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Abstract. Lung vessels often interfere with the detection of lung nodules. In this paper, a novel computer-aided lung nodule 
detection scheme on vessel segmentation is proposed. This paper describes an active contour model which can combine im-
age region mean gray value and image edge energy. It is used to segment and remove lung vessels. A selective shape filter 
based on Hessian Matrix is used to detect suspicious nodules and remove omitted lung vessels. This paper extracts density, 
shape and position features of suspicious nodules, and uses a Rule-Based Classification (RBC) method to identify true posi-
tive nodules. In the experiment results, the detection sensitivity is about 90% and FP is 1/scan. 
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1. Introduction 

Lung nodule is important clinical manifestation of lung cancer in Computed Tomography (CT) im-
age. Its two-dimensional shape is circular structure and three-dimensional shape is spherical structure. 
The lung CT image contains blood vessels, trachea, pleura, bone, and soft tissues etc, which can cause 
interference on lung nodules detection. Especially because lung vessel density, location and shape are 
all similar to nodules, radiologists usually distinguish them by evaluating the relevance of a series of 
CT images. However, it is very difficult for lung cancer CAD system. 

Most of lung nodule detection methods are roughly classified into two categories: some methods are 
based on the image intensity, and the other methods are based on the model. The former often includes 
multiple threshold [1], clustering [2] and mathematical morphology, etc. [3]. The latter often includes 
multilevel binomial logistic prediction [4], object-based deformation [5] etc. 

 Lung nodule computer-aided detection is an ongoing research topic [6]. One major difficulty is that 
the lung nodules are usually located at the edge of vessels. Because they have similar CT values and 
the lung vessels tree’s topology structure is very complex, the disturbance of lung vessel usually leads 
to the detection of false positive nodules. For this problem, the proposed method is summarized as fol-
lows. 

− The lung vessel segmentation scheme is proposed based on an active contour model. 
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− The suspicious nodule detection algorithm is proposed based on a selective shape filter, and the 
omitted vessel areas in the last step can also be filtered based on the algorithm. 

− Several important nodule features are extracted and a simple and effective feature classifier is 
used.  

2. Methods 

2.1. Lung vessel segmentation 

The lung parenchyma segmentation scheme has been developed and implemented by the authors in 
[7]. Because the topological structure of lung vessel tree is complex, an active contour model is pro-
posed and the level-set method is used to implement it. Existing geometric active contour models in-
clude only image region or edge energy, such as Chan-Vese model [8], CURVES model [9] etc. Our 
method combines them together. 

2.1.1. Region mean energy 
Firstly, the two-dimensional Chan-Vese model is simplified. Secondly, the level set method is used 

to solve energy minimization problems, and the curve curvature calculation is changed to compute 
surface curvature. Finally, with optimizing the evolution formula, the final image segmentation con-
tour C is computed. 

Suppose the domain Ω of image I(x,y) is divided into the object and background regions. They are 
two homogeneous regions. The energy function of Chan-Vese model is defined in Eq. (1). 
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Where c+ and c−  are the mean gray value of the object and background regions separately, 

0μ > , λ + , - 0λ >  is the weigh coefficient. 
The original image I(x,y) is divided into the object and background regions by contour C. C1 and C2 

are mean gray value of the object and background region, respectively. Eq. (1) is simplified into Eq. 
(2). 
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The first entry is energy fitting of image region, and the second one is geometric constraint. Let 

curve C as short as possible. α , and γ is constant, ds represents arc-length micro element. Therefore, 
the E∇ ’s variation problem is converted into computing the corresponding surface evolution. The evo-
lution equation is: 
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where IH  represents the surface curvature. When the curve evolution stops, E∇ = 0, thereby the opti-
mal segmentation results are obtained.  

2.1.2. Edge energy  
Ix and Iy represents the first derivative in the horizontal and vertical direction respectively, I(x,y) rep-

resents the original image. The image gradient direction vector is defined as: 
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The vertical vector is defined as: 
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Let Iηη be the vertical vector, Iεε be the second derivative in the image gradient direction. The ener-
gy function is defined as: 
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Where n
→

 represents the unit direction vector, Ik  represents the curvature and cΩ  represents the ar-

ea inside C. When 0I nεε

→

= , the Euler-Lagrange extremum is solved based on the variation method. 
Because Eq. (4) is two-dimensional curve evolution function, it must be extended to surface evolu-

tion for 3D medical images segmentation, shown as Eq. (5).  
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where IH  represents surface curvature, S represents surface, da represents surface area, n
→

 represents 
surface unit direction vector. 

2.1.3. Total energy calculation 
The user can select a seed point in the vessel region, and then the initial surface can be obtained by 

the 3D region growing method. But when the initial surface is away from the actual object, it is diffi-
cult to locate the edges of all the objects accurately. Therefore, combining the object’s inside and out 
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(a)                                (b) 

 
(c)                                (d) 

Fig. 1. The lung vessel local segmentation deformation results. (a)-(d) represent different iteration segmentation results re-
spectively, which shows the surface deformation process. 
 
side region is a better solution. The total energy function is defined in Eq. (6), where α is the parame-
ter of edge energy, α is set at 1 in the experiment. 
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The total energy equation is defined as follows.  
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Three-dimensional local vessel segmentation results are shown in Figure 1.  

