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Abstract. The transcriptional regulation of cellular functions is carried out by the overlapping functional modules of a com-
plex network. In this paper, a statistical approach for detecting functional modules in the transcriptional regulatory networks 
(TRNs) is studied. The proposed method defines modules as groups of links rather than nodes since nodes naturally belong to 
more than one module. Furthermore, the proposed algorithm is evaluated on the Escherichia coli TRN. The experimental 
results demonstrate that it detected a suitable number of overlapping modules that were biologically meaningful without any 
prior knowledge about the modules. 
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1. Introduction 

Transcriptional regulation is one of the most important mechanisms in gene expression. Using a 

network to represent the complicated process of transcriptional regulation has produced a powerful 

approach that is capable of effectively illustrating the dynamic interplay among the components in-

volved in this process [1]. One gene’s expression can be controlled by another gene’s gene product. 

Thus, a directed graph can be used to model the transcriptional regulation process. In transcriptional 

regulatory networks (TRNs), the transcriptional regulator coding genes and target genes are 

represented as nodes, and the control interactions between them are indicated as directed links [2–4].  

In order to understand how the mechanism of genes in the TRNs relate to one another as well as the 

influence of the topologies of TRNs on the biological process, there is an extremely useful analytical 

approach that involves extracting mesoscale structures, known as modules, from a network, which are 

defined as a group of co-regulated genes that likely share a common biological function. Module 

structure is one of the most important features of TRNs [5]. Therefore, detecting modules in TRNs are 

a critical component of understanding the relationship between the topology structure and represent 

function [6].  
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Thus far, a large number of algorithmic approaches have been proposed to detect modules in differ-

ent types of networks [7,8]. Optimization and clustering algorithms are two of the primary kinds of 

algorithms for detecting modules in complex networks. The underlying idea of the optimization me-

thods is to define a quantity that is high for `good' network divisions and low for ‘bad’ ones and then 

to search through the possible divisions to find the one with the highest score. Numerous different 

measures for assigning scores have been proposed, such as the likelihood-based measures [9], fluid-

flow [10], information theoretic [11], and others [12], but the most widely used approach is the mod-

ularity [13]. On the other hand, the clustering algorithms first estimate the strength of the link between 

each pair of nodes based on different methods, such as the link betweenness [14], link clustering coef-

ficient [15], information centrality [16], similarity based on random walks [17], clustering centrality 

[18], and so on. Then, the partition results of the networks are obtained by either merging the two 

nodes with the highest link strength repeatedly (the agglomerative method) or by removing the link 

with the lowest strength repeatedly (the divisive methods).  

Whereas nearly all of these methods are focused on the module of nodes, Yong-Yeol Ahn et al. [19] 

and T. S. Evans et al. [20] have recently conducted research that was focused on the cluster of links in 

undirected networks with the purpose of uncovering overlapping modules. However, TRNs are a di-

rected network. The most common approach for detecting modules in directed networks has been to 

simply ignore the link directions and apply algorithms designed for undirected networks [21,22]. 

However, by discarding the direction of the links, it is evident that important information about the 

network’s structure is simply being neglected, and with this information, a more accurate determina-

tion of the modules could be constructed.  

In this paper, a new algorithm based on links similarity is proposed to detect the overlapping func-

tional modules in the TRN of Escherichia coli. Based upon links similarity, the original TRN has been 

transformed into a weighted, undirected link network whose nodes are the original network’s links and 

the link weight is the links similarity of the original network. Then, we used a hierarchical clustering 

algorithm in the transformed network to identify module structure. Moreover, in order to measure the 

strength of the module structure and to obtain the most relevant modules, an improved Newman-

Girvan modularity Q [23] was used.  

We compared the performance of our algorithm with two successful methods, with one designed by 

Resendis et al [21] and the other by Ahn et al [19]. Resendis et al identified eight functional modules 

from the TRN of Escherichia coli based upon the shortest path between the nodes. Ahn et al rein-

vented modules as groups of links rather than nodes and then show that this approach naturally incor-

porates overlap while revealing hierarchical organization. 

