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Abstract. Among human influenza viruses, strain A/H3N2 accounts for over a quarter of a million deaths annually. 
Antigenic variants of these viruses often render current vaccinations ineffective and lead to repeated infections. In this study, 
a computational model was developed to predict antigenic variants of the A/H3N2 strain. First, 18 critical antigenic amino 
acids in the hemagglutinin (HA) protein were recognized using a scoring method combining phi (�) coefficient and 
information entropy. Next, a prediction model was developed by integrating multiple linear regression method with eight 
types of physicochemical changes in critical amino acid positions. When compared to other three known models, our 
prediction model achieved the best performance not only on the training dataset but also on the commonly-used testing 
dataset composed of 31878 antigenic relationships of the H3N2 influenza virus. 
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1. Introduction 

Influenza A viruses circulate in the human population every year and cause enormous losses for 
global economics, social medicine and human health. According to statistics from the WHO, influenza 
A viruses cause three to five million severe illnesses annually and ~500,000 deaths all over the world 
[1]. Currently, the influenza A viruses that have spread widely in the human population consists 
mainly of H3N2, H1N1 and H2N2 subtypes, among which the H3N2 subtype causes the largest 
fraction of influenza illness [1,2]. At present, vaccination is the principal method for preventing 
influenza infection [3]. However, point mutations in viral proteins allows the virus to change their 
antigenic properties, thereby escaping the human immune system [1,4]. This also poses challenges to 1) 
the effectiveness of vaccination, 2) global influenza virus surveillance, and 3) vaccine selection. 
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Therefore, it is of great value to identify critical mutations and make predictions for future possible 
antigenic variants of the influenza A viruses. 

Currently, determining antigenic variants of influenza A viruses mainly depends on ferret serum 
hemagglutinin-inhibition (HI) assays [5]. However, this technique is expensive and time-consuming. 
Computational methods not only can predict antigenic variants of influenza A viruses, it can also 
identify potential key amino acid positions for antigenic changes. In a recent study, Lee and Chen 
constructed five computational models to predict antigenic relationships of influenza A/H3N2 viruses, 
among which the model using hamming distance of the five epitopes in the hemagglutinin (HA) 
glycoprotein achieved the best performance [5]. In 2008, Liao and his colleagues employed and 
compared six grouping strategies and four bioinformatics models to predict antigenic variants [6]. 
Most recently, Huang’s group identified 19 key positions and constructed a decision tree composed of 
six nodes to predict antigenic variants [7]. Although the above models achieve ~90% accuracy on the 
same training dataset composed of 181 pairs of antigenic relationship records, these models attained a 
high false positive rate on the testing dataset containing 31,878 HI records proposed by Smith’s group 
[8]. As an example, Huang’s model made 1131 wrong predictions for 4780 antigenic similarities, a 
false positive rate of 23.66%. In addition, their training sample size is relatively small (181 pairs). 
Therefore, new strategies and approaches are needed to 1) increase the predictive effect, 2) reduce the 
false positive rate, and 3) increase the sample size to reflect HI data from studies and surveillance 
reports.  

In this study, we first increased the sample size and then attempted to use a new scoring method 
combing phi (�) coefficient and information entropy to identify potential key antigenic amino acid 
positions. Based on scoring method and multiple linear regression, 18 key amino acid positions were 
determined. Additionally, the grouping method in Liao’s study [6] inspires us that some amino acid 
mutations itself may not cause antigenic variants, and that antigenic variants may only develop upon 
some physicochemical changes. Therefore, physicochemical changes of the 18 amino acid positions 
were applied to predict antigenic variants. Compared to other models, our model attained a lower false 
positive rate and achieved optimal performance on both training and testing datasets. In addition, the 
identified 18 potential key amino acid positions would be valuable for research in related fields of 
influenza A viruses. 

