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Abstract. The minimum error correction model is an important combinatorial model for haplotyping a single individual. In 
this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based 
method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-
climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solu-
tion space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm 
GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results 
prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms. 
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1. Introduction 

Triploid genomes are widespread in nature, especially in the genomes of fish, shellfish and higher 
plants. It is well known that triploid fish and shellfish have some excellent characteristics such as fast 
growth, high survival rate and strong disease resistance. Triploid plants also have such advantages as 
luxuriant growth, bigger fruits and strong adaptability. Therefore, it is very imperative to investigate 
the genetic characteristics of triploid genomes, for improving the quality and yield of triploid species. 
It is widely accepted that haplotypes are the predominant form to address phenotypic difference and 
disease susceptibility, but it is technically difficult and expensive to obtain haplotypes via biological 
experiments directly. Therefore, computation has become a general way to obtain haplotypes, and the 
individual haplotype reconstruction problem has arisen widely attention in bioinformatics. 

At present, although many reconstruction algorithms have been proposed for haplotyping a diploid 
individual [1–3], there is relatively little research on reconstructing triploid ones. Some reconstruction 
methods were presented for solving the K-individual haplotype reconstruction problem. Wang et al. 
proposed a genetic algorithm (it is named as W_GA in this article) to assemble diploid individual hap-
lotypes, which can be adapted to the K-individual haplotype reconstruction problem [4]. Li et al. [5] 
presented an exact algorithm for solving this problem. Qian et al. proposed a particle swarm optimiza-
tion algorithm (it is named as Q_PSO in this article) for solving diploid individual haplotypes recon-
struction, which can also be adapted to the K-individual haplotype reconstruction problem [6]. The 
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above mentioned algorithms can be used to reconstruct triploid individual haplotype (i.e., K is as-
signed to 3), but they are all inefficient in practical applications. The code length of algorithms W_GA 
and Q_PSO equals the amount of SNP fragments, which is very huge in realistic applications. The re-
construction rates obtained by these algorithms are not high due to their long codes [7]. With the in-
crease of chromosome ploidy, the number of SNP fragments increases. Hence, the reconstruction rates 
got by these algorithms will decrease further. The dynamic programming algorithm presented by Li et 
al. [5] performs well when the amount of fragments is small, but does not scale well with the increase 
of fragment number. In this article, triploid individual haplotype reconstruction problem is studied 
based on the minimum error correction model. By devising a novel chromosome coding method and 
an effectual hill-climbing operator, algorithm GTIHR is introduced for solving this model.  

The article is organized as follows. In Section 2, definitions and notations are given. In Section 3, 
algorithm GTIHR is depicted. In Section 4, the experimental results are presented. Finally, sever-
al conclusions are reached in Section 5. 

2. Definitions and notations  

A triploid individual owns three haplotypes coming from three chromosomes for a given sequence 
of SNPs. Because almost all common SNPs have merely two alleles, a haplotype can be denoted by a 
binary string. A SNP site is called homozygous if it possesses the same allele on the three haplotypes, 
otherwise it is called heterozygous. Assume that m fragments come from three chromosomes, and the 
haplotypes length is n. Let Mm×n denote an m×n SNP matrix, where each entry M[i,j](i=1,2,…,m, 
j=1,2,…,n) equals 0, 1 or – (– denotes the value is null). Each row denotes a fragment and each col-
umn denotes an SNP site. Let nx(j) (j=1,2,…,n) record the amount of x entries in the j-th column. Let 
fx(j) store the proportion of x entries in the non-null entries of column j, i.e., fx(j)=nx(j)/(nx(j)+n1-x(j)). 
Given u, v∈ {0,1, –}, s(u, v) and d(u, v) are defined as Eqs. (1) and (2). 
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Given two strings U=<u1u2…un> and V=<v1v2…vn>, where ui, vi∈{0,1,–}(i=1,2,…,n), D(U,V) rec-

