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Abstract. Microorganisms interact with each other within a community. Within the same community, some microorganisms 
tend to co-exist, whereas some others tend to avoid each other. The association among microorganisms can be revealed by 
computing the correlation between their abundance patterns that are measured through metagenomic sequencing across mul-
tiple communities. In this paper, we built an association network among microorganisms from the human oral microbiome. 
To improve its accuracy, we adopted a network deconvolution algorithm to filter out indirect associations, and we used an 
ensemble of three correlation measures to filter out the false-positive associations. When applying on the metagenomic data 
from human oral samples, experimental results showed that phylogenetically close microorganisms formed highly correlated 
network clusters. Additionally, most of the identified mutually exclusive associations were related to the order Lactoba-
cillales. 
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1. Introduction 

Microbes do not live in isolated environments; instead, they co-exist in microbial communities and 

exhibit various kinds of positive and negative interactions. The microbial communities associated with 

the human body (i.e., the human microbiome) consist of approximately 100 trillion microbial cells, 

which is more than ten times the number of human cells. Furthermore, the composition of human mi-

crobiome varies greatly across various individuals [1]. The human body is closely associated with mi-

crobial organisms, and the human microbiome plays a critical role in human health, and in various dis-

eases such as obesity, diabetes, and neurochemical imbalances. Thus, it is important to characterize the 

human microbiome in order to better understand the functional aspects of their impact on human hosts.  

Positive interactions between microorganisms within the same community can be interpreted as mu-

tualism. Examples include cross-feeding, co-colonization, niche overlap, and co-aggregation in bio-

films. Negative interactions can take the form of predator-prey or host-parasite relationships, respec-

tively [2]. Although it is difficult to understand the precise ecological relevance of the positive and 
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negative interactions, the identification of these microbial interactions does provide additional insights 

into the complex ecological relationships shared by these microorganisms. 

Until now, most researchers working in the area of metagenomics have used conventional correla-

tion, information-based theory, and distance measures to identify the relationships among microorgan-

isms. However, various different correlation analysis methods often generate dissimilar outputs from 

the same exact input data. Also, a high correlation between two microorganisms may be caused by 

indirect transitive effects (discussed in the following sections). Therefore, a novel approach based on 

the metagenomic data is necessary to reliably identify the direct associations between various micro-

organisms. 

In this study, we constructed an accurate microbial co-occurrence and mutual-exclusion network for 

the human oral microbiome. To filter out unreliable pairs of correlated microorganisms, we adopted an 

ensemble of three correlation measures. We also employed a network deconvolution algorithm to filter 

out the indirect associations. 

2. Related works 

2.1.  Inferring microbial co-occurrence patterns 

Owing to the recent advances in DNA sequencing, the characterization of microbial communities 

can now be accomplished using high throughput and low cost techniques, including the 16sRNA am-

plicon sequencing and the shotgun metagenomic sequencing. The microorganismal abundances can be 

estimated by using the techniques mentioned above. These estimates are based on the frequencies of 

reads obtained from multiple sequencing datasets. Several groups have developed computational me-

thods for understanding association networks. This is usually done by assessing the co-occurrence and 

mutual exclusion patterns of two microorganisms in multiple samples. A variety of correlation meas-

ures and their corresponding statistical significances are required for the above determinations. Warren 

et al. identified microbe-microbe and host-microbe associations specific to colorectal carcinomas, us-

ing the co-occurrence networks based on Pearson’s correlation [3]. Faust et al. constructed a global 

co-occurrence network of the human microbiome within and across body sites, using multiple similari-

ty measures in combination with a generalized boosted linear model and various statistical tests [4]. 

