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Automatic detection of microcalcifications
with multi-fractal spectrum
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Abstract. For improving the detection of micro-calcifications (MCs), this paper proposes an automatic detection of MC sys-
tem making use of multi-fractal spectrum in digitized mammograms. The approach of automatic detection system is based on
the principle that normal tissues possess certain fractal properties which change along with the presence of MCs. In this sys-
tem, multi-fractal spectrum is applied to reveal such fractal properties. By quantifying the deviations of multi-fractal spec-
trums between normal tissues and MCs, the system can identify MCs altering the fractal properties and finally locate the
position of MCs. The performance of the proposed system is compared with the leading automatic detection systems in a
mammographic image database. Experimental results demonstrate that the proposed system is statistically superior to most of
the compared systems and delivers a superior performance.
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1. Introduction

With the development of efficient and reliable radiological screening techniques for early detection
of breast cancer, mammography plays a crucial role in the increasing breast cancer treatment options
and the survival rate through mass screening. Since the detection of suspicious abnormalities is re-
garded as a fatiguing and time-consuming task, it is difficult for radiologists to make an accurate
judgment from the enormous number of mammograms [1]. Thus, automatic detection of abnormalities
systems has been proposed to help radiologists reveal breast cancer. Recent studies have demonstrated
that these systems indeed achieve more accuracy and consume less time in breast cancer detection and
serve as an auxiliary tool for radiologists to make final decisions [1-3].

An important symptom of breast cancer is the presence of tiny granule-like deposits of calcium
named micro-calcifications (MCs) which appear on the mammogram as small bright spots and are
characterized by their size, texture and high spatial frequencies [1]. Various approaches [1-3] have
been applied to MC detection according to these characteristics, and this paper concentrates more on
texture [4], one of the most important characteristics for MC detection.

However, the complex texture of MCs could not be quantified mathematically until Mandelbrot first
introduced the concept of fractal [5]. The proposed system contains two major phases: i) Mammogram
preprocessing. Some preprocessing methods of the mammogram are employed to enhance, segment
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and highlight the MCs according to their small size and high spatial frequencies. ii) Classification. The
key to locating MCs is to create a criterion for classifying the suspicious abnormalities. Multi-fractal
spectrum is a concept related to certain principal properties of fractals: self-similarity and scale-
invariance. The efficient description of multi-fractal spectrum makes it possible to find out such a crite-
rion. Evaluations in a database validate that the proposed system is statistically superior and applicable.

The rest of this paper is organized as follows. Section 2 illustrates the procedure of mammogram
preprocessing. The classification method is presented in section 3. Results and discussion are rendered
in section 4. At last, the conclusion is drawn in section 5.

2. Mammogram preprocessing with relevant image processing methods

The original mammogram has no salient presence of MCs resulting from their small size and other
tissue masking. Direct detection is bound to consume much time, so a reasonable integration of image
processing architecture illustrated in Figure 1 is applied to highlight MCs.

On small data regions rather than the entire mammogram, histogram equalization flats the peak of a
histogram and redistributes the pixel value. This tuning mammogram intensity enhances the contrast
of mammograms and clarifies the high spatial frequency texture for later filtering.

In order to reserve high spatial frequency information, Gaussian high-pass filter F(x, y) is employed
to dispose of the enhanced mammograms,

F(x,y)=1-exp 20 (1)

where (x, y) is the pixel of mammogram, /(x, y) is the threshold of high-pass filter altering with pixel,
and /, is an average threshold. Gaussian high-pass filter facilitates the region of interest (ROI) segmen-
tation because of the removal of unrelated information.

Sobel edge detection is adept at segmenting tiny region like MCs. The method is based on the prin-
ciple that the absolute value of the image gradient is numerically determined for each pixel in the
mammogram. If the absolute value of the gradient at a particular location is greater than a certain
threshold, such point will be designated to a candidate edge point. Once these candidate edge points
constitute a closed curve, Sobel edge detection results in the distinct boundary of MCs from other tis-
sues.
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Fig. 1. Architecture of mammogram preprocessing.
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Fig. 2. Output mammograms from (a) Original mammogram, (b) Histogram equalization, (¢) Gaussian high-pass filter and

(d) Sobel edge detection.

The whole output mammograms are gradual in presence of MCs, the position of which are marked
in Figure 2. Considering the high spatial frequencies and small size, the preprocessing methods men-

tioned above reveal MCs and furthermore establish a substantial foundation for locating MCs.