ords the number of sites having opposite values in strings U and V, and is defined in Eq. (3): 
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Assume that U and V are two fragments, they are called conflict if D(U,V) is larger than 0, and are 

called agree if D(U,V) equals 0. The conflict between two fragments indicates that they are probably 
sequenced from different chromosome copies or have sequencing errors. If all of the fragments have 
no sequencing errors, the rows in matrix M can be divided into three groups of non-conflict fragments, 
which can be assembled into three haplotypes. In this case, the matrix M is called error-free. 
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In this article, the Minimum Error Correction model [8] is used to haplotyping a triploid individual, 
as follows: Given an SNP matrix M, correct the minimal amount of elements to make M error-free. 

Assume that the rows M[i, –](i=1,2,…,m) in matrix M are divided into three mutually exclusive  
groups, and matrix G denotes any one of the three groups, i.e., G[l,–]=M[il,–] (l=1,2,…,k, 1�ik, k�m). 
Let N0(G,j) (resp. N1(G,j)) denote the amount of 0 (resp. 1) entries in the group {G[1,j], G[2,j], …, 
G[k,j]}, and string h(G)=<h1(G)h2(G)…hn(G)> denote the assembled haplotypes of G, where 
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The reconstruction rate (RR) [2,4] is defined as the proportion of SNPs that are assembled correctly. 

Suppose that ho=(ho1, ho2, ho3) are the original haplotypes, and ha=(ha1, ha2, ha3) are the assembled ones. 
Let ),( jaioij hhDr = (i, j=1, 2, 3). RR is computed as Eq. (5): 
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3. Reconstruction method GTIHR 

In this section, a genetic algorithm based method GTIHR is described. The input consists of an SNP 
matrix Mm×n and a parameter τ . The output is three assembled n-length haplotypes h=(h1, h2, h3). 
Firstly, the matrix M is preprocessed. Secondly, genetic algorithm is executed to generate haplotypes 

)ˆ,ˆ,ˆ(ˆ
321 hhhh =  having merely heterozygous sites. Finally, the resulting haplotypes  h=(h1, h2, h3) are got 

by augmenting ĥ . The following are key steps in algorithm GTIHR. 

3.1. Preprocessing 

In the preprocessing stage, some unnecessary information is removed. If the j-th (j=1,2,…,n) 
column meets the condition of f0(j)�τ  (resp. f1(j)�τ ), it is dropped and is labeled as 1-column (resp. 0-
column), here τ  is set to 0.2 [9]. After dropping columns, all of the retained SNP sites are 
heterozygous, and the rows with all – elements are also discarded, for they are useless in the 
reconstruction process. The preprocessed matrix is still represented by Mm×n. 

3.2. Genetic algorithm 

Genetic algorithm is a kind of metaheuristic algorithm for solving complex problems, and it has 
been used to solve successfully many combinatorial optimization problems in bioinformatics [10,11]. 
Some interrelated key techniques in devising the genetic algorithm are given as follows. 
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3.2.1. Coding method 
A two-tuple (X,Y) is used to represent a chromosome, where X=<x1x2…xn> (xj∈{0,1}, j=1,2,...,n) 

and Y=<y1y2…yn> (yj∈{0,1, –1}, j=1,2,...,n). X denotes a haplotype with only heterozygous SNPs, i.e., 

1̂h . Y is used to indicate the relationship of the alleles among haplotypes 1̂h , 2ĥ  and 3̂h  that have only 
heterozygous SNPs, as shown in Eqs. (6) and (7). Three haplotypes, which have only heterozygous 
SNPs, can be computed from a chromosome (X,Y). 
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3.2.2. The initial population 
Let (Xi(T),Yi(T)) (i=1,2,..., N, N denotes the population size) denote the i-th chromosome of the T-th 

generation. The i-th initial chromosome (Xi(0), Yi(0)) is created with the following method: divide the 
rows of matrix M into three sets randomly, and three n-length haplotypes )ˆ,ˆ,ˆ( 321 hhh  with only 