2.2. Identified problems in conventional approaches 

Two major problems need to be addressed before using the conventional co-occurrence analyses de-

rived from correlation measures. Firstly, the different correlation measures often produce considerably 

dissimilar outputs. For example, Pearson’s correlation coefficient variables are only suitable for the 

continuous and normally distributed data. However, if the data are not linear, the results may be lead-

ing. Moreover, as Pearson’s r is sensitive to the values of the variables, an improper pre-processing 

step may significantly distort the outputs of Pearson’s correlation. Spearman’s correlation coefficient 

(i.e. Spearman’s ρ) assesses monotonic relationships, and is simply defined as Pearson’s correlation 

coefficient with ranked values. As it uses rank values instead of real values, it may tend to ignore the 

causal relationships between two variables. Furthermore, the Spearman’s correlation coefficient is also 

sensitive to rarely occurring variables. As evident from the above examples, every correlation measure 

generates unique outputs that are not identical to those generated using other methods. In other words, 
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the choice of an optimal correlation measure has a large impact on the accuracy of the inferred co-

occurrence network. 

Secondly, the results of conventional correlation analysis may include an enormous amount of indi-

rect association because of the transitive effects of directly co-occurring pairs. For example, if micro-

organism A interacts with B, and B interacts with C, it is often observed that microorganisms A and C 

are correlated. In a general case, the degree of observed correlation between two variables (microor-

ganisms) is the sum of associations along all the connecting paths in the network reflecting the actual 

interactions among microorganisms [5]. Even though the problem of inaccurately inferred network 

was reported by Sewall Wright in 1921, the problem has not been clearly resolved till now. 

3. Proposed methods for identifying microbial direct relationships in human oral microbiome 

3.1. Data set and data preprocessing 

16S rRNA (1.5 kbp in length) is commonly used as a marker gene for discerning microorganisms in 

communities because its highly conserved sequences have shown considerable variation with the evo-

lutionary time. We downloaded the 16S rRNA amplicon sequences from the microbiome of healthy 

human subjects. These sequences to be used in our experiment were generated by the Human Micro-

biome Project at http://hmpdacc.org [1]. The dataset (release: 1 May 2010) includes the number of 

sequences that are affiliated with each phylotype from 18 body site samples of 239 healthy people. 

Nine out of the 18 body sites are from the oral cavity. We selected the following oral sites: buccal mu-

cosa, hard palate, keratinized gingiva, palatine tonsils, saliva, subgingival plaques, supragingival 

plaques, tongue dorsum, and throat. The total number of oral sample records in the dataset was 2,835. 

To reduce the sparseness of the occurrence matrix, we excluded the 329 rarely occurring phylotypes 

(out of a total of 665) that are supported by less than five sequences across the entire dataset. As the 

collected samples do not possess similar volumes, the absolute counts of each phylotype were normal-

ized by the total counts in each sample. As a result, we arrived at a normalized abundance matrix for 

336 phylotypes across 2,835 oral cavity samples. 

We then converted the normalized abundance matrix into a 3,024 × 323 matrix in which each row 

represents the combination of phylotypes and oral sites and each column represents an individual dur-

ing one sampling visit. Note that each human subject was sampled during multiple visits. However, 

the number of individual visits varied from one to three for different subjects, and all nine oral sites 

were not sampled for each individual visit. This caused a lot of missing information in the converted 

matrix. As the correlation analyses are highly sensitive to missing data, some individual-visit columns 

that had missing oral site samples were eliminated from our analysis, and only 282 individual-visit 

columns were retained in the end. After removing null rows (i.e. rows with zero counts), a total of 

2,100 rows remained. As a result of the pre-processing, we obtained a 2,100 × 282 microbial abun-

dance matrix for the phylotypes in nine oral sites. The data were used to construct the co-occurrence 

and mutual exclusion network. 

3.2. Co-occurrence / mutual-exclusion analysis 

To identify the microbial co-occurrence and co-exclusion patterns, we performed pairwise correla-

tion analyses. As discussed in Section 2.2, there are many correlation measures, and different meas-

ures produce significantly different outputs. Thus, to avoid misleading or biased results, we used the 
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following three correlation measures and aggregated them: mutual information, Pearson’s correlation 

coefficient, and Spearman’s correlation coefficient. By using mutual information for identifying the 

microbial co-occurrence and co-exclusion, we can easily capture the generic dependency among phy-

lotypes. However, it does not state whether the dependency is positive or negative. By examining the 

sign of Pearson’s and Spearman’s correlation coefficients, we can determine whether a particular in-

teraction is positive or negative. 

