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Abstract. Plaque assaying, measurement of the number, diameter, and area of plaques in a Petri dish image, is a standard 
procedure gauging the concentration of phage in biology. This paper presented a novel and effective method for implement-
ing automatic plaque assaying. The method was mainly comprised of the following steps: In the training stage, after pre-
processing the images for noise suppression, an initial training set was readied by sampling positive (with a plaque at the 
center) and negative (plaque-free) patches from the training images, and extracting the HOG features from each patch. The 
linear SVM classifier was trained in a self-learnt supervised learning strategy to avoid possible missing detection. Specifical-
ly, the training set which contained positive and negative patches sampled manually from training images was used to train 
the preliminary classifier which exhaustively searched the training images to predict the label for the unlabeled patches. The 
mislabeled patches were evaluated by experts and relabeled. And all the newly labeled patches and their corresponding HOG 
features were added to the initial training set to train the final classifier. In the testing stage, a sliding-window technique was 
first applied to the unseen image for obtaining HOG features, which were inputted into the classifier to predict whether the 
patch was positive. Second, a locally adaptive Otsu method was performed on the positive patches to segment the plaques. 
Finally, after removing the outliers, the parameters of the plaques were measured in the segmented plaques. The experimental 
results demonstrated that the accuracy of the proposed method was similar to the one measured manually by experts, but it 
took less than 30 seconds. 
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1. Introduction 

Viral plaque is a visible structure formed by phage infection and propagation within a cell. Reliable 
segmentation of plaque from the image of a Petri dish is an essential task in many virological and im-
munological studies, and it is required for subsequent plaque assay such as detection, separation, puri-
fication of phage, and phage counts [1]. Particularly, the parameters such as the number, diameter, and  
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area of plaques are needed to accurately measure for further comparison or classification of plaques. 
Figure 1 shows three representative images of Petri dishes for plaque assay, photographed by different 
virologists [2,3]. The typical plaque developed by a phage is the round and relatively bright region in 
the image of the Petri dish. However, incomplete or clustered plaques make plaque segmentation a     
difficult task. Complications also arise when plaques are juxtaposed or connected to one another, in-
creasing the rate of over-segmentation or under-segmentation. Furthermore, common parameters like 
number, diameter, and area of plaques are still measured manually. Figure 2 shows how a virologist 
measures the diameters of plaques [2,3]. Each short blue line representing the diameter of a virus pla-
que, which is manually drawn on each plaque, is measured. The long blue line indicating the diameter 
of the Petri dish is also drawn for estimating the diameter ratio between the plaque and Petri dish. Dur-
ing the stage of phages infecting cells, the virologist faces dozens of images of Petri dishes and meas-
ures the plaques one by one. This is inarguably a tedious, error-prone and time-consuming process. 
Therefore, an automatic plaque detection, segmentation, and measurement system is urgently needed. 

Numerous methods are described in literature, among which the grey level threshold is the most 
commonly used method. For example, Kate, et al. suggested using a flatbed scanner to implement the 
high throughput virus plaque quantitation, where the identification of plaque depends on a manually 
set threshold [4]. Moorman et al. proposed a segmentation method by using the Otsu threshold and 
morphological transformation on the Petri dish for exacting plaques, but it is sensitive to the low con-
trast and object reflections [5]. Zhang et al. proposed a similar method by applying a modified Otsu 
for segmentation of plaque after image pre-processing [6]. Clarke et al. presented an automated thre-
shold method for automated counting of bacterial colonies in a low-cost and high-throughput process 
[7]. Dahle et al. suggested automatically counting mammalian cell colonies by means of a user inter-
vention to set the needed grey level threshold [8]. Some researchers also report using a grey level thre-
shold algorithm to extract the region of interest (ROI) and a watershed algorithm for colony segmenta-
tion. Here, a special image acquisition apparatus is required [9–11]. Other methods, including edge 
detection [12] and Hough transformation [13], are also implemented in cell colony counting and mi-
croscopic cell detection. However, with the increasing demand of fine measurements of plaque, a ma-
chine-learning-based technique is desirable for accurate detection and segmentation of plaque.