heterozygous SNPs are generated according to Eq. (4). Then choose 1̂h  to be chromosome Xi(0). 
Yi(0)=<yi1(0)yi2(0)…yin(0)>, where yij(0) (j=1,2,…,n) is computed using Eq. (8). The initial population 
is created by generating N initial chromosomes. 
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3.2.3. Operator 
In the GTIHR algorithm, the roulette wheel selection mechanism is adopted to create next-

generation population. The combination of uniform crossover and one-point crossover is used, i.e., 
both of them are used with the probability of 50%. Similarly, the combination of swap mutation and 
one-point mutation is used. Hill-climbing operator can be used to generate new search regions. In this 
paper, a novel hill-climbing operator is devised. The following steps depict the operator: 

1) Given a chromosome (X,Y), a random binary string mask of length n is generated. When the j-th 
(j=1,2,…,n) bit of mask is equal to ‘‘0’’, xj is changed to 1-xj, and yj is changed to any element of set 
{0,1,–1}-{yj} uniformly, otherwise xj and yj are both unchanged. 

2) Divide all of the fragments M[i,–](i=1,2,…,m) in matrix M into three sets according to (X,Y). 
Given M[i,–], let Sk(X,Y,M[i,–])(k=1,2,3) record the amount of SNP sites that have the same allele in 
M[i,–] and kĥ , as Eqs. (9)-(11). M[i,–] is classified into group GK, ])},[,,({argmax
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As shown in Eqs. (6) and (7), because there exists correspondence relation between chromosome 

(X,Y) and haplotypes 2ĥ , 3̂h , S2(X,Y,M[i, –]) and S3(X,Y,M[i, –]) need to be computed according to 

each site value of string Y. Take Eq. (10) for example, if }1,0{ −∈jy , jh2
ˆ  has different value from xj, 

hence ]),[,( jiMxd j  can be used to substitute ]),[,ˆ( 2 jiMhs j . 
3) Compute six arrays dif[k], same[k](k=1,2,3) as follows:  
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here dif[k][j] counts the amount of fragments in set Gk which possess different alleles with kĥ  on the j-

th site. same[k][j] counts the amount of fragments in set Gk which possess the same allele with kĥ  on 
the j-th site.  
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jksamejkdif (j=1,2,…,n), xj is converted to 1-xj, otherwise xj remains un-

changed. 

3.2.4. Fitness function 
Given a chromosome (X,Y), a fitness function Fitness(X,Y) need to be designed to measure how 

‘‘good’’ the chromosome, as defined in Eqs. (18)-(22): 
 

J. Wu et al. / Haplotyping a single triploid individual based on genetic algorithm 3757



,),(1),(
nm
YXEYXFitness

⋅
−=

 (18) 

,])),[,,((min),(
1 3,2,1� ≤≤ =

−=
mi kk

iMYXDYXE
 (19) 

�=
=−

n

j j jiMxdiMYXD
11 ]),[,(]),[,,(  (20) 

})),1,0{(]),[,()1(]),[,((]),[,,(
12 −∈⋅+=⋅=− � = jj

n

j jj yjiMxsyjiMxdiMYXD  (21) 

}))..1,0{(]),[,()1(]),[,((]),[,,(
13 ∈⋅+−=⋅=− �= jj

n

j jj yjiMxsyjiMxdiMYXD  (22)
 

  

Here Dk(X,Y,M[i,–]) (k=1,2,3) counts the amount of sites which possess different alleles on M[i,–] 
and kĥ . E(X,Y) denotes the minimum amount of error corrections corresponding to the three haplo-

types )ˆ,ˆ,ˆ( 321 hhh . Therefore, the smaller E(X,Y) is, the higher the fitness of chromosome (X,Y) is. The 
presented genetic algorithm is summarized in Figure 1. 

