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Abstract. To build a patient specific respiratory motion model with a low dose, a novel method was proposed that uses a 
limited number of 3D lung CT volumes with an external respiratory signal. 4D lung CT volumes were acquired for patients 
with in vitro labeling on the upper abdominal surface. Meanwhile, 3D coordinates of in vitro labeling were measured as 
external respiratory signals. A sequential correspondence between the 4D lung CT and the external respiratory signal was 
built using the distance correlation method, and a 3D displacement for every registration control point in the CT volumes 
with respect to time can be obtained by the 4D lung CT deformable registration. A temporal fitting was performed for every 
registration control point displacements and an external respiratory signal in the anterior-posterior direction respectively to 
draw their fitting curves. Finally, a linear regression was used to fit the corresponding samples of the control point 
displacement fitting curves and the external respiratory signal fitting curve to finish the pulmonary respiration modeling. 
Compared to a B-spline-based method using the respiratory signal phase, the proposed method is highly advantageous as it 
offers comparable modeling accuracy and target modeling error (TME); while at the same time, the proposed method 
requires 70% less 3D lung CTs. When using a similar amount of 3D lung CT data, the mean of the proposed method’s TME 
is smaller than the mean of the PCA (principle component analysis)-based methods’ TMEs. The results indicate that the 
proposed method is successful in striking a balance between modeling accuracy and number of 3D lung CT volumes. 
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1. Introduction 

Respiratory motion is a critical aspect behind inaccurate lesion localizations in surgery path 
planning and surgical navigation. Therefore, accurately modeling respiratory motion is crucial for 
better estimating and predicting the organ’s motion so as to improve the speed and accuracy of lesion 
localization [1–3]. 

Different respiratory motion models have been proposed to estimate and predict the motion trends 
of either gross tumor volume (GTV) or the whole lung. Most of these models, however, require a 4D 
lung CT and respiratory signals. 

Different means of converting physical measurements into respiratory signals for respiratory motion 
models have been adopted. Such measurements primarily require that they have a strong relationship 
with the true motion to be estimated and that they can be acquired relatively easily. Some methods 
have obtained respiratory signals by implanting and then tracking one or more small gold marks in the 
target organ or lesion’s vicinity [4,5]. While the accuracy of marker tracking is clinically sufficient, 
the implantation procedure is invasive, and if performed improperly, may cause serious side effects, 
such as pneumothorax. However, some methods have obtained simpler respiratory signals by deriving 
them from higher dimensional data such as a 4D lung CT. These respiratory signals have a relatively 
low temporal resolution [6,7]. Furthermore, a method of acquiring respiratory signals by tracking the 
motion of one or more points on the surface of the chest or abdomen was widely adopted and can be 
done using optical tracking technology. Additionally, these external respiratory signals are particularly 
appealing because they are noninvasive, non-ionizing, low-cost, and can be acquired conveniently 
[2,8,9]. 

The respiratory motion models also require series of CT data. The 4D lung CT was usually acquired 
in cine mode due to the limitations associated with CT technology [7,10–14]. In the process, in order 
to cover the whole lung area, 25, 30, or even more volumes per couch position were needed, and 3 or 4 
contiguous couch positions were scanned for each patient [6,7]. This increases the patient’s radiation 
dose, which can lead to a risk of genetic defects. However, as imaging technology has recently 
undergone rapid development, the CT scanner can implement dynamic imaging of the whole-lung 
under free breathing. 

Therefore, the main objective of this study was to take advantage of this new imaging technology so 
as to acquire a limited number of 3D lung CT images in order to build a patient specific respiratory 
motion model with a low dose in combination with an external respiratory signal. First, the 4D lung 
CT that were used in the study were acquired on a new generation of CT scanner while the 3D 
coordinates of in vitro labeling are measured as an external respiratory signal. Furthermore, a distance 
correlation method was used to build the sequential correspondence between the 4D lung CT and 
external respiratory signal. Subsequently, 4D lung CT deformable registration was performed to 
acquire the 3D displacements for every registration control point with respect to time. The temporal 
fitting was adopted to obtain both the external respiratory signal fitting curve and the control point 
displacements fitting curves. Finally, the motion model was constructed by fitting a linear function 
that related each control point displacement to the corresponding respiratory signal value. 
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2. Materials and methods 

2.1. Data acquisition 

The 4D lung CT volumes that were used for the study were acquired on a Toshiba Aquilion ONE 
320-slice CT scanner using the 'Lung mass perfusion' protocol at the Wuxi No.2 People’s Hospital, 
China. The external respiratory signal was acquired by using a self-developed binocular visual system 
composed of an infrared LED, computer, and two stereo infrared-detecting cameras. 