2.2. Suspicious nodule detection 

Because of the lung vessel tree’s topology complexity (from the lung artery to artery branches near-
ly 17 parts, in diameter ranging from 20 mm to a few millimeters), it is inevitable for some small 
blood vessel branches to be ignored. To solve the problem, the shape filter is developed based on the 
Hessian matrix. Lung nodule is shown as a circular structure in two-dimension, and approximately 
spherical in three-dimension, while the lung vessel’s three-dimensional shape is approximately tubular. 
The developed method can suppress the "tube" shape of vessel, but enhance the “spherical” shape of 
nodule. 

The method constructs nodule and vessel’s math model based on Gaussian function. 
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(a)                                               (b)                                             (c)                                              (d) 

Fig. 2. The suspicious nodule detection results. (a) and (c) are two different original CT images, (b) and (d) are their corre-
sponding nodule detection results, respectively. 
 
where d(x,y,z) represents a sphericity and l(x,y,z) represents a tube in the form of a 3D Gaussian func-
tion, � represents the scale of a sphericity or a tube. Let f(x,y,z) represent the 3D original image, the 
Hessian matrix is defined as following. 
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For the standard sphere, H must be a real symmetrical matrix, fxy, fxz, fyz, fyx, fzx, fzy represents the six 

second derivatives respectively, and they are equal to zero. The three eigen values of H are represented 
as �1, �2 and �3, respectively. The shape filter Zdot  is defined in Eq. (10). 
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The suspicious nodule detection results are showed in Figure 2. 

2.3. Feature extraction and classification 

2.3.1. Feature extraction  
This paper focuses on density, shape and position of suspicious nodules, and extracts the following 

features, including spatial distribution density, sphericity, maximum diameter, volume, CT mean value, 
CT max value and CT min value, etc. 

2.3.2. Feature classification 
A Rule-Based Classification (RBC) method is used to identify true positive nodules [10,11]. The 

theory is described in Eq. (11). For example, for the spatial distribution density, [0.3, 0.6] interval is 
more sensitive to true-positive nodule. For the sphericity, [2.5, 5] interval is more sensitive to false-
positive nodule.  

If Character Satisfy then Classify (11) 
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(a)                              (b)                             (c)                            (d)                            (e)        

      
 (f)                              (g)                             (h)                             (i)                             (j) 

         
 (k)                                       (l) 

Fig. 3. The final nodule detection results. (a) and (f) are two different CT original images; (b) and (g) are radiologist’s diag-
nosis results (black boxes mark); (c) and (h) are the detection results of  literature [1 ] (black circle lines mark); (d) and (i) 
are the detection results of literature [1 ] (black circle lines mark); (e) and (j) are this paper’s detection results (black circle 
lines mark); (k) and (l) are 3D visualization results(black circle lines mark).  

 
Our scheme’s detection results are compared with the detection results in [12] and [13], which are 

shown in Figure 3. It can be found that the detection results of our scheme are more accurate than oth-
ers, and false-positive nodules are significantly reduced. While the other two schemes, the nodule de-
tection results are interfered by lung vessels etc., which is especially apparent in [13]. Figures 3(k) and 
3(l) are the 3D visualization results of detected nodules (marked by black circle). 

3. Experimental results and analysis 

The proposed scheme has been trained on a clinical dataset of 90 CT scans. The detection results 
contain 232 true-positive nodules. The data are randomly split into training and testing datasets, with 
the training datasets containing 45 scans (TP=124), and the testing datasets containing 45 scans 
(TP=108). Each CT image is 512 × 512 pixels, slice thickness is 1-2 mm, and pixel pitch is 0.7 mm, 
the X-ray tube current ranges from 30 to 250 mA. 

To evaluate the CAD systems, this paper computes the detection sensitivity and FPs/scan, which is 
defined in Eq. (12). 
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Table 1 

The detail test results 

Sample Num-
ber 

Nodule Num-
ber 

Detection results 
SEN FPs/scan 

TP FP FN 
33% 55% 97 45 11 90% 1 

 
where N represents the number of scans in testing datasets, TP represents the number of true-positive 
nodules, FP represents the number of false-positive nodules, and FN represents the number of false 
negative nodules. The detail test results are shown in Table 1.  

4. Conclusion 

Because the lung vessels are removed firstly, the proposed scheme improves the detection sensitivi-
ty. The detection rate is about 90% and FP is 1/scan. According to the test results, the detection sensi-
tivity is high and the FP is low. Most of the tissues (blood vessels, pleural, scar, etc.) can be excluded. 
The scheme’s high performance and fast computation time have been applied for clinical diagnosis of 
lung cancer.  
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