3.3. Augmenting  

The homozygous SNPs, which are removed at the preprocessing stage, should be reinserted. Given 
haplotypes )ˆ,ˆ,ˆ(ˆ

321 hhhh = , 1̂h , 2ĥ  and 3̂h  are augmented by the SNP sites discarded in the prepro-
cessing stage to generate h1, h2 and h3. If a discarded column j is 0-column (resp.1- column), position j 
of the three haplotypes will also be 0 (resp.1). Then the resulting haplotypes h=(h1, h2, h3) are obtained.  

The description of the GTIHR algorithm is omitted here because of space limitations. 
 

 

Fig. 1. Genetic algorithm. 

 

 

 

Algorithm 1 Genetic algorithm 
Input:  the preprocessed matrix M, population size N, crossover probability pc, mutation probability pm, the maximum 
number of population generation maxgen 
Output: three haplotypes )ˆ,ˆ,ˆ(ˆ

321 hhhh =  
Step1. Generate the initial population pop0, gen=0. 
Step2. If gen>maxgen, go to Step7, otherwise go to Step3. 
Step3. Select (1-pc)×N members from popgen by using selection operator, and add them to popgen+1. 
Step4. Select pc×N/2 pairs of members from popgen by using selection operator. For each pair, produce two offspring by 
randomly applying single-point crossover operator and uniform crossover operator. Add all the offspring to popgen+1. 
Step5. Select pm×N individuals from popgen+1 with uniform probability. For each individual, produce an offspring by ran-
domly applying single-point mutation operator and swap mutation operator. 
Step6. For each individual i (i=1,2,…,N) in popgen+1, produce a new one i' by using hill-climbing operator. If the fitness of 
individual i' is larger than that of individual i, replace i with i', otherwise i remains unchanged. gen=gen+1, go to Step2. 
Step7. Transform the individual with the highest fitness into three haplotypes )ˆ,ˆ,ˆ(ˆ

321 hhhh = , Output ĥ . 
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4. Experiment results 

In this section, simulation data were generated under some realistic assumptions. Three n-length 
haplotypes h=(h1, h2, h3) were created as follows: h1 was generated at random; h2 was generated by 
flipping each bit of h1 at random so that the hamming distance between h1 and h2 equaled a parameter 
d; h3 also had the same length and each bit of which was assigned the corresponding bit of h1 or h2 ran-
domly, i.e., h3j was assigned h1j or h2j (j=1,2,…,n) at random. With regard to fragment data, as far as 
we know, real DNA fragments data are not available in the public domain. Therefore, in the experi-
ments, an extensively used sequence simulator CELSIM [7,9,12] was adopted to produce simulated 
fragments. m1 single SNP fragments and m2 mate-pair SNP fragments were produced. A single frag-
ment length was between f_min and f_max, and a mate-pair fragment length was set to n/10. In realis-
tic applications, by using Sanger sequencing technology, a single fragment length ranges between 3 
and 7 [9]. With the advance of next generation sequencing (NGS) technologies, e.g., 454 sequencing 
[13], a single SNP fragment length is shortened. Hence, the algorithms were also tested with shorter 
single SNP fragment length. Both single and mate-pair fragments have the coverage of c/2, and the 
total coverage was c. Finally, reading errors were planted into the fragments with probability ps. In 
realistic applications, c is between 5 and 10, and ps is between 2% and 5% [9]. 

Reconstruction rate and execution time are used to evaluate algorithms GTIHR, W_GA and Q_PSO. 
For each setting of parameter values, 100 datasets were produced, and the average over 100 runs was 
computed and presented. The parameters of algorithms W_GA and Q_PSO were set according to ref-
erence [4] and [6], respectively. The parameters of algorithm GTIHR were set as follows: pc=0.8, 
pm=0.2, N=400, maxgen=150, which are the same as the W_GA algorithm. The algorithms were im-
plemented on a Windows Server (Intel Core i3-2100 3.10 GHz CPU and 4 GByte RAM) using Mi-
crosoft Visual C++ compiler 6. 

