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Abstract. Statistical model is essential for constraint-free visual image reconstruction, as it may overfit training data and 
have poor generalization. In this study, we investigate the sparsity of the distributed patterns of visual representation and 
introduce a suitable sparse model for the visual image reconstruction experiment. We use elastic net regularization to model 
the sparsity of the distributed patterns for local decoder training. We also investigate the relationship between the sparsity of 
the visual representation and sparse models with different parameters. Our experimental results demonstrate that the sparsity 
needed by visual reconstruction models differs from the sparsest one, and the l2-norm regularization introduced in the EN 
model improves not only the robustness of the model but also the generalization performance of the learning results. We 
therefore conclude that the sparse learning model for visual image reconstruction should reflect the spasity of visual 
perceptual experience, and have a solution with high but not the highest sparsity, and some robustness as well. 
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1. Introduction 

Decoding perceptual experience from brain activity is a major challenge in neuroscience, as it is 

impractical to specify brain activity for all of the possible states of visual perception. There are many 

early fMRI studies, which have demonstrated that visual features, such as visual object categories 

[1,2], and orientation and motion direction [3,4] can be decoded from fMRI activity patterns by a 

statistical learning classifier. Two recent studies presented that a natural image can be identified 

among a large number of candidate images using the visual encoding model [5,6]. In these fMRI 

studies, statistical “decoder” is trained to learn the mapping between brain activity pattern and a 

stimulus, and is used to predict fMRI activity for visual images. Even more challenging study is visual 

image reconstruction from fMRI activity patterns [7]. To capture the complexity of visual perceptual, 

it decodes visual perception by utilizing retinotopy into an image that is free from the constraints of 

categories. A presented visual image can be inferred given the brain activity consistent with retinotopy 

in the early visual cortex by inverting the receptive-field model [8]. 

A new approach for visual image reconstruction was recently proposed using multivoxel patterns of 

fMRI signals [9]. The stimulus state at each local element was predicted by a decoder using 
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multivoxel patterns, after which all the outputs of each local decoder were combined to reconstruct the 

presented image. The training of each local decoder only needs a small number of samples, as the 

possible states of each local element are fewer than those of the entire image. Another study used a 

learning algorithm, “sparse logistic regression”, for training a local decoder [10]. The estimation of 

sparse parameter avoids overfitting to noisy training data and thereby help on achieving a high 

generalization (test) performance [10]. 

Proper variable selection is widely known to be as critical for prediction as it is for interpretation in 

statistical analysis [11]. Sparse modeling, in which resulting models only use information from a 

relatively small subset of predictive variables, has a strong prediction performance. Learning statistical 

models from fMRI data is particularly difficult, as the training data may easily be overfitted and 

resulting model may generalize poorly. Many predictor selection techniques [12] use a straightforward 

filtering stage, but sparse modeling based methods can combine the selection and modeling states into 

one process, which is usually called as embedded selection. Sparse modeling based methods, such as 

least absolute shrinkage and selection operator (LASSO), compare favorably with non-sparse methods 

on prediction performance because they incorporate multivariate information into the selection process. 

Recently, powerful methods that simultaneously select discriminant voxels and estimate their 

weights for classification have been proposed [10,13,14]. These methods incorporate sparse 

regularization into traditional classifiers, and avoid overfitting by assigning zero weights to be 

assigned to irrelevant voxels. Carroll et al. [14] recommended elastic net (EN) regularization [15] for 

fMRI modeling. 

2. EN model 

In this section, we will formally describe the EN method. Since both the predicted mental states and 

fMRI data are viewed as real-valued time series, the prediction task is formulatecd as a regression 

problem, where individual TRs are seen as independent and identically distributed (i. i. d.) samples, 

the predictive variables (predictors) are the levels of voxel activity , and the predicted variable is the 

mental state . 