A 5 mm straw hat infrared LED with a 120° projection angle was attached to a patient’s upper 
abdominal surface as in vitro labeling. The binocular visual system must first be switched on in order 
to determine the sequential correspondence between the 4D lung CT volumes and the external 
respiratory signal. The 3D coordinates of the labeling, denoted as },...,2,1|{ njDD j == , 

),,( jzjyjxj DDDD = , were measured 30 times per second. Ten 3D lung CT volumes 
{ }10,...,2,1| == iII i  of the patient under deep free breathing was continuously acquired at 1.5 

second intervals ( tΔ ) using a volume of 512�512�320 with voxel sizes of 0.677�0.677�0.50 �3. 
Furthermore, the obtained CT volume that corresponds to the full expiration was used as the reference 
volume. Three patient datasets were used in this study, all of which had a 4D lung CT acquisition 
under deep free breathing. 

2.2. Distance correlation method 

From the binocular visual system’s sampling rate as well as from the CT scanner, it can be 
determined that the elapsed time of recording 46 coordinates (45 intervals) of the labeling by the 
binocular visual system is equal to that of obtaining two adjacent 3D lung CT volumes. A distance 
correlation approach was proposed to construct the sequential correspondence between the 4D lung 
CT I and the measured 3D coordinates of the labeling D by calculating the distance measure equation. 
The distance measure equation F was defined as: 
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where rq ( r =1, 2, 3) signifies the voxel sizes corresponding to the x, y, and z directions, respectively. 
Furthermore, }10,...,2,1|{ == iCC i , ),,( iziyixi CCCC = denotes the 3D coordinates of the labeling 
identified in the 4D lung CT. There are 9 intervals ( tΔ ) when acquiring the 4D lung CT I. The 3D 
lung CT volume 1I will match with the 3D coordinate jD by calculating the distance measure equation 
F. Thereby, the sequential correspondence between the 4D lung CT I and the 10 coordinates of the 
labeling is constructed. Figure 1 shows the positions in the respiratory cycle for each 4D lung CT. 
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2.3. Image registration 

The image registration was used to measure the lungs’ motion and deformation. Furthermore, the 
reference volume was nonrigidly registered separately to each of the 4D lung CT using a deformable 
registration method based on point-set-and-intensity [15]. The first registration step was to extract the 
point sets of the lung surface and vessels. Subsequently, the displacement vectors of these point sets 
were acquired through point set registration. Then, the sum of the squared Euclidean distance between 
the displacement vectors of these point sets and the displacement vectors based on the B-spline 
transformation model were minimized as a novel similarity measure to derive the rough 
transformation function. Finally, the rough transformation function was refined by the mutual 
information-based registration method. The B-spline transformation model that was used for the 
deformable registration was defined by a regular control point grid, with each control point having an 
associated 3D displacement. 

This deformable registration method was chosen as it allows the transformation parameters 
themselves (the control point displacements) to be modeled rather than having to model the 
deformation field at each voxel. Furthermore, this registration method is particularly advantageous as 
it possesses a relatively high accuracy and is quickly conducted. 

Prior to registrations, the lung was segmented by using an easy-to-implement automatic approach 
that is based on intensity and morphology. 

2.4. Model fitting 

2.4.1. B-spline-based method 
An approximated B-spline was fitted to the registration results using a nonlinear least-squares 

optimization; in this process, the x, y, and z displacement for every registration control point was 
related to a respiratory cycle position [7]. The positions of the registration results (i.e., the 3D CTs) in 
the respiratory cycle were assigned by a phase-based approach. Although the entire transformation can 
be calculated by finding the displacement of every registration control point at the desired respiratory 
cycle position, it cannot be calculated by finding the displacement of every registration control point at 
any given value of the respiratory signal, which is hardly useful for surgical navigation. 

2.4.2. PCA-based method 
PCA is a method that is used to identify data patterns and then expresses the distinctness and 

 

Fig. 1. The positions in the respiratory cycle for each 4D lung CT. 
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similarities of this data. PCA can be used to compress this data through a dimensionality reduction 
while simultaneously minimizing the loss of information [6]. In the motion model building process, 
PCA is applied on both the internal motion that is described by the displacements of every registration 
control point as well as the corresponding external motion that is described by the amplitude of the 
external respiratory signal or respiratory phase. However, the respiratory phase is difficult to be 
calculated ‘on-the-fly’ and the amplitude of the external respiratory signal is not easily predicted. 
Given these methods’ problems, a novel method using the original respiratory signal value was 
proposed. 

2.4.3. Proposed method 
In this study, the registration results of six 3D lung CT volumes { }8,...,4,3| == iII i  within one 

respiratory cycle were adopted. An approximated B-spline was fitted to each x, y, and z displacement 
for every registration control point separately regarding time, which were obtained from the 
deformable registration of the 3D lung CT using a nonlinear least squares optimization [7]. The B-
spline is similar to that used in the registration but is only one dimensional. 