In this paper, an effective and novel method for the detection and segmentation of plaques is pre-
sented by means of histogram of oriented gradient (HOG) features [14,15] and support vector machine 
(SVM) [16]. This method is comprised of the training and the testing stage. In the training stage, the 
images are pre-processed for noise suppression. Then, the initial training data is set up by sampling the 
positive training patches (with a plaque at their centers) and negative training patches (plaque-free) 
from the training images, and extracting the HOG features from each training patch. Third, the linear 

  
Fig. 1. Illumination of the image of Petri dish for plaque assay. Fig. 2. Illumination of how the diameters 

of plaques are measured manually. 
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Fig. 3. The pipeline of the proposed automatic plaque assay system. 
 
SVM classifier is trained in a self-learnt supervised learning strategy to avoid possibly missing detec-
tion. Specifically, the training set which contains positive and negative patches sampled manually 
from training images is used to train the preliminary classifier. Then, the preliminary classifier will 
exhaustively scan the training images by means of sliding window to predict the label for all the unla-
beled patches. The mislabeled patches are evaluated by experts and relabeled. Finally, all the newly 
labeled patches and their corresponding HOG features are further added to the initial training set to 
train the final classifier. In the testing stage, given an unseen image, a sliding-window technique is 
utilized to localize the potential patch and calculate the corresponding HOG feature, which is inputted 
into the trained classifier to predict whether the patch is positive. Then, a local adaptive Otsu method 
is performed on the positive patches to segment the plaques [17]. Finally, after sifting the segmented 
plaques (for eliminating outliers) according to the heuristic standards, the parameters, such as number, 
diameter, and area of the plaque, are automatically measured with precision and speed, compared to 
those done manually by experts.  

This paper is arranged as follows: After presenting technical details in Section 2, and providing ex-
tensive evaluation on three data sets in Section 3, the paper is concluded in Section 4.

2. Methodology 

Figure 3 illustrates the pipeline of the proposed automatic plaque assay system. In the training stage, 
after pre-processing the training images, the initial training set was readied by sampling the positive 
patch (with a plaque in the center) and negative patch (plaque-free) from the training images, and ex-
tracting the HOG features from each patch. Then the training set was used to train the preliminary 
classifier which was harnessed to exhaustively search the training images to predict the labels for the 
unlabeled patches. The mislabeled patches, aka false positive and false negative patches (denoted as 
‘hard patches’), were diagnosed by experts and relabeled. All the newly labeled patches were further 
added to the initial training set to obtain an augmented one which, finally, trained the final classifier.  
In the testing stage, after pre-processing the test image, the HOG features were first obtained in the 
sliding window, and then inputted into the classifier to predict whether the patch was positive. Once 
the positive patch was detected, the local adaptive Otsu method was applied to the detected patch for 
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segmentation of plaque. Finally, after removing the outliers, such as the incomplete or clustered pla-
ques, the valuable parameters such as number, diameter, and area of the plaques were automatically 
measured in the remaining segmented plaques.  

2.1. Pre-processing image and extracting HOG feature 

In this study, the stained Petri dish for the plaque assay was captured as a color or grey image. For 
standardizing the whole procure, the colorful images were converted to the grey image, and all images 
were scaled to the same size, i.e., 800×800, for both efficiency and accuracy. Since there existed 
strong interference and noise, an image preprocessing method, a pixel-wise adaptive Wiener filter with 
neighborhoods of 6-by-6, was applied to filter the image. Figures 4(c) and 4(d) show a more smooth 
image  after applying the Wiener filtering on the original image, as seen in Figures 4(a) and 4(b). Then, 
based on the enhanced image, better HOG features were obtained to distinguish plaque from culture 
medium. 