EN regularization [15] was first designed to build models that have both sparsity and grouping 

effect using a weighted combination of l1- and l2-norm penalties on a least-squares problem. It can be 

expressed as minimizing the following problem: 

 

( )2 2
( ) 2 1 2, 1 2

1 2
L y Xβ β α λ β λ β
λ λ

= − + +  (1) 

 

where X  denotes an M N×  data matrix, which consists of predictors. Each predictor consists of the 

values of the individual voxel activity levels. Vector y  is the corresponding values for the mental 

state. 

This equation clearly shows that EN becomes equivalent to LASSO [11, 16] when λ2=0 and λ1>0, 

and is equivalent to Ridge regression when λ2>0 and λ1=0. When λ1=λ2=0, the EN problem is simply 

reduced to OLS regression. Carroll et al. [14] underscored that λ1 controls the sparsity of 

representation in the EN model, whereas λ2 controls the robustness of the model. They reported 

robustness as the percent of the total number of unique voxels included in either model that appeared 

in both models. The EN model can coordinate λ1 and λ2 by creating the entire EN solution path. The 
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algorithms for the EN model perform variable selection efficiently through computing EN 

regularization paths. 

In this work, we study the EN model with different values of λ1 and λ2 for the visual image 

reconstruction experiments of Miyawaki [9] to analyze the sparsity of sparse modeling and visual 

representation. Friedman et al. [17] proposed fast algorithms for estimating generalized linear models 

with convex penalties. We used these algorithms and a publicly available R package glmnet 

(http://www-stat.stanford.edu/~tibs/glmnet-matlab/) to solve the EN model. 

3. Experimental procedure 

In preliminary scans, four subjects were screened for head motion, and two of them (male adults 

with normal visual acuity) whose head motions are the least, underwent the full experimental 

procedure. Informed consents were written by the two subjects, and the study was approved by the 

local Ethics Committee of the Chinese Academy of Sciences. 

3.1. Visual stimulus and experimental design 

Visual stimulus was projected onto a mirror placed in the scanner bore using a LCD projector. 

Three types of experimental sessions were conducted to measure the fMRI activities of the visual 

cortex similar as [9]: (1) a random image session, (2) a figure image session, and (3) a conventional 

retinotopy mapping session. 

In the random image session, each run consisted of 30 stimulus blocks. Each stimulus block lasted 

6s, followed by an intervening rest period lasted 6s. At the beginning (30 s) of each run there were 

extra rest periods. Fifty runs were repeated, and 1500 random patterns were presented to each subject. 

Random images were generated by a linear feedback shift register sequence. 

In the figure image session, each run consisted of 15 stimulus blocks. Each stimulus block lasted 

12s, followed by an intervening rest period lasted 12s. Extra rest periods were added as the same as in 

the random image session. Stimulus images consisted of flickering checkerboard patches as in the 

random image session as well, but they formed alphabet letters (“C”, “Y”, “V”, “N”, “I”, “L”, “O”, 

“A”, “r”, “D”, “E”, “J”, “F”, “T”, and “H”). In each run, five letters were presented and each image 

was repeated thrice. Each subject underwent 12 figure runs. 

In these two sessions, subjects need to view the stimulus sequence while keeping fixation. The 

retinotopy mapping session, which is used to delineate the borders of visual cortical areas, followed 

the two sessions using a rotating wedge.  

3.2. MRI acquisition and data preprocessing 

MRI data for the experiment were all obtained using a 3.0-Tesla Siemens MAGNETOM Trio Tim 

scanner at the Henan Province Imaging Center. An interleaved T2*-weighted gradient-echo echo-

planar imaging (EPI) scan was performed to acquire functional images to cover the entire occipital 

lobe (TR, 2000 ms; TE, 30 ms; flip angle, 80°; FOV, 220×220 mm; voxel size, 3.4×3.4×3 mm; slice 

gap, 0 mm; number of slices, 30). 

The acquired fMRI data underwent head motion correction and spatial smoothing (FWHM=8 mm) 

by SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Data from the retinotopy session were used to make a 
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visual cortical mask. After removing voxels of extremely low signal amplitudes, 2534 and 3058 voxels 

were chosen in the visual cortex for subject 1 (S1) and subject 2 (S2), respectively. 

