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Abstract. For several different boundary conditions (Dirichlet, Neumann, Robin), we prove norm-resolvent convergence for
the operator −� in the perforated domain � \⋃i∈2εZd Baε (i), aε � ε, to the limit operator −�+μι on L2(�), where μι ∈ C

is a constant depending on the choice of boundary conditions.
This is an improvement of previous results [Progress in Nonlinear Differential Equations and Their Applications 31 (1997),

45–93; in: Proc. Japan Acad., 1985], which show strong resolvent convergence. In particular, our result implies Hausdorff
convergence of the spectrum of the resolvent for the perforated domain problem.
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1. Introduction

In this article we study the following homogenisation problems labelled by ι ∈ {D, N, α} (“D” for
Dirichlet, “N” for Neumann, and “α” for Robin). Let � ⊂ R

d , d � 2 be open (bounded or unbounded)
with C2 boundary. For unbounded domains � we assume translation invariance, i.e., � + z = � for any
z ∈ Z

d . Let α ∈ C \ {0}, Re(α) � 0 and denote �ε := � \⋃i∈Lε
Baε

(i) where ε ∈ (0, 1), Baε
(i) is the

ball of radius

aD
ε =

{
εd/(d−2), d � 3,

e−1/ε2
, d = 2,

aN
ε = o(ε) (ε → 0), aα

ε = εd/(d−1) (1.1)

centered at the point i ∈ Lε, and

Lε := {
i ∈ 2εZd : dist(i, ∂�) > ε

}
. (1.2)

Consider the boundary value problems (cf. Figure 1){
(−� + 1)uε = f in �ε,

uε = 0 on ∂�ε,
(Dir)
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Fig. 1. Sketch of the perforated domain.

{
(−� + 1)uε = f in �ε,

∂νu
ε = 0 on ∂�ε,

(Neu)

{
(−� + 1)uε = f in �ε,

∂νu
ε + αu = 0 on ∂�ε,

(Rob)

i.e. the resolvent problem for the Laplacian, subject to the Dirichlet, Neumann and Robin boundary
conditions, respectively. It is easy to see, using the Lax–Milgram theorem, that for all ε ∈ (0, 1) each
of these problems has a unique weak solution uε. It is a classical question, which we refer to as the
homogenisation problem, whether the family of solutions to (Dir), (Neu), (Rob), obtained by varying
the parameter ε, converges in the sense of the L2-norm to a function u ∈ L2(�) as ε → 0 and whether
the limit function u solves, in a reasonable sense, some PDE whose form is independent of the right-hand
side datum f .

Homogenisation problems of this type have been studied extensively for a long time [2,5,7,11]. For
example, results by Cioranescu & Murat and Kaizu give a positive answer to the previous question for
all three choices of boundary conditions at least in the case of bounded domains. In fact, they showed
that the solutions of (Dir), (Rob), (Neu) converge strongly in L2(�) to the solution u ∈ H 1(�) of
(−� + 1 + μι)u = f , where

μι =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
2 , ι = D, d = 2,
(d−2)Sd

2d , ι = D, d � 3,

0, ι = N,
αSd

2d , ι = α,

(1.3)

where Sd denotes the surface area of the unit ball in R
d .

In this article we attempt to improve this result in two directions. First, we show the above convergence
not only in the strong sense, but in the norm-resolvent sense (that is, the right-hand side f is allowed to
depend on ε). Second, our result is then extended to the case of unbounded domains. As a corollary, we
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obtain a statement about the convergence of the spectra of the perforated domain problems (Dir), (Neu),
(Rob) as ε → 0.

The paper is organised as follows. In Section 2 we will briefly give a more precise formulation of the
problem and include previous results. In Section 3 we will state our main result and its implications.
Sections 4, 5 and 6 contain the proof of the main theorem and in Section 7 we consider implications
of our main theorem for the semigroup generated by the Robin Laplacian. Section 8 contains a brief
conclusion and discusses open problems.

2. Geometric setting and previous results

As above, assume d � 2, and let

Tε :=
⋃
i∈Lε

T ε
i , T ε

i := Baι
ε
(i), i ∈ Lε,

where aι
ε, Lε as in (1.1), (1.2). Denote �ε := �\Tε. We also denote Bε

i := Bε(i) and P ε
i := ε[−1, 1]d+i

for i ∈ Lε. Constants independent of ε will be denoted C and may change from line to line. Note that
our assumptions on � ensure that the set {φ|� : φ ∈ C∞

0 (Rd)} is dense in H 1(�) (cf. [1, Cor. 9.8]) in
the cases ι = N, α.

Moreover, since we are dealing with varying spaces L2(�ε), it is convenient to define the identification
operators

Jε : L2(�ε) → L2(�), Jεf (x) =
{

f (x), x ∈ �ε,

0, x ∈ � \ �ε

(2.1)

Iε : L2(�ε) → L2(�), Iεg(x) = g|�ε
(2.2)

Tε : H 1(�ε) → H 1(�), Tεu =
{

u in �ε,

v in Tε,
(2.3)

where v is the harmonic extension of u into the holes, i.e.