3. Classification based on multi-fractal spectrum comparison

The method of ROI classification plays a crucial role in finding and locating the position of MCs. In
order to create a criterion that judges whether ROI contains MCs or not, the multi-fractal spectrum is em-
ployed for classification, the scheme of which is illustrated in Figure 3.
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MCs are highly structured and the complexity of texture is crucially important to distinguish the
MCs from other textures. Texture irregularity and surface complexity is fundamental to MCs. From
this perspective, fractal becomes a powerful and efficient tool to characterize MCs. In practice, com-
plexity is measured by the box-counting method [6], which calculates multi-fractal spectrum with
simplified computation.

First of all, the suspicious regions are divided recursively into some equal boxes and each step con-
stitutes a decomposition scale. In each scale, the decomposed probability of the box is defined by,

P(e)=m;/D . m, )

where m;; is the gray level of one pixel in the box and ¢ is the scale computed by the ratio of box size to
mammogram size.
Furthermore, the partition function 7,(€) is introduced as,

y,(e)=D P (e) =€ 3)

where ¢ is the moment order and 7(¢) is the slope of curve Inyt(¢)-Ine.
Finally, the multi-fractal spectrum S(#), as shown in Figure 3, can be obtained by performing a Le-
gendre transform,

h=dm(t))/ cb, S(h)=ht—10) @

where /4 is the singularity of probabilities.

The training set consists of MCs that are segmented from a mammographic image database. Multi-
fractal spectrums from the training set seem to follow a common trend. In contrast, the deviations between
the multi-fractal spectrums from ROI and the common trend can be calculated by,

D, = ﬁ \/[SR(h)—SC(h)]2+(hR—hC)2 /(2N +1) (5)

where N is the number of moment order, R indicates the suspicious area and C is a common trend.
From the pattern recognition theory, a threshold Dy of the deviation shown in Figure 3 must be chosen
for judging whether ROI contains the calcifications or not. If the deviation is less than the Dy, the sus-
picious region will contain MCs, else it will contain other tissues instead of MCs. Such criterion helps
locate MCs accurately by using multi-fractal spectrum and tuning the value of Dr.
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Fig. 4. (a) Receiver operating characteristic curve (b) Free-response receiver operating characteristic curve.

4. Results and discussion

The proposed system is tested in mammographic image analysis society (MIAS) database [7]. The
MIAS Database has 23 mammographic images that contain MCs. In this paper, 10 images from the
database are used to train the classifier and the remaining 13 images are used to evaluate the effective-
ness of our proposed method. A fivefold cross-validation is performed to determine the threshold Dy
of the classifier along with a receiver operating characteristic (ROC) curve [8]. And 28 positive sam-
ples with MCs and 22 negative samples are randomly into five subsets, four of which are used to train
the classifier while the rest one is used for testing. The curve more approximate to true-positive (TP)
rate axis shows better performance. Obviously in Figure 4(a), Dy = 3.1 has the relatively higher ROC
curve than Dy =2, 3 and 3.2. Compared with many other candidates in ROC, Dy = 3.1 is selected for
classification to ensure better performance.

For quantitative evaluation, free-response receiver operating characteristic (FROC) curves provide a
comprehensive summary of the trade-off between detection sensitivity and specificity [8]. As can be
seen in Figure 4(b), compared with Neural Network [9], SVM [10], and MM-SVM [11], FROC curve
of the proposed system is obviously higher than most of other systems and it is statistically compara-
ble to SVM, which is the most classical and practical method. The TP rate and the FP rate are shown
in Table 1. Clearly, the proposed system has the highest TP rate and lowest FP rate. The evaluation
validates that the proposed system is superior in detection sensitivity, specificity and accuracy.

From Table 2, one can see that the proposed system consumes less training time than relevance vec-
tor machine (RVM) and less testing time than SVM. The trade-off between training and testing time of
proposed system outperforms RVM, which is the improved edition of SVM [11], resulting from prop-
er mammogram preprocessing and simplified computation.

Table 1
Evaluation of the test results
Method Proposed [9] [10] [11]
TP 96.37% 81.7% 95.67% 94.85%

FP 1.91% — 2.24% 2.5%
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Table 2
Computation time of SVM, RVM and proposed system
SVM RVM Proposed
Training time (s) 297.43 2063.20 806.32
Testing time (s) 249.33 30.04 41.05

5. Conclusion

In this paper, an innovative automatic detection system for MCs is presented and verified with MI-
AS database. The proposed system integrates mammograms preprocessing for revealing the tiny MCs
and multi-fractal spectrum for providing a reasonable classification criterion. As a result, the proposed sys-
tem is highly accurate and timesaving in MC detection, which can serve as a helpful and reliable auxil-

iary

tool for radiologists.
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