2. Materials and methods 

2.1. Dataset 

We first manually collected 394 HI assay records of influenza A/H3N2 viruses from related 
publications, the Weekly Epidemiological Records (WER) from the WHO and the influenza 
surveillance reports from the American Center for Disease Control and Prevention (CDC), among 
which there were a total of 94 influenza A/H3N2 viral strains. Based on the Archetti-Horsfall method 
[9,10], the antigenic distance between two influenza viruses can be calculated with the formula 

)((ln jiijjjii HHHHdij = , where Hii and Hjj refers to homologous antibody titers, Hij and Hji refers to 
heterologous antibody titers. If dij ln4 the two viruses can be considered as antigenic variants. 
Otherwise, the relationship of antigenic similarity should be assigned. Thus, the training dataset 
composed of 394 pairs of influenza A/H3N2 viruses were split into 208 antigenic variants and 186 
antigenic similarities. Additionally, an independent testing dataset composed of 27098 antigenic 
variants and 4780 antigenic similarities of H3N2 influenza viruses was used in this study to validate 
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the prediction model. This testing dataset was generated from 11 antigenic clusters of H3N2 influenza 
viruses in Smith’s study [8], which was also used to validate Liao’s [6] and Huang’s models [7]. 

2.2. Recognition of critical amino acid positions in antigenic variants 

In order to identify critical amino acid positions for antigenic variants of H3N2 influenza viruses, a 
scoring method combining phi (�) coefficient and information entropy was employed. Considering 
pairwise mutation of H3N2 influenza viruses at each of the 329 amino acid positions in the HA1 
subunit as a random variable X, it has two states: 1 representing mutation and 0 representing non-
mutation. Meanwhile, the antigenic relationship of pair-wise viruses can be considered as another 
variable Y: 1 representing variant and 0 representing similarity. Therefore, the � coefficients of all 329 
amino acid positions can be computed as follows:  
 

329,...,2,1,)( 010101100011 =−= iNNNNNNNN YYXXiφ  (1) 

 
where Nmn (m=1,0 and n=1,0) is the number of virus pairs with X=m and Y=n, NXn is the number of 
virus pairs with Y=n and NmY is the number of virus pairs with X=m. The phi coefficients range from 
�1 to +1, where ±1 demonstrates perfect agreement or disagreement and 0 indicates no correlation. 
We further added a weight factor for each amino acid position according to the entropy method that 
has been successfully used in different bioinformatics fields [11–12]. An entropy value is defined at an 
aligned amino acid position according to the formula Ei=-�Pj*log(Pj), where Pj is the observed 
probability for each of the 20 amino acids. Taken together, a scoring formula for the amino acid 
positions was defined as , 1,2,...,329iS Eii iϕ= ∗ = . Thus, the significance of all 329 HA1 amino acid 
positions was calculated. We further set different thresholds including 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 
0.35 and 0.4 to generate 9 filtered position sets. Combining multiple linear regression and these 
position sets, prediction models were constructed. Finally, the 18 amino acid positions used in the best 
model were identified as potential key amino acid positions for antigenic variations. 

2.3. Clusters of 531 physicochemical properties 

In order to reduce the false positive rate of the prediction model, we attempted to use 
physicochemical properties in AAIndex [13] to improve the prediction model. However, the AAIndex 
database has too many physicochemical properties and redundancy needs to be eliminated. So we first 
used mutual information to cluster 531 physicochemical properties in AAIndex. Actually, mutual 
information can be used to measure the mutual dependence of the two random variables. Each 
physicochemical feature can be characterized with 18 mutual information values calculated with the 
following equation: 

�� ======
R T

ii RXPTARXPTARXPiXMI ))()|(log(),(),(  (2) 

where i is 18 key amino acid positions, P(X=R) is the observed probability of antigenic relationship is 
R and R includes two states: variant and similarity, P(X=R,Ai=T) is the joint probability of antigenic 
relationship and physicochemical property in given position i. T represents different AAIndex values 
and P(X=R|Ai=T) is the conditional probability. Subsequently, according to calculated mutual 
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information features, 531 physicochemical properties were clustered to 12 groups by using 
hierarchical cluster algorithm in Matlab. Further, the ‘find(T==k)’ function was used to find out which 
physicochemical properties are contained in group k and the first one in each group was chosen as the 
representative. Thus, 12 representatives such as positive charge, alpha-CH chemical shifts, number of 
hydrogen bond donors etc, were chosen to encode 18 key amino acid positions and construct the 
prediction model. 