The fMRI data were then subjected to linear trend removal within each run. Response amplitudes of 

individual voxels were normalized relative to the mean amplitude of the first 20s rest period to 

minimize the baseline difference across runs. To compensate for hemodynamic delays, the fMRI data 

for each voxel were shifting by 4s and then averaged within each stimulus block. 

4. Results 

We formulate the reconstruction task as a regression problem, and then apply EN model to the data. 

The matrix X  in Eq. (1) indicates for each voxel, the average fMRI signal intensity over each stimulus 

block, while the vector y  is set to 1 and -1 for appearance and non-appearance of the visual stimulus, 

respectively. 

The training data sets consisted of 1500 random patterns for both S1 and S2, whereas the testing 

data sets consisted of 180 alphabet letters for both subjects. The EN model is used for reconstructing 

the letters. In the training phase, we firstly fix the value of the parameter λ1=0.05i (i=0,1,2,…,20) for 

each local decoder, and use twofold cross-validation to get an optimal value of the parameter α, and 

then get an optimal value of the parameter λ1 using the twofold cross-validation again. This training 

method probably results in some overestimation of predictive performance. Without loss of generality, 

we set λ1+λ2=1. The dimensionality of the matrices X  is 750×2534 and 750×3058 for S1 and S2, 

respectively. 

4.1. Sparsity and accuracy rate of EN model 

We define the sparsity of the weight vector β by
100%

the number of zeros in
S

the dimension of

β

β
= ×

. To study the 

relationship between the sparsity S  and the parameter λ1, we fix a same value of λ1 for each local 

decoder herein for convenience, and use twofold cross-validation to get an optimal value of the 

parameter α, in the training phase. Sparsity S increases as λ1 increases for both subjects. 
 

Table 1 

Reconstruction results for three models for S1 

models OLS LASSO EN 

sparsity 40.84% 89.19% 85.39% 

average accuracy rate (test data) 53.80% 69.33% 71.08% 

sparsest decoder number 0 100 7 

 
Table 2 

Reconstruction results for three models for S2 

models OLS LASSO EN 

sparsity 50.98% 91.86% 88.69% 

average accuracy rate (test data) 52.97% 70.6% 72.08% 

sparsest decoder number 0 100 5 
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Table 3 

Average accuracy rates of reconstructed alphabet letters for S1 

alphabets C Y V N I 

average accuracy rate 63.67% 73.42% 69.50% 66.25% 78.33% 

alphabets L O A r D 

average accuracy rate 70.58% 63.50% 68.75% 66.08% 67.67% 

alphabets E J F T H 

average accuracy rate 75.08% 78.08% 72.75% 79.17% 73.5% 

 
Table 4 

Average accuracy rates of reconstructed alphabet letters for S2 

alphabets C Y V N I 

average accuracy rate 67.75% 76.08% 74.17% 69.92% 72.75% 

alphabets L O A r D 

average accuracy rate 74.25% 70.17% 67.75% 68.44% 66.42% 

alphabets E J F T H 

average accuracy rate 69.58% 75.33% 69.67% 80.08% 79.92% 

 

For comparison, the OLS model was explored, and the LASSO model was also used for local 

decoder training by setting λ1=1 and λ2=0 in the EN model. The results for three models are shown in 

Table 1 for S1 and Table 2 for S2. Accuracy rate is defined as follows: 

1 100%
the number of error local decoders

accuracy rate
the total number of all local decoders

= − ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Sparsest decoder number denotes the 

number of local decoder that was trained under the parameter λ1=1. As is clearly evident in Table 1 

and Table 2, the sparsity and the reconstruction average accuracy rates of LASSO and EN models with 

different values of λ1 are much higher than that of the OLS model. It is clear that the sparsity and l1-

norm regularization is paramount for improving model performance. Furthermore in the EN model, 

the optimal value of λ1 for almost local decoder is not 1. The reconstruction average accuracy rate of 

EN model is higher than LASSO model, while the sparsity of EN model is lower than LASSO. These 

imply visual reconstruction model needs sparsity that differs from the sparsest one, and l2-norm 

regularization helps model performance. 