 
Table 1  

Performance comparisons with different ps values 

ps 
RR Execution time(s) 
GTIHR W-GA Q-PSO GTIHR W-GA Q-PSO 

0.01 0.99 0.93 0.94 22.69 19.64 14.98 
0.02 0.98 0.92 0.92 22.45 19.16 14.32 
0.03 0.98 0.92 0.92 20.16 19.88 14.86 
0.04 0.98 0.91 0.91 22.81 19.91 15.03 
0.05 0.98 0.91 0.90 21.66 19.64 14.75 
0.1 0.94 0.87 0.84 24.17 19.14 14.97 

 
Table 2  

Performances comparisons with different c values 

c RR Execution time (s) 
GTIHR W-GA Q-PSO GTIHR W-GA Q-PSO 

2 0.89 0.83 0.83 5.70 4.53 2.52 
4 0.91 0.87 0.87 9.06 7.90 5.61 
6 0.92 0.89 0.89 11.98 10.66 8.07 
8 0.94 0.90 0.90 17.03 16.36 11.32 
10 0.98 0.91 0.90 21.66 19.64 14.75 
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Table 3  

Performances comparisons with different n values 

n RR Execution time(s) 
GTIHR W-GA Q-PSO GTIHR W-GA Q-PSO 

100 0.98 0.91 0.903 21.66 19.64 14.75 
200 0.923 0.875 0.866 52.94 50.08 22.11 
500 0.893 0.869 0.874 294.45 267.59 90.71 
800 0.881 0.868 0.870 689.63 639.58 206.43 
1000 0.872 0.864 0.865 1156.55 977.98 320.28 

 
In Table 1, the value of error rate ps ranges from 0.01 to 0.1, and f_min=3, f_max=7, c=10, n=100, 

d=0.3. It can be seen from Table 1, with the increase of error rate, the RRs of the three algorithms de-
crease. The GTIHR algorithm has a higher RR than the other two algorithms at each setting of ps. 
When ps increases from 0.01 to 0.1, the RR of the GTIHR algorithm decreases from 0.99 to 0.94, the 
RR of the W_GA algorithm decreases from 0.93 to 0.87, and the RR of the Q_PSO algorithm decreas-
es from 0.94 to 0.84. Additionally, the three algorithms run quickly, and the execution time of them is 
not affected by parameter ps. 

Table 2 represents the experiment results of the three algorithms under different coverage c, where 
f_min=3, f_max=7, n=100, ps=0.05, d=0.3. The results indicate that the RRs of the three algorithms 
increase with the augment of c, for more original fragment information can be offered to the algo-
rithms. Algorithm GTIHR can obtain higher RR than algorithms W_GA and Q_PSO at each setting of 
c. The RR of the GTIHR algorithm increases from 0.89 to 0.98, the RR of the W_GA algorithm in-
creases from 0.83 to 0.91, and the RR of the Q_PSO algorithm increases from 0.83 to 0.90. The three 
algorithms behave similarly in execution efficiency. 

Table 3 compares the three algorithms with different haplotype length n, where f_min=3, f_max=7, 
c=10, ps=0.05, d=0.3. As represented in Table 3, with the increase of n, the RRs of the three algorithms 
decrease, and the RRs of algorithm GTIHR are higher than those of algorithms W_GA and Q_PSO at 
each setting of n. The execution time of the three algorithms is very sensitive to n. 

Table 4 represents the experiment results under different single fragment length ranges, and c=10, 
ps=0.05, n=100, d=0.3. The decrease of the single fragment length decreases the probability of frag-
ments overlapping, which does not contribute to reconstructing haplotypes, the experimental results 
clearly supported this idea. From Table 4, it can be seen that the GTIHR algorithm can obtain higher 
RR than the W_GA and Q_PSO algorithms at each setting of [f_min, f_max]. The execution time of 
algorithm GTIHR has lower sensitivity to parameter [f_min, f_max] variations compared to those of 
algorithms W_GA and Q_PSO. When [f_min, f_max] changes from [3,7] to [1,2], the execution time 
of algorithms GTIHR, W_GA and Q_PSO increase by about 0.25, 2.56 and 0.73 times respectively. 