2.4. Encoding the key amino acid positions to construct the prediction model 

After 12 representative physicochemical properties were selected from the AAIndex database, we 
employed these physicochemical changes of 18 key amino acid positions to fit antigenic distances of 
H3N2 influenza virus pairs. Firstly, 18 key positions were respectively encoded by each of 12 
physicochemical properties. Taking position 145 and the physicochemical property of “alpha-CH 
chemical shifts” as an example, if the amino acid at position 145 is mutated from isoleucine to serine, 
it shall be encoded with 0.55(4.5-3.95) according to the fact that alpha-CH chemical shifts of serine 
and isoleucine in AAIndex are 4.5 and 3.95 respectively. Thus, each of 18 key positions can be 
encoded to 12 physicochemical change values. We then input the 216 (18*12) features to execute 
multiple stepwise regression to fit antigenic distances. Finally, according to the rule of antigenic 
distance ln4, the prediction model was constructed.  

3. Results and discussion 

3.1. The significance scores of 329 amino acid positions 

Based on the significance scoring method mentioned in Section 2.2, 329 amino acid positions in 
HA1 subunit were ranked, among which 206 scored zero. Thus, these 206 positions were excluded 
from the prediction model. The remaining 123 positions achieved positive scores among which the 
highest is ~0.7. Most of the scores are below 0.15 and distribute on the interval from 0 to 0.05, only 
nine positions have scores higher than 0.4. Considering most of the virus pairs with more than nine 
mutations in the testing dataset are antigenic variant pairs, the nine positions were included in the 
prediction model and different thresholds below 0.4 were set to generate more antigenic critical amino 
acid positions.  

3.2. Antigenic critical amino acid positions 

By setting different thresholds from 0 to 0.4, 9 candidate position sets were generated. Combining 
each candidate position set with multiple linear regression on the training dataset, 9 prediction models 
were then constructed. Moreover, these models were also validated on the testing dataset containing 
31878 virus pairs. The experiment results are shown in Figure 1. When all 123 positions with non-zero 
scores are used to construct the prediction model, the highest accuracy on the training dataset and the 
lowest accuracy on the testing dataset was attained. This suggests over-fitting had occurred, and that 
some critical positions are specific for the training dataset and are not representative of the larger 
sample. The candidate position sets selected by the thresholds of 0.05, 0.1, 0.35 and 0.4 also resulted 
in model over-fitting and under-fitting. Therefore, these position sets were excluded. Interestingly, 
models constructed using the remaining four position sets all achieved relatively high accuracies on 
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both the training and testing datasets. Furthermore, within these four models, the one constructed by 
18 positions selected with a cutoff of 0.25 achieved the best performance. Therefore, these 18 
positions were considered as critical antigenic amino acid positions.  

Table 1 shows the significance scores and other information of the 18 critical amino acid positions. 
Based on the table, the importance of the 18 positions can be easily observed. For example, at position 
145, there were a total 123 virus pairs containing amino acid mutations, among which 99 pairs became 
antigenic variants. Some of the 18 critical positions are consistent with previous studies. Huang’s 
group determined six key amino acid positions, among which four positions were also identified in 
this study. Based on our significance measure, positions 213 and 214 only achieved a score below 0.15. 
This suggests that the importance of position 213 and 214 for antigenic variation may have diminished 
with the evolution of influenza A/H3N2 viruses. Statistical analyses including Mann-Whitney U-test 
and F-score were further implemented to validate statistical differences between the positive and the 
negative samples in the 18 positions. All the F-scores of these 18 positions are larger than 0.178, 
whereas the P-values are lower than 4.86e-4. This highlights a clear distinction between the antigenic 

 

 

Fig. 1. Prediction accuracy (ACC) changes of the models with different score cutoffs on training and testing dataset. 
 

Table 1 

The significance scores and other information of 18 critical amino acid positions 

Position N11 N10 N01 N00 |�|  Entropy Significance Position N11 N10 N01 N00 |�|  Entropy Significance 

50 57 11 151 175 0.28 1.66 0.47 158 63 7 145 179 0.35 1.6 0.55 
62 51 5 157 181 0.31 1.49 0.47 160 49 6 159 180 0.29 0.89 0.26 
83 52 9 156 177 0.28 1.26 0.35 172 47 10 161 176 0.24 1.55 0.38 
133 52 8 156 178 0.29 1.38 0.4 186 44 69 164 117 0.18 1.66 0.29 
135 47 11 161 175 0.24 1.44 0.34 189 89 35 119 151 0.26 2.17 0.56 
137 82 18 126 168 0.34 1.53 0.52 193 86 43 122 143 0.19 1.89 0.37 
145 99 24 109 162 0.37 1.57 0.59 197 40 2 168 184 0.29 0.94 0.27 
155 53 10 155 176 0.27 1.56 0.43 276 30 5 178 181 0.21 1.46 0.3 
156 97 28 111 158 0.34 1.98 0.67 278 46 2 162 184 0.32 1.4 0.45 

Note: Nmn represents the number of virus pairs with X=m and Y=n, where X is mutation state and Y is antigenic variant state.
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variants versus the antigenic similarities. Taken together, the above data indicate that the 18 positions 
identified in this study are of great importance to the antigenic variation of influenza A/H3N2 viruses. 