{
�v = 0 in Tε,

v = u on ∂Tε.
(2.4)

Lemma 2.1. For Iε, Jε as above, one has

IεJε = idL2(�ε) (2.5)

‖JεIε − idL2(�)‖L(H 1(�),L2(�)) → 0. (2.6)

Moreover, ‖Iε‖L(L2(�ε),L2(�)), ‖Jε‖L(L2(�),L2(�ε)) are uniformly bounded in ε.
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Proof. The only nontrivial statement is (2.6). To prove this, let f ∈ H 1(�ε). Then ‖f − JεIεf ‖L2(�) =
‖f ‖L2(Tε). To show that this quantity converges to 0 uniformly in f , denote Qk := [0, 1)d +k for k ∈ Z

d

a cube shifted by k, so that Rd = ⋃
k∈Zd Qk. Then we have

‖f ‖2
L2(Tε)

=
∑
k∈Zd

‖f ‖2
L2(Qk∩Tε)

�
∑
k∈Zd

‖1‖2
L2p(Qk∩Tε)

‖f ‖2
L2q (Qk∩Tε)

for p, q > 1 with p−1 + q−1 = 1, by Hölder’s inequality. Since f ∈ H 1(�), we can use the Gagliardo–
Sobolev–Nierenberg inequality to conclude (for suitable q) that

‖f ‖2
L2(Tε)

� ‖1‖2
L2p(Q0∩Tε)

∑
k∈Zd

‖f ‖2
L2q (Qk∩Tε)

� ‖1‖2
L2p(Q0∩Tε)

∑
k∈Zd

C‖f ‖2
H 1(Qk∩Tε)

= |Q0 ∩ Tε|1/pC‖f ‖2
H 1(Tε)

with some suitable p > 0. Since |Q0 ∩ Tε| → 0 as ε → 0 (cf. the definition of aι
ε, (1.1)), the desired

convergence follows. �

Lemma 2.2. In the cases ι ∈ {N, α} the harmonic extension operator Tε satisfies

(i) lim supε→0 ‖Tε‖H 1(�ε)→H 1(�) < ∞.
(ii) There exists C > 0 such that ‖Tεw‖H 1(P ε

i ) � C‖w‖H 1(P ε
i ) for all w ∈ H 1(�ε) and i ∈ Lε.

(iii) For any sequence wε such that lim supε→0 ‖wε‖H 1(�ε) < ∞ one has ‖Tεwε − Jεwε‖L2(�) → 0.

Proof. See [5], [11, p. 40]. �

In the above geometric setting, we will study the linear operators Aι
ε, ι = D, N, α in L2(�ε), defined

by the differential expression −� + 1, with (dense) domains

D
(
AD

ε

) = H 1
0 (�ε) ∩ H 2(�ε),

D
(
AN

ε

) = {
u ∈ H 2(�ε) : ∂νu = 0 on ∂�ε

}
,

D
(
Aα

ε

) = {
u ∈ H 2(�ε) : ∂νu + αu = 0 on ∂�ε

}
,

respectively, and the linear operators Aι in L2(�ε) defined by the expression −�+1+μι, with domains

D
(
AD
) = H 1

0 (�) ∩ H 2(�),

D
(
AN
) = {

u ∈ H 2(�) : ∂νu = 0 on ∂�
}
,

D
(
Aα
) = {

u ∈ H 2(�) : ∂νu + αu = 0 on ∂�
}
,

respectively, where μι, ι = D, N, α, are defined in (1.3).
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Remark 2.3. In the case when d � 3 one has the characterisation

μD = 1

2d
min

{∫
Rd\B1(0)

|∇u|2, u ∈ H 1
(
R

d
)
, u = 1 on B1(0)

}
. (2.7)

Note that the factor 1/2d arises from the fact that the unit cell is of size 2ε.

Using the notation above, we recall the following classical results.

Theorem 2.4 ([2]). Let � ⊂ R
d be open (bounded or unbounded). Suppose that f ∈ L2(�), and let uε

and ũ be the solutions to

(−� + 1)uε = f, uε ∈ H 1
0 (�ε),

(−� + 1 + μD)ũ = f, ũ ∈ H 1
0 (�).

Then Jεu
ε

ε→0
⇀ ũ in H 1

0 (�).

Theorem 2.5 ([5]). Let � ⊂ R
d be open (bounded or unbounded), and suppose that ∂� is smooth.

Suppose also that f ∈ L2(�), and let uε and ũ be the solutions to

(−� + 1)uε = f, uε ∈ D
(
Aα,N

ε

)
,

(−� + 1 + μα,N)ũ = f, ũ ∈ D
(
Aα,N

)
.

Then one has

Jεu
ε ε→0

⇀ ũ in H 1(�).

Proof of Theorems 2.4 and 2.5. The results are obtained by following the proofs of [2, Thm 2.2], [5,
Thm 2]. Note that the weak convergence in H 1(�) is immediately obtained also for unbounded domains
(and complex α). �

An important ingredient in the proofs are auxiliary functions wι
ε ∈ W 1,∞(Rd) defined, for each ε ∈

(0, 1), as the solution to the problems

wN
ε ≡ 1,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wD
ε = 0 in T ε

i ,

�wD
ε = 0 in Bε

i \ T ε
i ,

wD
ε = 1 in P ε

i \ Bε
i ,

wD
ε continuous,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂νw
α
ε + αwα

ε = 0 on ∂T ε
i ,

�wα
ε = 0 in Bε

i \ T ε
i ,

wα
ε = 1 in P ε

i \ Bε
i ,

wα
ε continuous,

(2.8)

used as a test function in the weak formulation of the problems (Dir), (Neu), (Rob).
These functions were used in [2,5] as test functions to prove strong convergence of solutions. They are

“optimal” in the sense that they minimise the energy in annular regions around the holes. In the Dirichlet
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case, the function wD
ε is nothing but the potential for the capacity cap(Bε(i);BaD

ε
(i)). It can be shown

that one has the convergences

wD
ε ⇀ 1

Tεw
α
ε ⇀ 1

}
weakly in H 1(�)

−�wD
ε → μD

−∇ · (χ�ε
∇wα

ε

)+ αwα
ε δ∂Tε

→ μα

}
strongly in H−1(�)

as ε → 0, where δ∂Tε
denotes the Dirac measure on the boundary of the holes (for a proof of the above

facts, see [2, Lemma 2.3] and [5, Section 3]).

