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Abstract. In this study, a simple method based on the dynamic equation of motion was introduced to determine the moment 
of inertia using a commercial dynamometer, and an optimization technique was utilized to estimate inertial parameters with 
the determined moment of inertia. To evaluate the feasibility of the developed method, three different passive speeds (i.e. 
240, 270 and 300°/s) were chosen to confirm whether the moment of inertia values are the same irrespective of angular 
speeds. Moreover, the estimated inertial parameters (i.e., the mass, center of mass and moment of inertia) of the elbow at-
tachment and the disk-like 3 kg-weight were compared with solutions of uniform square cube and solid disk, respectively. As 
a result, the values of moments of inertia of the elbow attachment were 0.216 ± 0.017, 0.215 ± 0.016 and 0.216 ± 0.017 

kg·m2 at angular speeds of 240, 270 and 300°/s, respectively. The values of the moment of inertia of both the attachment and 

weight were 0.821 ± 0.054, 0.823 ± 0.058 and 0.824 ± 0.053 kg·m2 at angular speeds of 240, 270 and 300°/s, respectively. 
There were no significant differences among the speeds. The estimated inertial parameters of the attachment or the weight 
were very similar to the theoretical values. Therefore, it is expected that the developed method has the potential to estimate 
inertial parameters of a human body segment and to improve the accuracy and reliability of the studies on human dynamics. 

Keywords: Inertial parameters, mass, center of mass, radius of gyration, moment of inertia 

1. Introduction 

Link-segment models are widely used to analyze joint kinematic and kinetic variables (i.e., joint tra-

jectories, forces, moments, or powers). Such model represents the human body as mechanically inter-

connected rigid body segments, whose inertial parameters such as the mass, center of mass and mo-

ment of inertia are essential for analyzing human movements. Since each inertial parameter is ob-

viously a property of a segment, those parameters are required to be customized according to individu-

al subjects. Nonetheless, values of inertial parameters of the body segment have little consistency 

among different studies, and can even vary by more than 40% [1]. Andrews and Mish [2] suggested 

that a small percent of variations in the parameters could propagate into considerably large variations 

(approximately 7% in internal forces and 12% in joint moments) through a sensitivity analysis of two-
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dimensional (sagittal plane) inverse dynamics with the parameters varying within ±5%. Thus, an accu-

rate estimation of inertial parameters is needed to analyze human movements better [3]. 

In order to determine inertial parameters, many approaches have been introduced. Linear [4–8], 

nonlinear [9–11] or multiple [12–16] regression equations were obtained from the direct measurement 

of cadavers [4,17,18] or living subjects [5–16,19] using various measurement modalities such as sim-

ple reaction boards [4,19], magnetic resonance imaging [18,20], computerized tomography [17] and 

three-dimensional (3D) laser scanning [15,16]. Among them, the proportional model by Dempster [4] 

has been most widely used. These regression equation models are useful for general purpose, but may 

be limited considering individual characteristics because the parameters have been shown to differ 

depending on age [7–9,11,14], obesity [3,19], gender [15] and race [16,19]. Moreover, medical imag-

ing methods are limited due to time- and cost-related problems. 

Different methods based on the dynamic equation of motion have been introduced to determine in-

dividual-customized inertial parameters. Bouisset and Pertuzon [21] developed a mechanical device to 

measure the moment of inertia of the forearm, and showed the consistency with results obtained from 

the Dempster’s model. However, the measured acceleration included the effects of both passive and 

active viscoelastic properties that can directly affect the value of the moment of inertia because elbow 

extensors were active prior to the release. Other studies also showed that the developed method could 

estimate good results consistent with Dempster’s work [22,23]. These methods based on the dynamic 

equation of motion could easily consider individual characteristics, but might not be widely used as 

required the self-made devices. 

In this study, a simple method based on the dynamic equation of motion was introduced to deter-

mine the moment of inertia using a commercial dynamometer, and an optimization technique was uti-

lized to estimate inertial parameters with the determined moment of inertia. To do so, there were two 

hypotheses that (1) the free-body diagram of the commercial dynamometer can be expressed as a 

hinge joint model, and (2) any bodies affixed to the dynamometer attachment can be considered as a 

constant mass segment located at its center of mass. The equation of motion to solve the free-body 

diagram was established to determine the moment of inertia of the disk-shaped weight with relatively 

well-defined inertial parameters. The weight was assumed as an ideal solid disk, and the optimization 

technique was performed to estimate the inertial parameters of the weight. Then, the values of the de-

termined parameters from the developed method were compared with those calculated from theoretical 

solutions. 