2. Materials and methods 

2.1. Link similarity 

The link similarity is a measure of the closeness between a pair of links. It is clear that in the same 

network module the node-node connections are denser, and the shortest paths between pairs of nodes 

are shorter than in different modules. According to this principle, the similarity S(eil,ejk) between links 

eil and ejk that is shown in Figure 1 is: 
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where NS(eil,ejk) represents the interlinkage closeness degree between links eil and ejk. DS(eil,ejk) meas-

ures the distance of links eil and ejk, and α (between zero and one) is a parameter to adjust the weight of 

NS(eil,ejk) and DS(eil,ejk), as shown in Figure 1. 
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where n+(i) is the number of neighbors of a node i that direct it, and n-(i) is the number of neighbors of 

a node i that it directs. 
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where splj is the number of nodes in the shortest path [24] between nodes l and j. dia is the length of 

the longest shortest path in the TRN. The δ(splj,spki) function is 1 if neither splj nor spki are zero; other-

wise, it is 0. 

2.2. Hierarchical clustering  

After calculating the similarities for all the link-pairs in the TRN, a new weighted network was con-

structed, named link-net, in which the nodes are links of the TRN, and the links express the likenesses 

of the TRN links. Then, using hierarchical clustering, nodes in the link-net were clustered based upon 

their degree [25]. The clustering processes are described in the following three steps: 

− Calculate the degree for each node in link-net. 

− To initialize, assign each node to a cluster; then, merge the clusters iteratively using the single 

linkage function according to the nodes’ degrees.  

− Stop merging when all nodes belong to a unique cluster. 

The trace of the clustering process is then stored in a dendrogram, which contains all the informa-

tion of the hierarchical module organization. The similarity value at which the two clusters merge is 

considered to be the strength of the merged module and is encoded as the height of the relevant den-

drogram branch to provide additional information. 

 

 

Fig. 1. Link similarity measure between links eik and ejk. 
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2.3. Dendrogram partition  

Hierarchical clustering methods repeatedly merge groups until all the elements are members of a 

single cluster. This eventually forces highly disparate regions of the network into single clusters. In 

order to find meaningful modules rather than just the hierarchical organization pattern of modules, it is 

important to know where to partition the dendrogram. Modularity Q [13] has been widely used for 

similar purposes, 
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where ��� is the fraction of links belonging to module i in the total weight of all the links, and ai is the 

fraction of links connecting module i with other modules. In order to apply Q to the weighted network, 

the number of links is replaced by the sum of the weights. Then, the new modularity Qod is given by: 
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where ωi is the sum of the link weights in module i. ψij is the sum of the link weights between module i 

and j. 

3. Results and discussion 

To clearly explain how the proposed method works, a small-scale example directed network consist-

ing of six nodes and nine links is presented in Figure 2A, where node 2 is shared by two modules. First, 

an 6 6×  adjacency matrix A (Figure 2B) was constructed in which Aij=1 if i and j are connected; other-

wise, it equals 0. Then, the links similarity matrix setting α=0.4 (Figure 2C) was calculated and the 

original network was transformed to link-net (Figure 2D). Finally, the nodes in link-net were clustered, 

and the modularity Qod for each partition was calculated to find the meaningful one (Figure 2E). As 

shown in Figure 2F, when the Qod is at its maximum, two overlapping modules have been explicitly 

recovered: one contains the number 1, 2, 5, and 6 nodes, and the other contains the number 2, 3, and 4 

nodes. 

 

 

Fig. 2. Detecting module structure in the toy example network using the proposed method. (A) original network, (B) adjacen-

cy matrix, (C) links similarity matrix, (D) transformed network (link-net), (E) hierarchical clustering, and (F) partition result. 
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Escherichia coli is considered the most complete available prokaryotic, and therefore, it was se-

lected for this study. The gene–gene transcriptional regulatory relationships were selected from the 

RegulonDB database [26,27]. A TRN model represents the molecular regulation process of transcrip-

tion. A gene X directly regulates a gene Y if the protein that is encoded by X is a transcriptional factor 

for Y. Transcriptional regulator coding genes and target genes are represented as nodes, and the inte-

ractions between them are marked as links in the TRN. To construct an integrated Escherichia coli 

TRN, the interactions of A-E and A-F are replaced by B-E, B-F, and C-E, and C-F if a regulatory gene 

A, which is encoded by gene B and C, regulates gene E and F. The resulting E. coli TRN includes 

1680 nodes and 4150 interactions with 186 regulatory genes controlling the expression of 1491 genes. 