3.3. Network deconvolution 

A biological correlation network is typically constructed through correlation or by using a similarity 

analysis between each pair of objects from the observed data across multiple conditions. However, the 

results include many erroneous links or over-estimated edge weights in many cases due to the indirect 

information flow (e.g., the transitive relationship in the case of direct interactions). 

Network deconvolution is a new method that eliminates the indirect weight from an inferred de-

pendency network [5]. There are several assumptions in the network deconvolution method. Firstly, 

the measured edge weights from the observed data are assumed to be the sum of direct weights and 

indirect information flow. Secondly, the indirect flow weights can be approximated as the product of 

direct edge weight. Under these assumptions, the inferred observed network can be expressed as an 

infinite sum of true direct networks and all indirect information flows of increasing lengths. Finally, 

the direct edge weights can be inferred by reversing the effect of transitive information flow across all 

possible indirect paths. Let Gobs be an observed dependency network, Gtru be a true dependency net-

work (which includes the direct dependencies only), and Gind be a network, which includes only the 

indirect dependencies. Then, we can express the observed network (Gobs) in terms of the true network 

(Gtru) and the indirect network (Gind), and the indirect network can be expressed in terms of all indirect 

effects along paths of increasing length as follows: 

 

���� � ���� � ��	
 � ���� � �����
� � ����

� � ����

 � � � � ������ 	 �������  (1) 

 

Thus, the true direct network can be computed using the observed network: 

 

���� � ������ � ������� (2) 

 

If the observed network and the true dependency network are represented with a n � n decomposa-

ble matrix (e.g., a symmetric matrix), then each eigenvalue of the true network λ�
��� can be expressed 

as a function of a single corresponding eigenvalue of the observed network λ�
���as follows: 

 


�

��� �
��
���

���
�

���
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To guarantee the convergence of the Taylor series in Eq. (1), the maximum absolute eigenvalue of 

the true network should be strictly less than one. Hence, the linear eigenvalue scaling of the observed 

network is required as described in reference [5] and its supplementary note. In this study, we set the 

linear eigenvalue scaling factor to 0.9 and the diagonal elements to zero to filter out self-relationships. 

M.S. Lee et al. / Characterization of microbial associations in human oral microbiome3740



3.4. Con

After n

three dir

sion patt

to be a tr

ship if th

able dire

coefficie

were der

To an

clustered

rithm [6

algorithm

tion of la

4. Resu

4.1. A ne

between 

Using

occurren

three cor

relation 

tual excl

Fig. 1. A

nstruction an

network dec

rect correlati

terns of micr

rue positive 

he measures 

ect co-occurr

ents were gr

rived from th

nalyze the di

d the microb

]. MCODE 

m. The algor

arge network

ults and disc

etwork of dir

oral sites  

 the analysis

nce patterns w

rrelation ana

coefficients)

lusion pattern

A global networ

nd analysis of

convolution, 

ion measures

robes in the h

relationship 

differ, we co

rence pattern

reater than 0

hree correlati

irect co-occu

bial correlatio

finds the den

rithm makes 

ks more man

ussion 

rect microbia

s procedures

within and b

alyses were le

) of 1,228 co

ns ranged fro

rk of microbial 

f direct micr

we selected 

s, in order to

human oral m

if different m

ombined the 

n or a mutua

0.3 or less th

ion analysis m

urrence/mutu

on network u

nsely connec

each cluster

ageable by d

al co-occurre

s described in

etween hum

ess than 0.05

o-occurrence 

om -0.47 to -

direct co-occur

obial co-occ

the correlatio

o identify rel

microbiome.

measures con

three correla

al exclusion 

han -0.3, res

methods and

ual exclusion

using the MC

cted regions 

r containing t

dividing who

ence and mu

n Section 3,

an oral sites.