3. Main results

In what follows we prove the following claim.

Theorem 3.1. Let Jε, A
ι
ε, A

ι be defined as in the previous section. Then for ι ∈ {D, N, α} one has

∥∥Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

∥∥
L(L2(�ε),L2(�))

→ 0 (ε → 0), (3.1)

that is, the operator sequence Aι
ε converges to Aι in the norm-resolvent sense.

Corollary 3.2. If Aε, A are as in Theorem 3.1, then

∥∥(Aι
ε

)−1
Iε − Iε

(
Aι
)−1∥∥

L(L2(�),L2(�ε))
→ 0, (3.2)

where Iε is as in (2.2).

Proof. For notational convenience, denote Rε := (Aι
ε)

−1 and R := (Aι)−1. A quick calculation shows
that

RεIε − IεR = Iε(JεRε − RJε)Iε − (IεJε − 1)RεIε

= Iε(JεRε − RJε)Iε,

since IεJε = idL2(�ε). Hence

‖RεIε − IεR‖L(L2(�),L2(�ε)) � ‖Iε‖2
L(L2(�),L2(�ε)

‖JεRε − RJε‖L(L2(�ε),L2(�))

→ 0

as ε → 0, by (3.1) and uniform boundedness of ‖Iε‖L(L2(�ε),L2(�)). �

We note an important consequence of the above theorem.
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Corollary 3.3. For all compact K ⊂ C, one has σ(Aι
ε) ∩ K

ε→0−−→ σ(Aι) ∩ K in the Hausdorff sense.1

Proof. First, note that the spectra of Aι
ε converge to that of Aι, in the sense that for each compact

K ⊂ ρ(Aι) there exists ε0 > 0 such that K ⊂ ρ(Aι
ε) for all ε ∈ (0, ε0). The proof of this is obtained

by combining the proofs of Lemma 3.11, Theorem 3.12 and Corollary 3.14 in [8]. On the other hand, an
analogous proof using (3.2) and (2.6) shows that if K ⊂ ρ(Aι

ε) for almost all ε > 0, then K ⊂ ρ(Aι).
Together these two facts imply Hausdorff convergence. �

In particular, this corollary shows that (if Re(μι) > 0) a spectral gap opens for Aι
ε between 0 and

Re(μι).

Remark 3.4. We note that our assumption on the spherical shape of the holes was made for the sake
of definiteness, however, our results easily generalise to more general geometries as detailed in [2, Th.
2.7]. Moreover, our results are also valid for more general elliptic operators div(A∇) with continuous
coefficients A (cf. [2]).

4. Uniformity with respect to the right-hand side

In this section we prove that the result of Theorems 2.4, 2.5 hold in a strengthened form, namely,
uniformly with respect to the right-hand side f . More precisely, the following holds.

Theorem 4.1. Suppose that εn ↘ 0, fn ∈ L2(�εn
), n ∈ N, with ‖fn‖L2(�ε) � 1, and let uι

n and ũι
n be

the solutions to the problems (ι ∈ {D, N, α})

(−� + 1)uι
n = fn, uι

n ∈ D
(
Aι

εn

)
, (4.1)

(−� + 1 + μι)ũ
ι
n = Jεn

fn, ũι
n ∈ D

(
Aι
)
. (4.2)

Then for every bounded, open K ⊂ � one has

Jεn
uι

n − ũι
n → 0 strongly in L2(K),

Jεn
∇uι

n − ∇ũι
n ⇀ 0 weakly in L2(K),

for ι ∈ {D, N, α}.

Proof. We have the following a priori estimates (note Lemma 2.2):

∥∥Tεn
uα,N

n

∥∥
H 1(�)

� C‖Jεn
fn‖L2(�),∥∥Jεn

uD
n

∥∥
H 1(�)

� C‖Jεn
fn‖L2(�),∥∥ũι

n

∥∥
H 1(�)

� C‖Jεn
fn‖L2(�) ∀ι ∈ {D, N, α}.

1For the definition of Hausdorff convergence, see e.g. [12].
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Thus, there exists a subsequence (still indexed by n) and uι, ũι ∈ H 1(�) such that

Jεn
uD

n

n→∞
⇀ uD

Tεn
uα,N

n

n→∞
⇀ uα,N

ũι
n

k→∞
⇀ ũι, ι ∈ {D, N, α}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ weakly in H 1(�). (4.3)

Note that that for every bounded K ⊂ � the convergence statements (4.3) are strong in L2(K). In
particular, employing Lemma 2.2(i), (iii) and the Rellich Theorem we immediately obtain

Jεn
uι

n → uι strongly in L2(K),

Jεn
∇uι

n ⇀ ∇uι weakly in L2(K)

ũι
n ⇀ ũι strongly in L2(K), (4.4)

∇ũι
n ⇀ ∇ũι weakly in L2(K). (4.5)

for all ι ∈ {D, N, α}. Next, choose a further subsequence (still indexed by n) such that also Jεn
fn

n→∞
⇀ f

weakly in L2(�), where the limit f may depend on the choice of subsequence. Now, consider the weak
formulations of the problem (4.2), i.e.∫

�

∇ũι
n∇φ + (1 + μι)

∫
�

ũι
nφ =

∫
�

fnφ,

where φ ∈ C∞
0 (�) for ι = D and φ ∈ C∞

0 (Rd) for ι = α, N. Letting n → ∞ and using the convergencies
(4.4), (4.5) (with K = � ∩ supp φ) we obtain∫

�

∇ũι∇φ + (1 + μι)

∫
�

ũιφ =
∫

�

f φ.