The basic properties [24] of the resulting E. coli TRN are shown in Table 1. 

The functional modules in the Escherichia coli TRN were detected using the proposed method. α is 

set at 0.5 in order to equalize the interlinkage closeness degree and distance of links. As shown in Fig-

ure 3, picture A is the hierarchical clustering dendrogram of the regulating nodes in the TRN link-net, 

and picture B is a plot of the fitted curve of modularity Qod. The modularity graph is aligned with the 

dendrogram so that the modularity values for different divisions of the network can be directly read. 

The dendrogram is divided into eight clusters when the modularity reaches its maximum value. It is 

evident that the peak in the modularity (the dotted line) corresponds to a perfect identification of them. 

4930 gene functional annotations of 1498 TRN nodes were extracted from the GeneProtEC [28,29] 

database and 1272 nodes distributed into 5228 annotations from the Gene Ontology [30,31] database. 

Merged two sets of data 6788 functional annotations of 1640 TRN nodes were obtained. In order to 

measure the effectiveness of the proposed module detecting algorithm, a direct validation was used by 

comparing identified clusters with a list of Escherichia coli functional modules, which is annotated 

with genes corresponding to functional class according to Monica Riley's MultiFun system [32,33] and 

obtained from the GeneProtEC and Gene Ontology database.  

 
Table 1 

Properties of the TRN of Escherichia Coli 

The number of nodes and links Average of properties 

TF GENE ConTF Link TFlink Trace Degree Spl Cluster 

189 1491 135 4150 267 121 4.796 2.715 0.313 

Note: TF is the number of regulatory factors, GENE is the number of regulated genes, ConTF is the number of interconnect-

ing regulatory factors, Link is the number of links in TRN, TFlink is the number of links among regulatory factors, and Trace 

is the number of self-citations. Degree, Spl and Cluster represent average of degree, shortest path length, and clustering coef-

ficient of TRN, respectively. 

 

 

Fig. 3. Detecting modules of TRN from the link dendrogram. A is the link dendrogram of the regulatory genes network. B is 

the modularity Qod.  
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The comparison results of our algorithm are shown in Table 2. The functions consistencyi, intersec-

tioni and overlapi were defined to measure how well the algorithm grouped nodes into a functionally 

correlated module i.  

Consistency was defined as: 
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Intersection was defined as: 
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Overlap was defined as: 
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where indeii is the nodes of an identified module i; realeii is the nodes of a practical module i; indeij 

and realeij are the nodes shared between an identified and practical module i and j, respectively; n is 

the number of modules; and the absolute value sign represents the number of nodes. 

Consistency is the fraction of the number of accurate identifications out of the total identifications. 

Furthermore, intersection is the fraction of the number of accurate identifications out of the total prac-

tical predictions, and finally, overlap is the fraction of the number of identified overlapping predictions 

out of the total overlapping predictions from the identified and practical predictions. They are the mea-

surement of algorithm accuracy. The maximum for consistency, intersection, and overlap is 81.3%, 

61%, and 75.5%, respectively, which indicates that a majority of the genes in the same identified 

module have consistently functional annotation.  

 
Table 2 

Accuracy rating for module partition results 

Module Biological function Consistency Intersection Overlap 

M1 Carbon compound utilization  80% 51.2% 66.3% 

M2 Macromolecule degradation 55.6% 14.7% 57.1% 

M3 Energy metabolism 51.3% 46.5% 42.5% 

M4 Energy production/transport 52.2% 42.9% 50.9% 

M5 Building block biosynthesis 62.5% 8.8% 57.6% 

M6 Macromolecules biosynthesis 46.2% 61% 44% 

M7 Central intermediary metabolism 81.3% 20% 75.5% 

M8 Phosphorous Sulfur Nitrogen Metabolism 39.5% 46.9% 49.4% 

 Average  58.5% 36.5% 55.4% 
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Table 3 