 
Table 4  

Performance comparisons with different single fragment length ranges 

[f_min,f_max] RR Execution time(s) 
GTIHR W-GA Q-PSO GTIHR W-GA Q-PSO 

[3,7] 0.98 0.91 0.90 21.66 19.64 14.75 
[2,4] 0.93 0.89 0.80 23.68 26.74 16.37 
[1,2] 0.91 0.87 0.87 27.11 69.96 25.48 
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Table 5 

 Performances comparisons with different d values 

d RR Execution time(s) 
GTIHR W-GA Q-PSO GTIHR W-GA Q-PSO 

0.1 0.99 0.97 0.97 5.18 17.55 13.87 
0.3 0.98 0.91 0.90 21.66 19.64 14.75 
0.5 0.94 0.83 0.85 31.93 18.78 14.41 
0.7 0.81 0.76 0.72 48.06 19.38 14.17 
0.9 0.75 0.72 0.70 58.84 18.43 14.77 
1 0.75 0.71 0.64 62.05 19.22 15.06 

 
Table 5 shows the comparison results with different hamming distances d, and c=10, ps=0.05, 

f_min=3, f_max=7, n=100. With the increase of d, the RRs of the three algorithms decrease gradually, 
and algorithm GTIHR can get higher RR than algorithms W_GA and Q_PSO at each setting of d. As-
sume that a haplotype has fixed length, the number of heterozygous sites in the haplotype increases 
with the augment of d. As can be seen from the chromosome code of algorithm GTIHR, the code 
length is twice the number of heterozygous sites. The larger d is, the longer the chromosome code is, 
and the solution space is enlarged. Therefore, when the population size and the maximum generation 
number are fixed, the increase of d decreases the RR of algorithm GTIHR, for large solution space 
plays a negative role in the performance of genetic algorithm. In addition, with the increase of d, alt-
hough the execution time of algorithm GTIHR increases gradually, it still runs in high efficiency. 

The performances of the three algorithms closely relate to search space size, which is determined di-
rectly by the code length. As mentioned above, the code length of algorithm GTIHR, which is twice 
the amount of heterozygous SNPs of a haplotype, is about 2nd bits. The codes of algorithms W_GA 
and Q_PSO have a length of 3nc/(f_min+f_max)+15c bits, which equals the amount of fragments. In a 
general case, the code of algorithm GTIHR is shorter than those of algorithms W_GA and Q_PSO. For 
instance, when f_min=3, f_max=7, n=100, c=10, both the W_GA and the Q_PSO algorithms have a 
code length of about 450, while the GTIHR algorithm has a code length between 20 and 200, which is 
determined by parameter d. Therefore, algorithm GTIHR has a much smaller search space than the 
other two algorithms, and can find a good solution more easily than them. In addition, the designed 
hill-climbing operator takes full advantage of the information provided by fragments to modify the 
chromosomes, and makes the chromosomes evolving towards higher fitness. Hence algorithm GTIHR 
can quickly converge to a satisfying solution. The operator still injects randomness to improve the hill-
climbing ability of algorithm GTIHR, making it escape from the local optimum solution. 

5. Conclusion 

In this article, a genetic algorithm based method GTIHR is proposed for solving the triploid individ-
ual haplotype reconstruction problem. The GTIHR algorithm adopts a novel short chromosome code 
and an effectual hill-climbing operator, which has such advantages as restricting the size of the search 
space and enhancing hill climbing ability for algorithms. Comparing with algorithms W_GA and 
Q_PSO, algorithm GTIHR can achieve higher reconstruction rate haplotypes under different parame-
ter settings, which was proven by an amount of experiments. Simultaneously, algorithm GTIHR is 
intended to rebuild haplotypes from a set of shorter fragments; it still keeps good performance with a 
decrease in the single fragment length. Therefore, the GTIHR algorithm may also adapt to the NGS 
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technologies. In summary, algorithm GTIHR is a practical solution for reconstructing a triploid single 
individual haplotypes. 
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