Next consider the weak formulation of (4.1),where we choose the test function wι
εn

φ:∫
�εn

∇uι
n∇
(
wι

εn
φ
)+

∫
�εn

uι
nw

ι
εn

φ =
∫

�εn

fnw
ι
εn

φ,

where again φ ∈ C∞
0 (�) for ι = D and φ ∈ C∞

0 (Rd) for ι = α, N. It follows from the results of [2,5]
that the left and right-hand side of this equation converge to∫

�

(∇uι∇φ + (1 + μι)uιφ
)

and
∫

�

f φ,

respectively. Thus, we obtain∫
�

(∇uι∇φ + (1 + μι)uιφ
) =

∫
�

f φ,
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and hence uι and ũι are weak solutions to the same equation. Uniqueness of solutions (for all ι ∈
{D, N, α}) implies ũι = uι, which shows the assertion for the chosen subsequence.

Finally, applying the above reasoning to every subsequence of (Jεn
uι

n − ũι
n) yields the result for the

whole sequence. �

Corollary 4.2. If the domain � is bounded, one has

∥∥Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

∥∥
L(L2(�ε),L2(�))

→ 0 (ε → 0)

for ι ∈ {D, N, α}, i.e., Theorem 3.1 holds in that case of bounded �.

Proof. Since � is bounded, the embedding of H 1(�) in L2(�) is compact, thus the sequence Jεn
uι

n− ũι
n

from the previous proof has a subsequence converging to 0 strongly in L2(�). Since this can be done for
every subsequence of (Jεn

uι
n − ũι

n), the whole sequence converges to 0.
Now, choose a sequence fn ∈ L2(�εn

), ‖fn‖L2(�ε) � 1, such that

sup
f ∈L2(�εn )

‖f ‖�1

∥∥(Jεn

(
Aι

ε

)−1 − (
Aι
)−1

Jεn

)
f
∥∥

L2(�ε)
− 1

n

<
∥∥(Jεn

(
Aι

εn

)−1 − (
Aι
)−1

Jεn

)
fn

∥∥
L2(�εn )

.

By the above, the right-hand side of this inequality converges to zero, which implies the claim. �

Treating unbounded domains requires further effort. Since we lack compact embeddings in this case,
we will have to take advantage of the sufficiently rapid decay of solutions to (−� + 1)u = f and a
decomposition of the right hand side with a bound on the interactions.

5. Exponential decay of solutions

We begin with a general result which we assume is classical, but include for the sake of completeness.
Let U ⊂ R

d open satisfying the strong local Lipschitz condition, λ > 1
2 and consider the problems (cf.

(Dir), (Neu), (Rob)){
(−� + λ)uα = f in U,

∂νu
α + αuα = 0 on ∂U ; (5.1)

{
(−� + λ)uN = f in U,

∂νu
N = 0 on ∂U ; (5.2)

{
(−� + λ)uD = f in U,

uD = 0 on ∂U.
(5.3)

Let x0 ∈ R
d , and define the function ω(x) = cosh(|x − x0|). Then the following statement holds.
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Proposition 5.1. Let f ∈ L2(U), supp(f ) compact. Then each of the problems (5.1)–(5.3) has a unique
weak solution uι ∈ H 1(U) satisfying∫

U

∣∣uι
∣∣2ω dx � M

∫
U

|f |2ω dx (5.4)∫
U

∣∣∇uι
∣∣2ω dx � M

∫
U

|f |2ω dx, (5.5)

where M := max{2, (λ − 1
2)

−1}.
We postpone the proof, in order to introduce some notation and prove auxiliary results. First, let us

denote dμ := ω dx and introduce the weighted Sobolev spaces H := W 1,2(U ;ω), H0 := W
1,2
0 (U ;ω)

with scalar product

〈u, v〉H =
∫

U

uv dμ +
∫

U

∇u · ∇v dμ.

Moreover, let λ > 1
2 and define the sesquilinear forms

aα(u, v) :=
∫

U

(∇u · ∇v + λuv) dμ +
∫

U

v∇u · ∇ω

ω
dμ + α

∫
∂U

uvω dS on H, (5.6)

aN(u, v) :=
∫

U

(∇u · ∇v + λuv) dμ +
∫

U

v∇u · ∇ω

ω
dμ on H, (5.7)

aD(u, v) :=
∫

U

(∇u · ∇v + λuv) dμ +
∫

U

v∇u · ∇ω

ω
dμ on H0. (5.8)

Lemma 5.2. For λ > 1
2 and ι ∈ {D, N, α}, the form aι is continuous and coercive on H (on H0 in the

case ι = D).

Proof. We will only treat the Robin case here, the other cases being analogous. Denote by I the second
term in (5.6) and note that ω was chosen so that |∇ω| � ω. By Hölder’s inequality with respect to μ one
has

|I | �
∥∥∥∥∇ω

ω

∥∥∥∥∞︸ ︷︷ ︸
�1

‖∇u‖L2(μ)‖v‖L2(μ) �
1

2
‖∇u‖2

L2(μ)
+ 1

2
‖v‖2

L2(μ)
,

and thus∣∣a(u, u)
∣∣ � ‖∇u‖2

L2(μ)
+ λ‖u‖2

L2(μ)
+ |α|∥∥ω1/2u

∥∥2

L2(∂U)
+ I

� ‖∇u‖2
L2(μ)

+ λ‖u‖2
L2(μ)

− 1

2
‖∇u‖2

L2(μ)
− 1

2
‖u‖2

L2(μ)

= 1

2
‖∇u‖2

L2(μ)
+
(

λ − 1

2

)
‖u‖2

L2(μ)
,
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which shows coercivity in H. Continuity follows by estimating the boundary term. By the trace theorem
[3, Prop. IX.18.1] we have, for each δ > 0,∫