The HOG, a popular feature descriptor, was first used to calculate the occurrence of gradient direc-
tion in the local patch of an image. It captured edge and gradient structures, which are characteristic of 
local shapes, while it performed photometric and geometric transformations [14]. In this study, the 
image was denoted as  with an image size of  , where  and y were the pixel position. 
The HOG features were extracted in the following steps [15]:  

Step 1: After calculating the gradient  and  along x- or y- direction of the image, 
, the orientation  and the magnitude  of each pixel in the image were computed. 
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(a) (b) (c) (d) 

Fig. 4. Illustration of the effects of the adaptive Wiener filter. (a), (b) Results after converting to greyscale image. (c), (d) 
Results after applying Wiener filter. 
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(a)   (b) (c) (d) 

Fig. 5. Three positive training patches and their HOG features are shown in columns (a) and (b), respectively. Also, three 
negative training patches and their HOG features are presented in columns (c) and (d), respectively. 

 
Step 2: The image was divided into small connected regions, called cells, and the histograms of gra-

dient directions or edge orientations in each cell were calculated. Each pixel contributed a weighted 
vote for orientation. In the implementation, each cell size was 4×4 pixels, and the orientation (0-180 
degree) was separated into 9 histogram bins equally. 

Step 3: The 2×2 cells were combined into a block whose size was 8 8 pixels and histogram norma-
lization was performed on the block. Each patch was composed of 6 6 blocks and the size of patch 
was 48 48. The descriptor was the vector of all components of the normalized cell responses from all 
of the blocks in the patch. Finally, a 4464-dimentional vector, denoted as , described the feature of 
the k-th patch.  

In this way, the HOG features were extracted from both the training and testing patches. Typical ex-
amples are shown in Figure 5 to illustrate the pattern of the positive and negative patches. 

2.2. Training linear SVM classifier 

Support vector machine, SVM, is a widely used supervised learning model for data analysis and pat-
tern recognition. SVM finds a hyperplane or a set of hyperplanes to separate data points and maximize 
the distance to the nearest data point of any class in a high-dimensional space [16]. Here, a linear SVM 
was adopted to train the data since linear SVM works efficiently with high dimensional data and has 
relatively less computational complexity compared to other known SVM models [18]. The maximum 
margin hyperplane, , is found according to the quadratic optimization problem: 

 

,    subject to   , (5) 
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(a) (b) 

Fig. 6. Illustration of the detection by the learned classifier. (a) Result using the learnt classifier. (b) Result after performing 
the window fusion. 

 
where  and  define the hyperplane,  ,  is the tradeoff constant, 
and  is the number of training patches. Then, the classifier is trained as follows: 

We also implement SVMs with other kernel functions, such as RBF and polynomial, and compare 
them with the linear kernel [19]. The RBF kernel is defined as 

 

 (6) 

 
where  is recognized as the squared Euclidean distance between the two feature vectors 
while  is a free parameter. For the degree-d polynomials, the polynomial kernel is defined as 
 

 (7) 

 
where c is a free constant. 

We implement a self-learnt supervised learning strategy to train our classifier. Concretely, the clas-
sifier is trained as following. First, patches with plaque at their center were sampled and labeled from 
each training image as the positive training samples by experts while plaque-free patches were similar-
ly sampled and labeled from each training image as the negative training samples. And all these 
patches formed the training set. Second, The HOG feature of each patch was extracted as a descripting 
vector and a 10-fold cross-validation was performed to assess the accuracies (precisions, recalls and 
AUC). And the preliminary classifier was trained. Third, the preliminary classifier was used to predict 
the labels for all unlabeled patches sampled by means of sliding window on the training images. The 
mislabeled patches, aka false positive and false negative patches (denoted as ‘hard patches’), were di-
agnosed by experts and relabeled. Fourth, all the patches were added to the initial training set to con-
struct an augmented one and another round of 10-fold cross-validation was performed to assess the 
improvement by adding unlabeled patches. Finally, the final classifier was trained using the aug-
mented training set. Specifically, based on the LIBSVM [18], an easily applied SVM library, a soft 
linear SVM classifier was trained in the augmented training set. Figure 6(a) shows the detected 
patches surrounded by red rectangular using the trained classifier. 