4.2. Reconstruction results with EN model 

This section provides details of the reconstruction results with EN models, which are showed in 

Table 1 and Table 2 for two subjects. For S1, the average accuracy rate of the 180-alphabet stimulus is 

71.08%. The average accuracy rates of all reconstructed alphabet letters are listed in Table 3. For S2, 

the average accuracy rate of the 180-alphabet stimulus is 72.08%. The average accuracy rates of all 

reconstructed alphabet letters are listed in Table 4. 

4.3. Sparsity of distributed patterns of visual reconstruction 

The distributed patterns of the weight vector β of one particular local decoder in the visual areas 

(outlined by solid black lines) are shown in Figure 1 for S1 and S2. For S1, the sparsity of β is 85.44%, 

and the reconstruction accuracy rate of the local decoder is 69.44%. The corresponding values for S2 

are 87.97% and 71.11%. The sparsity and the reconstruction accuracy rate for both decoders are close 

to the average level of an individual subject. As noted above, the locations of the selected voxels are  
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(a) Subject 1 (b) Subject 2 

Fig. 1. Distributed pattern of the weight in the visual cortex for S1 and S2. 

 

consistent with the conventional retinotopy mapping. Figure 1 also illustrates that important voxels are 

widely distributed in the visual cortex. This property of the distributed patterns implies that multi-

voxel pattern analysis with sparse learning model is more suitable. Furthermore, true neural response 

is marked by distributed patterns of localized clusters of activity in the Figures, not the sparsest case, 

which has only one predictor in each cluster. 

5. Discussion 

The reconstruction results reveal that sparse learning models are suitable for the machine learning 

problem in visual reconstruction. It can be figured out that the l1-norm regularization can be 

interpreted as a sparsity that enforcing prior over the model parameters that shrinks some parameters 

to zero and leading to a sparse model structure. Moreover, it is helpful to explore the sparsity of the 

contribution of each voxel to every classifier, thereby ensuring that the learning results have higher 

classification accuracy. Furthermore, the experimental results show that different responses arise from 

different subjects, different alphabet stimulus, or different time. Learning models should tolerate these 

tiny differences of responses for the same class of data. The l2-norm regularization tends to leave 

strongly correlated features either in or out of the model, whereas a model with only l1-norm 

regularization tends to select only one such correlated feature [15]. Compared with the LASSO model, 

the reconstruction results of the EN model exhibited a higher accuracy rate. These results are due to 

the l2-norm regularization introduced in the EN model, which improves not only the robustness of the 

model but also the generalization performance of the learning results. 

The results demonstrate that compare for OLS model the sparsity and the reconstruction average 

accuracy rates of models with l1-norm regularization are much higher, which means that the sparsity of 

the model plays a key role in its performance. Furthermore, these results highlight the sparsity of 

visual representation. The LASSO model has the sparsest solution but does not exhibit the best 

performance for visual reconstruction, indicating that sparsity is not the only objective of visual 

reconstruction models. So models need sparsity that differs from the sparsest one for visual 

reconstruction process. The combination of l1 and l2 can balance sparsity and energy. 

We find that training time will decrease as λ1 increases. This result demonstrates that higher sparsity 

could expedite the training. However, several researchers have observed that a larger λ1 tends to cause 

slower convergence when λ1 is large enough that the solution of the EN model is also the solution of 

the LASSO model. Thus, we should choose an appropriate λ1 to ensure that the solution of the EN 

model differs from that of the LASSO model. 
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6. Conclusion 

Our results highlight the sparsity of visual representation. The EN model exhibits better 

performance for visual image reconstruction. As researches have suggested that the entries of the 

solution for the EN model corresponding to the strongly correlated columns of X in Eq. (1) tend to be 

close and that this may affect the sparsity of the solution. 
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