∂U

|u|2ω dx � 2δ
∥∥∇(ω1/2u

)∥∥2

L2(U)
+ C

δ

∥∥ω1/2u
∥∥2

L2(U)
. (5.9)

The first term can be estimated using the special choice of ω:

∥∥∇(ω1/2u
)∥∥2

L2(U)
=
∫

U

∣∣∣∣ω1/2∇u + 1

2
u

∇ω

ω1/2

∣∣∣∣2 dx

� 2
∫

U

ω|∇u|2 dx + 1

2

∫
U

|u|2 |∇ω|2
ω

dx

� 2‖∇u‖L2(μ) + 2

∥∥∥∥∇ω

ω

∥∥∥∥2

∞

∫
U

|u|2ω dx

� 2‖∇u‖2
H 1(μ)

. (5.10)

The desired continuity now follows immediately by combining (5.9) and (5.10). �

Lemma 5.3. Let f ∈ L2(U), ι ∈ {D, N, α}, and suppose that supp(f ) is compact. Then the problem

aι(u, v) =
∫

U

f v dμ ∀v ∈ H (5.11)

has a solution in H.

Proof. By Hölder inequality, one has∣∣∣∣
∫

U

f v dμ

∣∣∣∣ � ‖f ‖L2(μ)‖v‖L2(μ) � ‖ω‖L∞(supp f )‖f ‖L2(U)‖v‖L2(μ),

so f ∈ H′. The assertion now follows from Lemma 5.2 and the Lax–Milgram theorem for complex,
non-symmetric sesquilinear forms [13, Thm. VI.1.4]. �

Proof of Proposition 5.1. Again we focus on the Robin case, the other cases being analogous. Denote
by u the solution obtained from Lemma 5.3. Then u ∈ H 1(U), since H ⊂ H 1(U). Moreover, let
φ ∈ C∞

0 (Rd) be arbitrary and decompose it as φ = ωψ . Then ψ ∈ C∞
0 (Rd) ⊂ H and one has

∫
U

∇u · ∇φ dx + λ

∫
U

uφ dx + α

∫
∂U

uφ dS

=
∫

U

∇u · (ω∇ψ + ψ∇ω) dx + λ

∫
U

uψω dx + α

∫
∂U

uψω dS

= aα(u, ψ)
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=
∫

U

f ψ dμ

=
∫

U

f φ dx.

Thus, the function u solves the problem∫
U

∇u · ∇φ dx + λ

∫
U

uφ dx + α

∫
∂U

uφ dS =
∫

U

f φ dx ∀φ ∈ C∞
0

(
R

d
)
. (5.12)

Uniqueness of solutions and density of C∞
0 (Rd) in H 1(U) implies that u is the weak solution in H 1(U)

to the Robin problem (5.1).
The estimates (5.4), (5.5) follow from the coercivity of aι. �

6. Decomposition of the right-hand side

In this section we consider the case of unbounded �. We conclude the proof of Theorem 3.1 by
decomposing the domain into cubes Qi , writing f = ∑

i f χQi
and then applying the above results to

each term f χQi
. The following lemma shows uniform convergence with respect to the position of the

cubes.

Lemma 6.1. Let εn ↘ 0 and fn ∈ L2(�), n ∈ N, be such that ‖fn‖L2(�) � 1 and supp(fn) ⊂ Qin ,
where Qin = [0, 1]d + in with in ∈ Z

d . Let uι
n, ũ

ι
n be the solutions to the problems

Aι
εn

uι
n = fn|�εn

, Aιũι
n = fn, n ∈ N, ι ∈ {D, N, α}. (6.1)

Then ‖Jεn
uι

n − ũι
n‖L2(�) → 0 for all ι ∈ {D, N, α}.

Proof. The idea of the proof is to use translation invariance, in order to shift supp(fn) back near zero for
every n, and then use the Fréchet–Kolmogorov compactness criterion to obtain a convergent subsequence
of (Jεn

uι
n − ũι

n); Theorem 4.1 will identify its limit as zero. Since the following analysis is independent
of the choice of boundary conditions, we henceforth omit ι to simplify notation.

We now carry out the outlined strategy. We set, for all n ∈ N,

u∗
n(x) := un(x + in), ũ∗

n(x) := ũn(x + in), f ∗
n (x) := fn(x + in).

These functions still solve the problems (6.1) with fn replaced by f ∗
n and � replaced by � − in. The

new sequence f ∗
n has the nice property that supp(f ∗

n ) ⊂ [0, 1]d for all n. In the following we consider
Jεn

u∗
n, ũ

∗
n, f

∗
n as elements of L2(Rd) that are zero outside � − in. We will now show that ũ∗

n − Jεn
u∗

n

converges to zero in L2(Rd). To this end, consider the bounded set

F := {
ũ∗

n − Jεn
u∗

n : n ∈ N
} ⊂ L2

(
R

d
)
. (6.2)

Claim: F is precompact in L2(Rd).
We postpone the proof of this claim to Lemma 6.2. We immediately obtain that (ũ∗

n − Jεn
u∗

n) has a
convergent subsequence in L2(Rd). Furthermore, Theorem 4.1 shows that ‖ũ∗

n − Jεn
u∗

n‖L2(K) → 0 for
every bounded K ⊂ R

d which identifies the limit of the subsequence as zero.
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Arguing as above for all subsequences of (ũ∗
n − Jεn

u∗
n), we conclude that ũ∗

n − Jεn
u∗

n → 0 in L2(Rd).
Since the shift u �→ u(· + in) is an isometry in L2(Rd), this implies that ũn − Jεn

un → 0 in L2(�). �

Lemma 6.2. The set F defined in (6.2) is precompact in L2(Rd).