2.3. Detecting plaques 

The sliding-window technique was utilized to search exhaustively for positive patches. A fixed-size 
rectangular window (48×48) was used to scan the image with the stride of 12 rows. The HOG features 
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were extracted from the window and inputted into the learnt classifier, and then a prediction whether 
the patch was positive was returned. 

Usually, multiple detections of the same plaque were simultaneously presented. Accordingly, a 
window fusion method which combined overlapping detections into a single detection was needed. 
Similar to the method described in [20], the set of overlapping detections were partitioned into disjoint 
subsets. Then, two detections were classified into the same subset if their overlapping area was larger 
than 60% of the area of either detection according to Eq. (6). Finally, each subset yielded a single final 
detection. Figure 6(b) shows the patches after performing the window fusion. 

 

>0.6, or,  .  (8) 

2.4. Segmenting plaques by locally adaptive Otsu method 

The Otsu method is an automatic image threshold method which computes the optimum threshold 
separating a grey scale image into two classes so that their combined spread (intra-class variance) is 
minimal and converts the image into a binary image [16]. Here, a local adaptive Otsu method was per-
formed on each patch, which was predicted as being positive. Because of the relatively small photo-
metric transformation in these local regions, plaques can be well segmented without implementing an 
illumination correction beforehand. Figure 7 shows the comparison between applying the adaptive 
Otsu method in each sliding window (Figures 7(a1) and 7(a2)) and applying it in each positive patch 
predicted by the classifier (Figures 7(b1) and 7(b2)). It was obvious that this method had better per-
formance in segmentation of plaque because the learnt classifier eliminated most of the false positive 
patches.  

2.5. Rejecting outlier 

Since there were incomplete or clustered objects in the segmented image, heuristic outlier rejection 
rules were adopted to sift plaques. First, a flood-fill algorithm was applied in the segmented binary 
image to calculate the size, centroid, major axis length, and minor axis length of each segmented pla-
que. Second, the noising plaques were rejected, such as the objects which were out of the Petri dish 
because their centers were farther away from the image center than the radius of Petri dish. Third, the 
detected plaques whose major axis divided by minor axis was greater than 2 were rejected since they 
were either incomplete or combined with multiple plaques. Fourth, the combined multiple plaques 
whose area was 2 times more or 0.5 times less than the mean area calculated were removed from the 
remaining plaques. Fifth, the detected results which meet the standard described in Eq. (7) were re-
moved. This meant that the detected result could be either deformed plaques or false positive results 
because the shape of the detected result deviated from a circular shape.  

 

 (9) 
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Fig. 7. The segmented results applying the adaptive Otsu method in each 
sliding window (a1) and the one performing locally adaptive Otsu method 
on each detected patch by the learnt classifier (b1). (a2) and (b2) are the 
ones overlaying the segmented results on the original images. 

Fig. 8. Illustration of the results after 
applying outlier rejection in Fig. 7(b1). 
The segmented result is in (A) which is 
overlaid in original image (B). 

 
The remaining plaques (shown in Figures 8(A) and 8(B)) were enough to easily and accurately es-

timate the statistic parameters of virus plaques, such as the number, diameter, and area for further 
study by virologists and immunologists. 

3. Experimental results 

The proposed method was evaluated by a database which was composed of various images with dif-
ferent image sizes and colors photographed by different virologists. Concretely, three virologists pro-
vided their data, which are described as following: The data set 1 contained 8 colorful images with 
sizes of 787×787, and the diameters of the plaques of each image were measured by the virologist [2]. 
Data set 2 included 5 colorful images with sizes of 1803×1803, and the diameters of the plaques of 
each image were also measured by a specialist. Data set 3 was a pack of 3 grey images with sizes of 
709×709 and the diameters of the plaques were presented as a relative value to a control image [3]. 
The manual measurements by the experts can be used as ground truth to evaluate the performance of 
this method. Here, the results by adaptive Otsu method are provided, based on a sliding window since 
it is extensively applied in the segmentation of plaque or cells. During the implementation of adaptive 
Otsu method, the image preprocessing, size of the sliding window, and outlier rejection are kept as the 
same as outlier method. 

