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Abstract. Graph theory is also widely used as a representational form and characterization of brain connectivity network, as
is machine learning for classifying groups depending on the features extracted from images. Many of these studies use differ-
ent techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform
a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing,
building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and
finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In
order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this
way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the clas-
sifier used.
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1. Introduction

Use of graph theory [1,2] marked a significant step forward in brain connectivity analysis. It has
demonstrated that the brain is a complex network, similar to other large networks, and furthermore,
that it is divided into interconnected sub-networks. The brain’s connectivity network can be shown
through a graph G = (V,E) [3] where V is the graph nodes representing each brain region and E de-
notes the connections or edges between each node or region.

Different characteristics can be extracted from the graph, which make it possible to analyse and
conduct studies on pathologies, differences, etc.

At the same time, a great deal of research has been done on resting state fMRI [4—6]. These studies
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analyze brain activity while the subject is completely at rest but not asleep. Once the most common
images are extracted, Principal Analysis Components (PCA) [7] or Independent Analysis Components
(ICA) [8,9] analyses are run to extract the components that describe brain functions. In this case, the
images from the resting state are used to apply graph theory.

The importance of a good group classification for a pathology and the use of different methods to
create, characterize and classify the graphs are two essential characteristics of these studies [10,11].
This article, therefore describes a tool capable of carrying out these functions for any pathology stu-
died, the images used or the regions of interest analyzed. The graph of the groups studied is obtained
and the most commonly used supervised and unsupervised classifiers are compared to determine
which one is more suitable.

A group of 4D images from fMRI was used to analyze the proposed tool. The images were from a
study on migraine with three groups of subjects: one healthy control group, a group with sporadic mi-
graines and a group suffering from migraine and medication abuse.

Recent studies have shown recurrent errors when conducting fMRI studies [12]. On the one hand,
problems arise when homogenizing different subjects’ graphs to carry out group analysis, which does
not give very reliable results. The statistical analyses conducted [13,14] are also noted as erroneous or
are modified to extract better results, known as double dipping. The tool proposed in this study pro-
vides a method and a set of independent classifiers which can be used to study any given pathology.

Therefore, the purpose of this study is to provide a tool suitable for any pathological study so that
the tool is expected to be one of the most widely used method currently. Furthermore, this tool offers
users a set of results depending on the classification methods used.

2. Material and methods
2.1. Subjects

This study was conducted with images and information collected in another study on migraine and
prescription drug abuse. The subjects were all right-handed and divided into three groups: fifteen
healthy migraine-free subjects (mean age 37, SD: 6.9 years, range 32 to 60, 1 man), twenty subjects
with a sporadic migraine (mean age 47, SD: 7.7 years, range 30 to 59, 0 men, 2 ambidextrous) and
nineteen subjects suffering from migraine and medication abuse (mean age 45, SD: 7.9 years, range 27
to 55, 3 men).

All of the subjects underwent an MRI session lasting approximately 8 minutes. One subject had to
be excluded from the experiment due to claustrophobia.

2.2. Image acquisition

TFE T1 3D, T1 images with high resolution reconstructions of the patients’ anatomy, were used as
the sequence for morphological evaluation. These images did not contain information on the active
regions of the brain but were useful in locating the patients’ neural correlation areas once they were
obtained. A T1 image was made for each patient. It consisted of 250 slices with a resolution of
256x256 pixels, following the Philips format. Echo-Planar Imaging Blood Oxygen Level Dependent
(EPI-BOLD) was the functional sequence used, with the following parameters: TR 2100; TE 29; 30
slices with a thickness of 3 mm; in-plane resolution 3x3 mm; 214 dynamic measurements with a total
sequence duration of 7 minutes and 39 seconds.
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2.3. Brain atlas

The tool has different digital atlases which can be used to know which regions of the brain should
be analyzed. Two of the most well-known are Automated Anatomical Labeling (AAL) [15] and
Brodmann [16]. It also includes the possibility of introducing user-created masks. When using AAL,
the tool allows the user to decide how to use the 116 available regions of interests (ROIs) or 90 ROIs
excluding the 16 cerebellum-related regions [10].

2.4. Preprocessing of fMRI sequences

Previous preprocessing is required for analysis of the images. FMRIB’s Software Library (FSL 4.1)
[17] and some of its tools such as MCFLIRT (Motion correction software), FLIRT or fslmeants can be
used for this purpose. Other tools such as mricron have been used to analyze the atlases proposed.