Proof. We will use the notation and conventions from the previous proof and distinguish between the
Dirichlet case and the Robin/Neumann cases.

Dirichlet case. Step 1: We have

sup
n

∥∥τh

(
ũ∗

n − Jεn
u∗

n

)− (
ũ∗

n − Jεn
u∗

n

)∥∥
L2(Rd )

→ 0 as h → 0 ∀n ∈ N,

where τh denotes the operator of translation by h. Indeed, the standard regularity theory implies∥∥τh

(
ũ∗

n − Jεn
u∗

n

)− (
ũ∗

n − Jεn
u∗

n

)∥∥
L2(Rd )

�
∥∥∇(ũ∗

n − Jεn
u∗

n

)∥∥
L2(Rd )

|h| � C‖fn‖L2(�)|h|.

Step 2: Notice that

sup
n

∥∥ũ∗
n − Jεn

u∗
n

∥∥
L2(Rd\BR(0))

→ 0 as R → ∞,

due to the following estimate in which we set ω0(x) := cosh(|x|).∥∥ũ∗
n − Jεn

u∗
n

∥∥2

L2(Rd\BR(0))
� 2

∥∥ũ∗
nω0ω

−1
0

∥∥2

L2(�\BR(0))
+ 2

∥∥Jεu
∗
nω0ω

−1
0

∥∥2

L2((Rd\BR(0))

� 4M
∥∥f ∗

n ω0

∥∥2

L2(Rd )

∥∥ω−1
0

∥∥2

L∞(Rd\BR(0))

Prop. 5.1 � C‖fn‖2
L2(�)

exp(−R)

which completes Step 2. Applying the Fréchet–Kolmogorov theorem yields the precompactness of F .
Neumann and Robin case. Here the strategy is the same, but matters are complicated by the fact that

Jεn
u∗

n is not in H 1(Rd). To show that F is precompact, we decompose elements in F as

ũ∗
n − Jεn

u∗
n = (

ũ∗
n − Tεn

u∗
n

)+ (Tεn
− Jεn

)u∗
n,

define F1 := {ũ∗
n − Tεn

u∗
n : n ∈ N}, F2 := {(Tεn

− Jεn
)u∗

n : n ∈ N} and show that F1 and F2

are precompact in L2(Rd). We will begin by showing that F1 is precompact. To this end, denote by
E : H 1(�) → H 1(Rd) an extension operator satisfying Eu|� = u and ‖Eu‖H 1(Rd ) � C‖u‖H 1(�) for all
u ∈ H 1(�) (cf. Prop. VII.19.1 and Remark VII.19.2 in [3]). Note that by translation invariance one has
Eτh = τhE and (Eun)

∗ = E(u∗
n). We start by proving that

sup
n

∥∥τhE
(
ũ∗

n − Tεn
u∗

n

)− E
(
ũ∗

n − Tεn
u∗

n

)∥∥
2 → 0 as h → 0

This readily follows from the estimate∥∥τhE
(
ũ∗

n − Tεn
u∗

n

)− E
(
ũ∗

n − Tεn
u∗

n

)∥∥
L2(Rd )

�
∥∥∇E

(
ũ∗

n − Tεn
u∗

n

)∥∥
L2(Rd )

|h|
� C

∥∥ũ∗
n − Tεn

u∗
n

∥∥
H 1(�+in)

|h|
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� C
∥∥f ∗

n

∥∥
L2(�+in)

|h|
� C|h|.

Next we prove that

sup
n

∥∥E(ũ∗
n − Tεn

u∗
n

)∥∥
L2(Rd\BR(0))

→ 0 as R → ∞.

Indeed, notice first that∥∥E(ũ∗
n − Tεn

u∗
n

)∥∥2

L2(Rd\BR(0))
� C

(∥∥ũ∗
n

∥∥2

L2((�−in)\BR(0))
+ ∥∥Tεn

u∗
n

∥∥2

L2((�εn−in)\BR(0))

)
= C

(‖ũn‖2
L2(�\BR(in))

+ ‖Tεn
un‖2

L2((�εn )\BR(in))

)
, (6.3)

To treat the two terms on the right-hand side we apply Lemma 2.2(ii) and Proposition 5.1 with ωin(x) =
cosh(|x + in|) as follows. For the second term in (6.3), we obtain

‖Tεn
un‖L2(�εn\BR(in)) � C

(‖un‖L2(�\BR/2(in)) + ‖∇un‖L2(�\BR/2(in))

)
�
∥∥ω1/2

in
ω

−1/2
in

un

∥∥
L2(�\BR/2(in))

+ ∥∥ω1/2
in

ω
−1/2
in

∇un

∥∥
L2(�\BR/2(in))

� C
(∥∥ω1/2

in
un

∥∥
L2(�\BR/2(in))

+ ∥∥ω1/2
n ∇un

∥∥
L2(�\BR/2(in))

)∥∥ω−1/2
in

∥∥
L∞(�\BR/2(in))

� CM
∥∥fnω

1/2
in

∥∥
L2(�)

exp(−R/3)

� 2CM exp(−R/3),

where we use the fact that ωin is bounded by 2 on supp fn. With an analogous calculation for the first
term in (6.3), we finally find∥∥E(ũ∗

n − Tεn
u∗

n

)∥∥
L2(Rd\BR(0))

� C exp(−R/3), (6.4)

with C independent of n. Applying the Fréchet–Kolmogorov theorem yields the precompactness of the
set {E(ũ∗

n−Tεn
u∗

n) : n ∈ N}. Finally, noting that F1 = {E(ũ∗
n−Tεn

u∗
n) : n ∈ N}χ� and that multiplication

by χ� is a bounded operator on L2(Rd) we obtain precompactness of F1.
To prove precompactness of F2, first note that by Lemma 2.2(iii) for any δ > 0 there exists a n0 such

that ∥∥(Jεn
− Tεn

)u∗
n

∥∥
2 < δ ∀n > n0.