With 16 images in the database, they were randomly separated it into two subsets, the training set 
and the testing set. Each set contained 8 images. This division ensured that both sets contained an 
equal amount of cases from the above three data sets. Images in one set were detected and segmented 
with the images in the other set as training set, and vice versa. Then 400 positive patches and 400 neg-
ative patches were sampled by experts from 8 training images totally and the corresponding HOG fea-
ture for each patch were used to train the classifier according to the method in Section 2. The perfor 
 

Y. Mao et al. / Detection and segmentation of virus plaque using HOG and SVM: Toward automatic plaque assay3194



  

  
Fig. 9. Illustration of the performance of the learnt SVM classifier with three different kernel functions, such as linear, 
RBF and polynomial kernel. 

 
mance of detecting plaque by the classifier and segmenting plaque by the locally adaptive Otsu me-
thod was evaluated in the testing set.  

The parameters of precision and recall were used to evaluate the method quantitatively and defined 
as follows:  

 

,      . (10) 

 
Here, TP, FP, and FN denote true positive, false positive and false negative, respectively. Also, for 

showing the reasonability of the method, mean diameter and number of plaque for each image from 
three data sets were calculated to quantitatively compare with the one manually measured by experts. 

The SVMs with different kernel functions, such as linear, RBF and polynomial kernel, were imple-
mented and compared. The parameters of these kernel functions were all of the default values of 
LIBSVM, where C=1 in Eq. (5), =1 in Eq. (6), c=0 and d=3 in Eq. (7) [18].  

All the experiments were implemented on an Intel Core i7 2.7-GHZ CPU laptop with 6GB RAM by 
MATLAB 2013b. Given a trained classifier, the running time from scanning the testing image using 
sliding-window to outputting quantitative and qualitative results was less than 30 seconds. 

Figure 9 shows the ROC curves and the comparison of the running time of the SVMs with three dif-
ferent kernels such as linear, RBF and polynomial kernel, respectively. For example, the AUC values 
of the classifier with linear, RBF and polynomial kernel were 0.998, 0.999 and 0.996, respectively 
while the corresponding time taken for training classifier and detecting the plaque patches in a test im 
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Fig. 10. Segmentation results by this method and a 
locally adaptive Otsu method, where Row (a) 
represents three original images; Row (b) is the 
corresponding segmented results by this method; 
and Row (c) is the corresponding segmented results 
by the adaptive Otsu method, where validated pla-
que is white. 

Fig. 11. Comparison of the mean diameter of the plaque for each 
image from the three data sets by expert manually, this method, 
and the adaptive Otsu method. 

 
age were 34.86 sec, 185.00 sec and 377.07 sec, respectively. The linear kernel which well balanced the 
accuracy and efficiency was the optimal choice among three kernels.  