2.5. Graph analysis characteristics

The method used to elaborate the graph for each subject is similar to that used in other studies [18]
although the tool makes it possible to carry out two types of correlation between brain regions. By us-
ing a conventional correlation or synchronization likelihood (SL) [19], the correlation can be made by
taking other aspects of the signal into account.

Studies on graph theory often use different characteristics such as the number of nodes or node de-
gree. The proposed tool includes the three most widely used, fully described and contrasted characte-
ristics [10]. These characteristics are found in many similar studies, so they are quite relevant to cha-
racterizing the connections between different brain areas. When executing the tool, it automatically
carries out a set of 50 permutations for each subject’s correlations and extracts the corresponding cha-
racteristics so that each subject’s results are standardized.

— Clustering (C): This measures the grouping of the different nodes that form the graph. A high

clustering value indicates that the close connections between brain regions function correctly but
it may indicate a connectivity problem with distant regions.

Ei
R ) (1)

2

— Path Length (L): This examines the distant connections of the graph nodes from the greatest dis-
tances between the nodes found. A high path length value indicates that connections between dis-
tant regions work properly but that a problem may exist between regions where nodes are near
each other.

Li = ﬁziij mm{l”} (2)
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Fig. 1. High-level design of the tool.

— Dispersion (W): This evaluates the connectivity dispersion between different graph nodes [20].

A3)

2.6. Machine learning

The tool has a set of machine learning algorithms [21] to classify the groups entered in the study:
Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Neuronal Networks (NN), K-
Means, K-Nearest Neighbor and AdaBoost.

The authors have chosen the selected algorithms due to the incorporation of supervised (LDA, SVM,
NN y K Nearest Neighbor), unsupervised (K-means) and semi-supervised (AdaBoost) classifiers be-
cause they are the most commonly used.

3. System design
3.1. High-level design

Figure 1 shows a diagram of the high-level design of the tool. It is divided into three large blocks:

1. Preprocess: From the input of the images obtained on the MRI machine, preprocessing is carried
out to avoid errors or discard defective images. Following this, the time series obtained from each
image are provided.

2. Graph theory: Once the time series have been extracted, different graph theory algorithms are ap-
plied, extracting the characteristics needed for later classification.

3. Classifier: When the characteristics have been calculated, this block executes different classifica-
tion algorithms, obtaining the results for each one.

3.2. Low-level design

As shown in Figure 2, the low-level design is divided into the blocks. The following section gives
an in-depth explanation for each block.
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Fig. 2. Low-level design of the tool.

3.2.1. Preprocess

The data from the available fMRI images are entered in the tool. This first step consists of image
alignment and motion correction, which are common problems when capturing images. This process
avoids erroneous results or artefacts in the signals which make them difficult to analyze. Once it has
aligned the images, the system has a 4D image for each subject in the study. The atlases selected are
used to form the regions that will serve as masks in each of the subjects. Therefore, each region of the
atlas is taken to each subject’s individual space, extracting a time series for each region and subject
entered.

3.2.2. Graph theory

Correlations between all the regions for each subject are made from the time series obtained in the
previous step. The system makes it possible to carry out a simple correlation or SL. A symmetric ma-
trix with the results is obtained from the correlations. The rows and columns are formed by the sub-
jects. The system generates the corresponding graph from the matrix. The nodes represent each region
studied and the edges that link the connectivity described in the matrix. Once the matrix has been cal-
culated for each subject, the most relevant characteristics are extracted (C, L, W). In addition to the
calculation for each subject, 50 permutations of each matrix are carried out and the characteristics are
extracted again in order to homogenize the results.

3.2.3. Classifier

The input for this block consists of the characteristics extracted for each subject. And 10 subjects
from one group are taken and 10 healthy subjects are taken as a practice run, leaving the rest as expe-
rimental validation. The third group is analyzed after the practice run, evaluating which of the two
main groups are most similar. The final result is a table comparing the most commonly used algo-
rithms, indicating the percentage of correct answers for each one.

4. Results

Once the tool was developed, a test based on images from a previous study on migraine was elabo-
rated. To do this, a study is inserted in the tool with 90 and 116 regions of AAL areas, simple correla-
tion and SL with these parameters: W = 1, L = 1, M = 6 y Pref = 0:05. All values are standardized
from performing 50 random permutations of the data. Table 1 shows the result of the calculations
made with graph theory. For each group (CON: controls, MIG: sporadic migraine, ABU: medication
abuse), the mean value and the standard deviation of the three characteristics are analyzed (C: Cluster-
ing, L: Path Length, W: Dispersion). The results are shown for all the regions (116) and 90 regions
excluded the cerebellum regions by using the AAL atlas.
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Graph theory results. Features extracted with graph theory. The number of areas used, typical correlation or SL, mean and

F. Jorge-Hernandez et al. / Graph theory for feature extraction and classification

Table 1

standard deviation for each group for each feature are shown.