Let us fix arbitrary δ > 0 and n0 as above. It remains to estimate the terms∥∥τh(Jεn
− Tεn

)u∗
n − (Jεn

− Tεn
)u∗

n

∥∥
L2(Rd )

, n � n0,

but these are only finitely many, which clearly converge to zero individually, and hence

sup
n�n0

∥∥τh(Jεn
− Tεn

)u∗
n − (Jεn

− Tεn
)u∗

n

∥∥
2 → 0 as h → 0
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Altogether we have shown that

sup
n

∥∥τh(Jεn
− Tεn

)u∗
n − (Jεn

− Tεn
)u∗

n

∥∥
L2(Rd )

= max
{

sup
n�n0

∥∥τh(Jεn
− Tεn

)u∗
n − (Jεn

− Tεn
)u∗

n

∥∥
2, 2δ

}
h→0−−→ 2δ.

Since δ > 0 was arbitrary we finally get

lim
h→0

sup
n∈N

∥∥τh(Jεn
− Tεn

)u∗
n − (Jεn

− Tεn
)u∗

n

∥∥
L2(Rd )

= 0.

This completes the first Fréchet–Kolmogorov-condition. The proof of the second condition

sup
n

∥∥(Jεn
− Tεn

)u∗
n

∥∥
L2(Rd\BR(0))

→ 0 as R → ∞

is analogous to the case of F1. Applying the Fréchet–Kolmogorov theorem yields precompactness of F1

and completes the proof. �

Corollary 6.3. There exists δε with δε
ε→0−→ 0 such that

∥∥(Jε

(
Aι
)−1 − (

Aι
ε

)−1
Jε

)
(f χQi∩�ε

)
∥∥

L2(�)
� δε‖f χQi

‖L2(�)

for all f ∈ L2(�) and i ∈ Z
d .

Proof. We argue by contradiction. Suppose that there is no such function δε. Then there exist sequences
εn, fn, in with ‖fn‖L2(�) = 1 such that ‖(Jε(A

ι)−1 − (Aι
εn

)−1Jε)(fnχQin∩�εn
)‖L2(�) does not converge to

zero, which is a contradiction to Lemma 6.1. �

In order to finalise the decomposition, we require he following two lemmas.

Lemma 6.4. Suppose that f ∈ L2(�), and denote

ui := (
Jε

(
Aι
)−1 − (

Aι
ε

)−1
Jε

)
(f χQi∩�ε

), i ∈ Z
d .

Then one has

∣∣〈ui, uj 〉L2(�)

∣∣ � C‖f χQi
‖L2(�)‖f χQj

‖L2(�) exp
(−|i − j |/2

)
(6.5)

for all i, j ∈ Z
d with i �= j , where 〈·, ·〉L2(�) denotes the standard inner product in L2(�).

Proof. For convenience we write fi := f χQi
, i ∈ Z

d . Denote ωi(x) = cosh(|x − i|) and note that by
Proposition 5.1 we have ‖ω1/2

i ui‖L2(�) � C‖fiω
1/2
i ‖L2(�). The statement of the lemma is a consequence
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of the following estimate:

∣∣〈ui, uj 〉L2(�)

∣∣ � ∫
�

∣∣ui(x)
∣∣∣∣uj (x)

∣∣ dx

=
∫

�

(∣∣ui(x)
∣∣ω1/2

i

)(∣∣uj (x)
∣∣ω1/2

j

)
ω

−1/2
i ω

−1/2
j dx

�
∥∥uiω

1/2
i

∥∥
L2(�)

∥∥ujω
1/2
j

∥∥
L2(�)

∥∥ω−1/2
i ω

−1/2
j

∥∥
L∞(�)

� C
∥∥fiω

1/2
i

∥∥
L2(�)

∥∥fjω
1/2
j

∥∥
L2(�)

∥∥ω−1/2
0 ω

−1/2
j−i

∥∥
L∞(�)

� C‖fi‖L2(�)‖fj‖L2(�) exp
(−|i − j |/2

)
,

where we use the fact that supp(fi) ⊂ Qi and ωi |Qi
� 2. �

Lemma 6.5. Suppose that f ∈ C∞
0 (�ε) and define ui := (Jε(A

ι
ε)

−1 − (Aι)−1Jε)(f χQi
), i ∈ Z

d . Then
for every n > 1 one has the inequality

∥∥∥∥∥
N∑

m=1

uim

∥∥∥∥∥
2

L2(�)

� C

(
n3

N∑
m=1

‖uim‖2
L2(�)

+ ‖f ‖L2(�ε) exp(−n/3)

)
, (6.6)

where N is the number of cubes such that Qik ∩ supp(f ) �= ∅, and C, n do not depend on N .

Proof.

∥∥∥∥∥
N∑

m=1

uim

∥∥∥∥∥
2

L2(�)

�
N∑

m,p=1

〈uim, ujp
〉L2(�)

=
∞∑

k=0

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)

�
n∑

k=0

( ∑
|i−j |∈[k,k+1)

‖ui‖L2(�)‖uj‖L2(�)

)
+

∞∑
k=n

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)

�
n∑

k=0

∑
|i−j |∈[k,k+1)

(‖ui‖2
L2(�)

2
+ ‖uj‖2

L2(�)

2

)

+
∞∑

k=n

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)

�
n∑

k=0

N∑
m=1

( ∑
{j :|im−j |∈[k,k+1)}

‖uim‖2
L2(�)

)
+

∞∑
k=n

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)
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� C

n∑
k=1

k2
N∑

m=1

‖uim‖2
L2(�)

+
∞∑

k=n

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)

� Cn3
N∑

m=1

‖uim‖2
L2(�)

+
∞∑

k=n

( ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

)
. (6.7)

We now study the last term of (6.7). It follows from Lemma 6.4 that

∣∣〈ui, uj 〉L2(�)

∣∣ � C‖fi‖L2(�)‖fj‖L2(�)e
− 1

2 |i−j |.