3.3. The final prediction model and performance evaluation 

Combining multiple linear regression and physicochemical changes of 18 key amino acid positions, 
the final prediction model was constructed. Table 2 shows physicochemical properties and regression 
coefficients of the critical mutation positions used in the model. In order to accurately evaluate the 
performance of the prediction model, 10-fold cross validation and four common-used measures 
including accuracy (ACC), sensitivity (SN), specificity (SP) and Matthews correlation coefficient 
(MCC) were used. Moreover, our model was also compared with three existing models including the 
Hamming distance model in Lee’s study, the multiple regression model in Liao’s study and the 
decision tree model in Huang’s study. Table 3 shows the performances and comparison results of the 
four models on the training and testing datasets. 

As shown in Table 3, the model constructed in this study achieved the best performance in terms of 
ACC and the comprehensive measurement of MCC on both the training and testing datasets. The ACC 
on the training dataset was higher than 86% and the MCC was larger than 0.72. With regard to the SP, 
although Liao’s model achieved a performance of 83.33% that is slightly higher than our model on the 
testing dataset, this may be attributed to the imbalance of 27098 antigenic variants against 4780 
antigenic similarities. Apart from this, our model has made observable improvement compared with 
the other three models. Especially against Huang’s decision tree model, the SP is improved from 
66.67% to 86.46% on the training dataset, indicating the false positive rate has been greatly reduced. 
Therefore, the model constructed in this study is superior to the other three models and will be more 
robust and effective for predicting new antigenic variants of influenza A/H3N2 viruses. 

 
Table 2 

The physicochemical properties and critical amino acid positions in the final model 

Position Physicochemical property Coeff Position Physicochemical property Coeff
135 alpha-CH chemical shifts 0.99 145 Number of hydrogen bond donors 0.35 
155 alpha-CH chemical shifts 7.78 155 Loss of Side chain hydropathy by helix form -1.18
193 alpha-CH chemical shifts 0.84 158 Loss of Side chain hydropathy by helix form 0.44 
278 alpha-CH chemical shifts 0.82 160 Loss of Side chain hydropathy by helix form -7.26
62 The number of atoms in the side chain 0.62 193 Bitterness 0.45 
137 The number of atoms in the side chain 0.65 145 Amphiphilicity index 0.11 
145 A parameter of charge transfer capability 0.65 156 Amphiphilicity index 0.18 
189 Positive charge  -1.65 276 Amphiphilicity index 0.36 
135 Positive charge 0.69 189 Amphiphilicity index 1.03 

 
Table 3 

The performance comparison of the models respectively constructed in Lee’s, Liao’s, Huang’s and this study  

Model Training dataset Testing dataset 
ACC(%) SN(%) SP(%) MCC ACC(%) SN(%) SP(%) MCC 

This study 86.06 85.63 86.46 0.726 96.96 99.55 82.30 0.877 
Liao’s model 83.25 81.73 84.95 0.666 96.54 98.87 83.33 0.860 
Huang’s model 78.68 89.42 66.67 0.560 96.23 99.73 76.34 0.846 
Lee’s model 77.66 85.10 69.35 0.554 92.44 96.34 70.33 0.693 
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4. Conclusion 

In this study, we focused on the prediction of antigenic variants of influenza A/H3N2 viruses and 
the identification of critical antigenic amino acid positions. A multiple regression prediction model 
combined with physicochemical changes of key amino acid positions was developed. By incorporating 
physicochemical changes, our model can predict with a low false positive rate whether two H3N2 
virus strains are antigenic variants of one another. Moreover, the identified 18 key positions were 
demonstrated to be of great importance for antigenic variations. Together, we anticipate our work will 
be valuable for public health and future research on antigenic variants of influenza A/H3N2 viruses. 
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