Using a nonlinear least squares optimization, a second-order Fourier series was fitted to the external 
respiratory signal in the anterior-posterior direction regarding time. The parameter R-square was set to 
0.9990, and the root-mean-square error (RMSE) was set to 0.1241 mm. Furthermore, a larger R-square 
value and a lower RMSE value are associated with a closer respiratory motion curve to the chosen 
function. This is consistent with the theoretical model proposed by Lujan, in which the respiratory 
motion curve is in line with the higher-order cosine function [16]. 

To obtain the corresponding control point displacements at any given respiratory signal value, a 
linear function was fitted for each of the control point displacements that define the B-spline 
transformation, thus relating it to the corresponding external respiratory signal value. Both the control 
point displacements as well as the corresponding respiratory signal value were sampled from the 
control point displacements fitting curves and the external respiratory signal fitting curve, respectively. 

3. Experiments and results 

To quantitatively evaluate the modeling’s accuracy, the error between each landmark in the acquired 
and the corresponding model-generated CT volumes was calculated, which is then defined as the 
target modeling error (TME): 

 

 
Fig. 2. Landmark locations projected onto the same slice in coronal, transverse, and sagittal planes. 
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where k

xd , k
yd , and k

zd are the corresponding x, y, and z coordinates of the k th landmark in the 

acquired CT, and k
Rxd , k

Ryd , and k
Rzd are the corresponding x, y, and z coordinates of the k th landmark 

in the model-generated CT. Furthermore, m is the number of anatomical landmarks, which are 
generated from a semi-automatic landmark annotating system [17]. In this paper, 100 well-distributed 
corresponding landmarks were generated inside the lung domain of the reference 3D lung CT volume 
and the acquired CT volume that was to be estimated using the model. Figure 2 shows an example of 
landmark locations that are marked by green crosses in coronal, transverse, and sagittal planes of the 
reference 3D lung CT volume. The entire little green cross was projected onto the same slice. 

The proposed model’s TME is listed in Table 1 in millimeters. In addition, the type of surrogate 
signal(s), voxel sizes, the number of acquired 3D lung CT volumes (Qty) and used for constructing the 
motion model are also listed in Table 1. 

For comparison, the modeling results (TME) that were obtained by using the B-spline-based method 
and those obtained by the PCA-based method are also given in Table 1. 

From the results displayed in Table 1, the TME of the proposed method is commensurate with the 
TME of the B-spline-based method, whereas the proposed method requires 70% less 3D lung CTs. 
Compared to the PCA-based method that uses the phase of the external respiratory signal, the mean 
and sd of the TME of the proposed method decreased by 58% and 42%, respectively. Similarly, 
compared to the PCA-based method that uses the amplitude of the external respiratory signal, the 
mean of the TME of the proposed method decreased 41% despite the 7% increase in the sd of the 
proposed method’s TME. In general, when using similar amounts of 3D CT volumes, the mean of the 
TME of the proposed method is smaller than the mean of the PCA-based methods’ TMEs, which 
indicates that the proposed method has a higher modeling accuracy. The above results indicate that the 
proposed method is successful in striking a balance between modeling accuracy and number of 
required 3D CT volumes. 

Table 1 

Results from evaluating the motion models. The mean and the standard deviation (sd) are given for the target modeling 
error (TME) 

 Type of surrogate signal (s) Voxel sizes (mm) 
Qty TME (mm) 

acquired used mean sd 

B-spline-based method respiratory phase 0.68×0.68×1.5 20 20 2.15 0.50 

PCA-based method 
respiratory phase 

0.97×0.97×2.5 20 10 
5.08 0.77 

amplitude 3.63 0.42 
Proposed method single signal 0.677×0.677×0.5 10 6 2.14 0.45 
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4. Conclusion 

In this paper, a novel method for constructing a patient specific respiratory motion model with a low 
dose was proposed. The modeling’s accuracy was quantitatively validated using landmarks, and the 
results of which suggest that the TME of the proposed method is commensurate with the TME of the 
B-spline-based method; however, the proposed method requires 70% less 3D lung CTs. In general, 
when using similar amounts of 3D CT volumes, the mean of the proposed method’s TME is smaller 
than that of the PCA-based methods. Usually, the smaller the voxel size used in constructing the 
motion model, the smaller the mean TME of the proposed method is. In this study, the proposed 
method is again the superior method as the TME of the proposed method is commensurate with the 
TMEs of both the B-spline-based method as well as the PCA-based method, yet constructing the 
motion model requires the least number of acquired 3D lung CT volumes. Finally, the results indicate 
that the proposed method is successful in striking a balance between modeling accuracy and number 
of 3D CT, and therefore, it is a potentially useful tool for constructing a lung respiratory motion model 
with a low dose that will aid in accurately locating a lesion in surgery path planning and surgical 
navigation. 
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