2. Methods 

2.1. A simple model to determine the moment of inertia 

Most isokinetic dynamometer manufacturers provide attachments, which greatly facilitate an appli-

cation to various joints. Once the attachment corresponding to the joint to be studied is affixed to the 

dynamometer shaft, the joint moment can be measured. Therefore, determining the moment of inertia 

of the attachment has to precede that of a segment. The moment of inertia of a segment can be deter-

mined through four simple consecutive steps using a commercial dynamometer, Biodex System 3 Pro 

(Biodex Medical Systems, USA) in this study. Step (1) corresponds to quasi-static passive movement 

of the attachment only, Step (2) to fast passive movement of the attachment only, Step (3) to quasi-

static passive movement of both the attachment and segment, and Step (4) to fast passive movement of 

both the attachment and segment. The condition including the attachment only is called as Condition 
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Table 3 

Comparison of estimated inertial parameters of the 3 kg-weight with those calculated from an ideal disk model 

 
Radius 

(m) 

Length 

(m) 

Mass 

(kg) 

Radius of gyration 

(m) 

Center of mass 

(m) 

Moment of inertia 

(kg·m2) 

Ideal 
0.05* 0.06* 

2.92* 0.035 0.45 0.595 

Estimated 2.90 0.050 0.45 0.594 

4. Discussion 

In this study, a simple two-step method was introduced to determine the inertial parameters using a 

commercial dynamometer and an optimization technique. To evaluate the feasibility of the developed 

method, the inertial parameters of a disk-shaped weight were determined from the method. Then, the 

determined parameters were compared with those calculated from the theoretical solution. The results 

showed that the determined moments of inertia from the developed method showed no significant dif-

ferences depending on three different angular speeds. Moreover, the estimated inertial parameters 

were comparable with theoretical values. These results seem promising, implying that the developed 

method could be applicable to determine inertial parameters, such as the mass, center of mass and 

moment of inertia, of a body segment which is affixed to the attachment. 

In the determined inertial parameters of the elbow attachment, the mass was underestimated approx-

imately 0.1 kg compared to the experimental value. This seems reasonable because the mass corres-

ponding the attachment part near the dynamometer shaft might be negligible. The theoretical position 

of the center of mass is located at 0.225 m far from the joint, but the estimated one at 0.269 m. Moreo-

ver, the measured moment of inertia was greater than the ideal one. These may be acceptable, because 

the real elbow attachment has not the same shape as an ideal square cube; indeed, there are grabbling 

parts at the furthermost end of the attachment. The estimated inertial parameters of the 3 kg-weight 

were very similar to the theoretical ones, showing the small difference of 0.001 kg·m2
 only. This im-

plies that the selection of disk-like weight might be appropriate to evaluate the developed method, and 

also supports that the developed method has the potential to determine segmental inertial parameters 

of an individual object. 

There are some limitations in this study. First, whether the developed method is still valid to the liv-

ing subject was not confirmed. However, this preliminary study should be conducted prior to the con-

firmation whether the developed method is valid to rigid bodies. Based on our results, the moment of 

inertia of the elbow attachment or both the attachment and 3 kg-weight was determined with no signif-

icant differences irrespective of angular speeds. From this, it is expect that the developed method 

could be valid to rigid bodies at least. Further studies would be required to confirm whether the devel-

oped method is applicable to the human body segment. Human body segments consist of various tis-

sues, especially muscles, which are deformable depending on their activations. In this regard, some 

researchers suggested that it is needed to avoid active viscoelastic effects of muscles on joint stiffness 

[22,24]. Indeed, since human being can regulate joint coordination by the muscular stiffness [25], it is 

reasonable that measured data can include intrinsic muscle properties and extrinsic muscle effects, i.e. 

muscle activities, as well. In further studies with living subjects, thus, it seems that there is a need for a 

muscle activity monitoring using an electromyography or a fixing of the segment and attachment using 

a bandage to assist the exclusion of various human factors. 

In this study, only the elbow attachment was used. If we are interested in the lower leg, we can easi-

ly determine the moment of inertia of the lower leg through the same procedure only by replacing the 
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elbow attachment with the knee attachment. Instead, our method may be limited to determine the mo-

ment of inertia of proximal segments in terms of safety (i.e., too fast angular speed for torso joints). 

Fortunately, forward dynamics studies in which inertial parameters are considered to be more im-

portant have been focused on distal segments such as elbow [26] and knee [27] joints rather than prox-

imal ones. Hence, it is expected that the developed method have the potential to estimate inertial pa-

rameters of a human body segment and to improve the accuracy and reliability of human dynamics 

studies. 
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