The same degree of overlapping nodes 

Modules M1 M2 M3 M4 M5 M6 M7 M8 

M1 None 66.7% 60.0% 50.0% 100.0% 45.0% 78.6% 63.6% 

M2 66.7% None 42.9% 40.0% 50.0% 66.7% 100.0% 33.3% 

M3 60.0% 42.9% None 54.5% 20.0% 58.3% 20.0% 42.1% 

M4 50.0% 40.0% 54.5% None 60.0% 30.0% 80.0% 41.7% 

M5 100.0% 50.0% 20.0% 60.0% None 33.3% 100.0% 40.0% 

M6 45.0% 66.7% 58.3% 30.0% 33.3% None 50.0% 25.0% 

M7 78.6% 100.0% 20.0% 80.0% 100.0% 50.0% None 100.0% 

M8 63.6% 33.3% 42.1% 41.7% 40.0% 25.0% 100.0% None 

Mean 66.3% 57.1% 42.5% 50.9% 57.6% 44.0% 75.5% 49.4% 

M1: Carbon compound utilization; M2: Macromolecule degradation; M3: Energy metabolism; M4: Energy produc-

tion/transport; M5: Building block biosynthesis; M6: Macromolecules biosynthesis; M7: Central intermediary metabolism; 

and M8: Phosphorous Sulfur Nitrogen Metabolism. 

 

Algorithms based on link similarity are more suitable for finding modules in the TRN because it is 

common that the functional modules of the TRN are overlapping. Table 3 shows the same degree of 

functional modules overlapping nodes between identified and practical partitions. From Table 3, it can 

be seen that the accuracy rate of 64.3% overlaps among functional modules is greater than 50% of the 

total, and 14.3% overlaps is equal to 100% of the total.  

Furthermore, the Ahn’s approach and Resendis’s algorithm were both ran on the Escherichia coli 

TRN, and the resulting data was compared to the results obtained from the algorithm proposed in this 

study. The modules obtained by each algorithm were compared with practical functional modules. The 

cutoff parameter was set to obtain eight clusters for each algorithm. For each identified module, the 

consistency, intersection and overlap values were calculated. As shown in Figure 4, the accuracy of 

the proposed algorithm is higher than that of the other two algorithms. There are more significant 

functional modules generated by the proposed method than by the other two algorithms. 

 

 

Fig. 4. Consistency, intersection, and overlap of each module calculated by three module detecting algorithms. O: Our me-

thod; L: Ahn’s approach based on link similarity; and D: Resendis’s algorithm based on the shortest path. C1: Carbon com-

pound utilization; C2: Macromolecule degradation; C3: Energy metabolism; C4: Energy production/transport; C5: Building 

block biosynthesis; C6: Macromolecules biosynthesis; C7: Central intermediary metabolism; and C8: Phosphorous Sulfur 

Nitrogen Metabolism. 
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4. Conclusion 

In the postgenome era of animalcule, a major research area is the discovery of the functional mod-

ules from the network level. In addition, the TRN is a very important and specific biological network. 

Links in TRN are directive, and functional modules are commonly overlapping. Previous module de-

tecting methods in directed networks generally either ignore the link directions or divide a node into 

only one module. A rising challenge is how to discover the overlapping functional modules in a di-

rected network. To overcome this challenge, in this study, a new algorithm based on the link similarity 

was developed, which can be used in TRN. A new measure of link similarity and a new modularity 

Qod were introduced. The proposed algorithm was applied to the Escherichia coli TRN. The identified 

modules were confirmed by the function annotations of genes. The experimental results show that the 

identified modules approximately correspond to practical modules in terms of function annotations.  

Additionally, the performances of this study’s method were compared with two previous classic al-

gorithms. The quantitative comparison of consistency, intersection, and overlap revealed that this 

study’s method outperforms the other previous competing algorithms. The results show that the pro-

posed method is efficient for discovering the overlapping function modules of large-scale directed 

networks. However, its full potential remains unexplored. The accuracy rating of the identified results 

was a bit lower than expected. In this study, the work primarily focused on the highly overlapping 

module structure of complex networks, but the hierarchy that organizes these overlapping modules 

holds great promise for further study. 
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