5. The averag

patterns ran

-0.33, respec

rrence and mutu

currence and

on patterns t

liable direct 

. After assum

ncur, and lik

ation measur

pattern if ea

spectively. T

d the network

n patterns in

CODE (Mol

of a networ

the most rele

ole data into c

tual exclusio

we selected

. Their q-valu

ged strength 

ged from 0.3

ctively. 

ual exclusion re

d mutual excl

that were com

co-occurren

ming that the

kely to be a fa

res. A pair w

ach of its th

The direct co

k deconvolut

n the context

lecular Comp

rk using a gr

evant data an

closely conn

on relationsh

d 1,326 out o

ues (i.e., adju

of co-occurr

3 to 0.59, and

elationships in h

lusion networ

mmonly supp

ce and mutu

e relationship

false positive

was regarded 

hree direct co

orrelation co

tion algorithm

t of the netw

plex Detecti

raph-based c

nd it makes v

nected subset

hips within an

of 2,203,950

usted p-valu

rence (i.e., d

d those of th

human oral mic

rk  

ported by 

ual exclu-

p is likely 

e relation-

as a reli-

orrelation 

efficients 

m. 

work, we 

on) algo-

clustering 

visualiza-

s. 

nd 

0 microbe 

ues) in the 

direct cor-

he 98 mu-

 

crobiome. 

M.S. Lee et al. / Characterization of microbial associations in human oral microbiome 3741



Figure

within a

represen

per the c

tated usi

network

nodes as

occurren

4.2. Netw

Figure

tering. D

border c

the corre

Cluste

of the or

between

of Gamm

tine tons

mutual e

order of 

der of B

co-occur

4.3. Mut

Mutua

predator

patterns 

among c

Fig. 2. Top 

e 1 shows a 

and between 

nts a phylotyp

correspondin

ing a hierarc

, we used ta

s phylotypes 

nce tendencie

work cluster 

e 2 shows th

Different nod

olours corres

elational stre

er 1 and clust

ral sites. On t

 groups of ti

ma-proteoba

sils, throat, an

exclusion pat

f Bacilli, was

acilli), Bacte

rrence pattern

tual exclusio

al exclusion 

r-prey relatio

and depicte

clades in Figu

six correlation 

global netw

the oral site

pe in an oral

ng oral sites 

chical taxono

axonomic le

and oral sit

es among the

analysis 

e six highest

de colours re

spond to diff

ngth, and the

ter 2 show ti

the other han

ightly conne

cteria and E

nd tongue do

tterns betwee

s mutually ex

eroidetes, an

ns for Lactob

n patterns 

patterns con

onships in the

d the results

ure 3. The fig

network cluster

work of micr

es. The netw

l site. To visu

(Figure 1(a)

omy, whose 

evel three w

es respective

e phylogenet

t densely con

epresent diffe

ferent oral si

e red edge re

ightly connec

nd, the loosel

ected phyloty

Epsilon-prote

orsum). In co

en different p

xclusive with

nd Beta-prote

bacillaes, Ba

nvey the esse

e microorgan

s graphically

gure shows t

   

rs.                     

obial direct 

work consist

ualize the ch

)) or phyloty

depth was s

when colourin

ely (Figure 1

tically close c

nnected com

erent phyloty

ites (see Figu

epresents the 

cted patterns

ly connected

ypes. Cluster

obacteria in 

ontrast, clust

phylotypes i

h other phylo

eobacteria in

acteroidia and

ential inform

nism commu

y, by using a

that Bacilli (m

              Fig. 3

co-occurrenc

ts of 563 no

haracteristics

ypes (Figure 

ix [1]. To ca

ng nodes by

1(c)), we cou

clades and am

plexes obtain

ypes in taxon

ure 1(c)). Th

mutually ex

s among clos

d patterns wit

r 3 and clust

five oral sit

er 5 and clus

n an oral site

otypes, viz. C

n the keratini

d Clostridia 

mation necess

unity. We col

a circular lay

most of them

. Mutual exclus

ce and mutu

des and 1,32

 of the netwo

1(b)). Each 

apture the ov

y phylotypes

uld see that t

mong the sam

ned through 

nomical leve

e thickness o

xclusive patte

sely related p

thin the same

er 4 show co

tes (viz. saliv

ster 6 show t

e. In cluster 

Clostridia, B

zed gingival

in the suprag

sary to under

llected 98 dir

yout for the 

m were Lacto

sive patterns. 