Based on the detected patches, Figure 10 visually illustrates the segmentation results by this method. 
The isolated plaques were accurately recognized in white, and the rejected regions were labeled as 
black. Here, the original images captured by three virologists, the segmented results by this method, 
and the locally adaptive Otsu method are shown in the row of Figures 10(a), 10(b) and 10(c), respec-
tively. It is obvious that this method can provide more reliable results because the segmentation was 
only applied in the positive patches detected by learnt classifier, which removed most of false positive 
patches. Figure 11 shows the mean diameter for each image from the three data sets by experts ma-
nually, this method, and the adaptive Otsu method, respectively. Table 1 shows the mean diameter and 
standard deviation for each data set by expert manually, this method, and the adaptive Otsu method, 
respectively. For each image, it can be seen that mean diameter by this method was basically consis-
tent with the one measured by an expert, while the one by the adaptive Otsu method was very different 
from the one measured by expert. For all images, the mean diameter by our method is 32.07 pixels, 
which was very similar to the one measured by the expert, i.e., 30.53 pixels, where the mean diameter 
using the adaptive Otsu method was 35.86 pixels. Regarding the results measured by experts manually 
as ground truth, Table 2 compares the precision and recall value for the three data sets between this 
method and the adaptive Otsu method. For total images, the precision and recall values were 96.12% 
and 97.28% for this method, while the corresponding ones by the adaptive Otsu method were 97.42% 
and 78.27%, respectively. Table 3 shows the number of plaque in the data set 1 detected by this me-
thod and the adaptive Otsu method since only this data set provided the number of plaque of each im-
age. The mean numbers of plaque in data set 1 were counted as 47, 44, and 39 by the expert, this me-
thod, and the adaptive Otsu method, respectively. It indicated that this method can find similar num-
bers of plaque by comparison with the one by the expert. Here, the number of plaque in the first image 
(im1 in Table 3) was 41 according to the expert, which was very different from the 29 counted by this 
method. The reason was that this method removed the juxtaposed plaques, which are counted 
by the expert. The results showed that:  The performance of this method was very similar to the one  
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Table 1 

Comparison of the mean diameter and standard deviation of the plaque for each data set by expert manually, this method, and 
the adaptive Otsu method (Data layout: mean±std. (Unit: pixel)) 

 Data set 1 [2] Data set 2 Data set 3 [3] Total data 
Manual 26.32±5.37 30.24±6.53 35.03±10.35 30.53±7.15 
Our method 26.86±4.82 31.88±8.20 37.47±10.63 32.07±7.95 
Adaptive Otsu 30.91±6.09 36.36±7.87 40.30±8.47 35.86±8.13 

 
Table 2 

Comparison of the precision and recall value for all of the images in each data set by this method and the adaptive Otsu me-
thod when regarding the results measured by experts manually as ground truth (Data layout: mean±std. Unit: %) 

 Data set 1 [2] Data set 2 Data set 3 [3] Total data 

Precision Our method 98.26%±0.83 92.45%±3.67 98.57%±1.93 96.12%±3.93 
Adaptive Otsu 97.07%±2.05 97.56%±3.09 98.48%±1.31 97.42%±2.54 

Recall Our method 96.72%±1.24 98.22%±1.55 96.91%±0.94 97.28%±1.52 
Adaptive Otsu 81.97%±11.08 72.73%±15.77 79.27%±4.31 78.27%±13.56 

 

Table 3 

Number of plaque for each image from data set 1 [2] detected by expert manually, this method, and the adaptive Otsu me-
thod. 

Data set 1 [2] Im1 Im2 Im3 Im4 Im5 Im6 Im7 Total image 
Manual 41 44 44 50 50 50 50 47 
Our method 29 48 57 48 50 41 40 44 
Adaptive Otsu 27 40 38 42 41 46 39 39 

 
by the expert, and far better than the adaptive Otsu method; This method was enough to accomplish 
the accurate plaque assay.  

4. Conclusion 

This paper presented a virus plaque detection and segmentation method based on HOG and SVM. 
After preprocessing the original image by the Wiener filter, the training patches were randomly se-
lected from the images, and the HOG features were extracted from the corresponding training patches. 
The set of training patches and their corresponding HOG features were used for training the initial li-
near SVM classifier, which was harnessed to scan the training images exhaustively to predict the la-
bels for the unlabeled patches. The mislabeled patches were diagnosed by experts and relabeled. Then, 
all the newly labeled patches were added into the initial training set to obtain an augmented one which 
trained the final classifier to detect the plaque patch in the testing image. Once the plaque patches were 
detected, a locally adaptive Otsu method was used to segment the plaque from the patch. Extensive 
experimentation showed that the method was feasible in detecting and segmenting plaques and the 
performance was satisfied by comparing it to the ones measured by experts manually. In conclusion, 
this method is adequate for plaque assay analysis and meets the research demands of virologists. In the 
future, there are plans to enhance the performance of this method by resolving the problems of over-
segmentation or under-segmentation. 
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