Charact. Areas CON MIG ABU
M(N/SL) SD(N/SL) M(N/SL) SD(N/SL)  M(N/SL) SD(N/SL)
c 90 1.075/1.069 0.024/0.028 1.08/1.069 0.012/0.026  1.076/1.057  0.013/0.02
116 1.065/1.084 0.02/0.027 1.07/1.09 0.012/0.02 1.066/1.074 0.011/0.021
L 90 1.007/1.044 0.001/0.008 1.007/1.048  0.001/0.007 1.007/1.045 0.001/0.007
116 1.004/1.03 0.001/0.005 1.004/1.032  0.001/0.005 1.004/1.031  0.001/0.004
90 0.995/0.807 0.007/0.018 0.997/0.804  0.001/0.017  0.995/0.8 0.002/0.017
W 116 0.996/0.834 0.004/0.016 0.997/0.828  0.001/0.015  0.9962/0.822  0.002/0.016
Table 2

Classifiers. Results of the classifiers examined by the tool. For each classifier, type of correlation (Normal/SL), the number of

areas, the percentage of correct answers, percentage of each group, the sensitivity and specificity are indicated.

Classifier Corr. %Success %CON %AB Sens. Spec.
LDA 90 50/64.29 66.67/77.78 20/40 0.45/0.56 0.38/0.64

116 21.43/64.29 11.11/66.67 40/60 0.16/0.63 0.31/0.64
SUM 90 79.92/87.18 33.33/77.78 40/40 0.36/0.56 0.38/0.64

116 76.93/87.18 33.33/66.67 40/60 0.36/0.63 0.38/0.64

90 71.43/71.43 100/77.78 20/40 0.56/0.56 1/0.64
NN (1 layer)

116 71.43/64.29 66.67/44.44 100/100 1/1 0.75/0.64

90 78.57/78.57 77.78/100 80/40 0.8/0.63 0.78/1
NN (2 layers)

116 92.86/78.57 88.89/100 100/40 1/0.63 0.9/1

90 85.71/71.43 100/100 60/20 0.71/0.56 1/1
NN (3 layers)

116 85.71/78.57 100/88.89 60/60 0.71/0.69 1/0.84

90 57.14/57.14 88.89/44.44 0/80 0.47/0.69 0/0.59
K -means

116 57.14/64.29 88.89/44.44 0/100 0.47/1 0/0.64

90 50/64.29 33.33/88.89 80/20 0.63/0.53 0.55/0.64
K —nearest

116 57.14/64.29 77.78/88.89 20/20 0.49/0.53 0.47/0.64

90 64.29/57.14 55.56/66.67 80/40 0.74/6.53 0.64/0.55
AdaBoost

116 64.29/64.29 66.67/88.89 60/20.53 0.63/0.53 0.64/0.64

From the data in Table 1, a classification with different classifiers, areas and correlations was car-
ried out. The results are shown in Table 2. Sensitivity and Specificity results are observed. The term
Sensitivity relates to the classifier’s ability to identify disease in sick subjects, while Specificity indi-

cates the classifier’s ability to identify absence of disease.
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5. Discussion and conclusion

The tool proposed can perform the entire process, from taking fMRI images to providing final re-
sults which can be easily interpreted by doctors or specialists. This is an automated process, where the
user only provides fMRI images and chooses the correlations and the best atlas to use.

Studies with subjects suffering from migraine and drug abuse were conducted in order to validate
this tool. The tool performs a complete analysis and proposes various classifiers, some of which pro-
vide 92.86% accuracy (NN), while others provide 87% (SVM). Other studies in other pathologies with
similar machine learning algorithms [21-23] had success rates as between 75% and 87.9%, so the tool
has demonstrated satisfactory results.

The existing differences between classifiers’ results are due to several reasons such as their type
(supervised, unsupervised, semi-supervised) or the difference between classifiers with the same data
which might obtain global or local performance. Some classifiers such as NN can show different re-
sults because of the train’s random procedure.

A more in-depth analysis could be achieved by increasing the number of subjects in each participant
group. However, in the case of subjects with migraines, this task is complicated, because people with
this pathology suffer from the noise generated by the MRI machine.

Finally, regarding the current limitations of the study, the impossibility of combining automatic
classifiers and the complete atlas or a personal correlation use, can be found. In the future, new atlases
and new correlations should be added to improve the results by providing a greater number of va-
riables to enable specialists to analyze the pathologies.
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