ual-exclusion

26 edges. E

ork, it was c

phylotype w

verview of th

s. By identif

there were g

me oral sites

MCODE gr

el three, and 

of the edge r

erns.  

phylotypes, r

e oral sites a

o-occurrence

va, hard pala

the co-occurr

5, Lactobaci

Bacillales (an

l. Cluster 6 s

gingival plaq

rstand comp

rect mutual e

negative int

obacillaes an

 

n patterns 

ach node 

colored as 

was anno-

he global 

fying the 

global co-

.  

raph clus-

different 

epresents 

egardless 

are shown 

e patterns 

ate, pala-

rence and 

illales, an 

nother or-

shows the 

que. 

petitive or 

exclusive 

teractions 

nd the rest 

M.S. Lee et al. / Characterization of microbial associations in human oral microbiome3742



were Bacillales) are highly involved in the mutually exclusive interactions. Furthermore, Fusobacteria, 

Bacteroidia, and Clostridia show higher negative co-occurrence patterns with Bacilli. 

4.4. The effectiveness of the network deconvolution and the ensemble of three correlation measures 

To analyse the effectiveness of the network deconvolution method, we compared the correlation co-

efficients before and after network deconvolution for each of the three similarity measures. After the 

network deconvolution process was applied, we observed a decrease in the higher observed correlation 

coefficients, and a slight increase in the lower observed correlation coefficients. These results indicate 

that the overestimated observed weights decreased and the relatively underestimated observed esti-

mated weights increased by removing the indirect information flow.  

We also checked the characteristics of the phylotype pairs whose correlation weights were signifi-

cantly diminished. We checked their direct co-occurrence weight as derived by other similarity meas-

ures with network deconvolution, and found that most of them showed lower direct co-occurrence 

weights. Because these results were not supported by other correlation measures, they could be puta-

tive false positives in the co-occurrence inference. 

Finally, we computed the correlation of outputs among the three similarity measures before and af-

ter network deconvolution. Before the process, the correlation between Pearson’s r and Spearman’s ρ 

was high. However, the correlations between the mutual information and Pearson’s r, and between the 

mutual information and Spearman’s ρ were very low (-0.08 and 0.07, respectively). After network de-

convolution, the correlations between the mutual information and Pearson’s r as well as between the 

mutual information and Spearman’s ρ slightly increased (0.10 and 0.26, respectively). However, the 

correlation patterns among the outputs from different measures still varied considerably. Therefore, 

our approach, wherein we selected the commonly occurring interaction pairs based on three similarity 

measures, may be useful for constructing a reliable co-occurrence network. 

5. Conclusion 

In this study, we identified the direct microbial associations in the human oral microbiome, using 

the 16S rRNA abundances derived from the metagenomic sequencing data and constructed a direct co-

occurrence and mutual-exclusion network. We adopted an ensemble of three correlation measures and 

the network deconvolution method to remove the unreliable and indirect associations. Our results re-

vealed some characteristics in the direct microbial co-occurrence and mutual exclusion networks: 1) 

phylogenetically close microorganisms are highly likely to co-occur and form network clusters; 2) 

phylogenetically distant microorganism groups are only loosely connected by co-occurred pairs in an 

oral site; and 3) Lactobacillales are highly involved in the mutually exclusive relationships. 

Our proposed method can be used to accurately predict unknown functions of microbial species us-

ing comparative genomics and can help us understand the interactions between microorganisms within 

a microbial community. Moreover, this method can be utilized for synthetic ecology, which attempts 

to manipulate microbial communities in order to enhance the abundance of beneficial species, while 

suppressing the harmful ones. 
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