that noise was reduced sharply
and details was observed clearly. In addition, the FSC curve of improved ISAF algorithm was better than
the one of original ISAF algorithm.

The improved ISAF algorithm can be extended to other single-particle reconstruction algorithms by
changing method of calculating density function. Of course, calculating density function is only one
aspect that affects reconstruction precision. Except for this element, several factors can affect resolution,
such as initial template selection [6], CTF correction [18], structure factor sampling [19], Fourier radius
initialization, sampling step etc. Thus, further work will study other aspects to improve the reconstruction
precision.
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