Using this fact and fixing k for the moment, we obtain∣∣∣∣ ∑
|i−j |∈[k,k+1)

〈ui, uj 〉L2(�)

∣∣∣∣ � C
∑

|i−j |∈[k,k+1)

‖fi‖L2(�)‖fj‖L2(�) exp
(−|i − j |/2

)

� C
∑

|i−j |∈[k,k+1)

(‖fi‖2
L2(�)

2
+ ‖fj‖2

L2(�)

2

)
exp

(−|i − j |/2
)

� C

N∑
m=1

‖fim‖2
L2(�)

k2 exp(−k/2)

= C‖f ‖2
L2(�)

k2 exp(−k/2)

� C‖f ‖2
L2(�)

exp(−k/2).

Summing this inequality from k = n to infinity concludes the proof. �

Combining the above lemmas, we have the following quantitative statement.

Proposition 6.6. Suppose that f ∈ C∞
0 (�ε). Then for every n ∈ N,

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
f
∥∥2

L2(�)
� C

(
n3δ2

ε + exp(−n/3)
)‖f ‖2

L2(�)

for some C > 0, where δε was defined in Corollary 6.3.

Proof. We denote uε
i := (Jε(A

ι
ε)

−1 − (Aι)−1Jε)(f χQi
), i ∈ R

d , and estimate

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
f
∥∥2

L2(�)
=
∥∥∥∥∥

N∑
m=1

uε
im

∥∥∥∥∥
2

L2(�)

Lemma 6.5 � C

(
n3

N∑
m=1

∥∥uε
im

∥∥2

L2(�)
+ exp(−n/3)‖f ‖L2(�ε)

)
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Cor. 6.3 � C

(
n3δ2

ε

N∑
m=1

‖fim‖2
L2(�ε)

+ exp(−n/3)‖f ‖L2(�ε)

)

= C
(
n3δ2

ε + exp(−n/3)
)‖f ‖2

L2(�)
. �

Proof of Theorem 3.1. Let g ∈ L2(�ε) with ‖g‖L2(�ε) � 1. Fix δ > 0 and choose f ∈ C∞
0 (�ε) such

that ‖g − f ‖2
L2(�ε)

< δ and choose n ∈ N such that exp(−n/3) � δ. Now compute

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
g
∥∥2

L2(�)

� 2
∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
f
∥∥2

L2(�)
+ 2

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
(g − f )

∥∥2

L2(�)

� C
((

n3δ2
ε + exp(−n/3)

)‖f ‖2
L2(�ε)

+ ∥∥Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

∥∥2︸ ︷︷ ︸
bounded

‖g − f ‖2
L2(�ε)

)

� C
(
n3δ2

ε + δ
)‖g‖2

L2(�ε)
+ Cδ,

hence

sup
‖g‖

L2(�ε)
�1

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)
g
∥∥2

L2(�)
� Cn3δ2

ε + Cδ + Cδ,

and therefore

lim sup
ε→0

∥∥(Jε

(
Aι

ε

)−1 − (
Aι
)−1

Jε

)∥∥2

L(L2(�ε),L2(�))
� Cδ.

Since δ > 0 is arbitrary, the result follows. �

7. Behaviour of the semigroup

In this section we want to give an application of Theorem 3.1. In particular, we focus on the non-
selfadjoint operator Aα and study the large-time behaviour of its semigroup. In order to do this, we shall
first study the numerical range of the Robin Laplacians more closely. In the remainder of this section,
unless otherwise stated, the symbols ‖·‖ and 〈·, ·〉 will denote the L2 (operator-) norm and scalar product,
respectively, and the symbol �θ denotes a sector of half-angle θ in the complex plane.

7.1. Decay of e−t (Aα−Id)

Let α ∈ C and assume Re α > 0. We want to study the decay properties of the heat semigroup
et(�−μα). To this end, let us denote by Bα := Aα − Id the Robin Laplacian on �. It is our goal to derive
estimates on the numerical range of Bα. Let u ∈ D(Bα) = D(Aα) and assume that ‖u‖L2(�) = 1. Notice
that 〈

Bαu, u
〉 = ∫

�

|∇u|2 dx + μα

∫
�

|u|2 dx + α

∫
∂�

|u|2 dS

= ‖∇u‖2 + μα + α‖u‖2
L2(∂�)

,
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Fig. 2. The sector of decay and angle θλ for Bα .

and therefore

Re
〈
Bαu, u

〉
� Re μα + Re α‖u‖2

L2(∂�)
,∣∣Im〈Bαu, u

〉∣∣ � | Im μα| + | Im α|‖u‖2
L2(∂�)

.

Now, let λ ∈ (0, Re μα) and compute∣∣Im〈(Bα − λ
)
u, u

〉∣∣ � | Im μα| + | Im α|‖u‖2
L2(∂�)

= | Im μα|
Re μα

Re μα + | Im α|
Re α

Re α‖u‖2
L2(∂�)

. (7.1)

Recall from Section 1 that μα = αSd/2d and hence | Im μα|/ Re μα = | Im α|/ Re α. Combining this
with (7.1), we obtain (cf. Figure 2)

∣∣Im〈(Bα − λ
)
u, u

〉∣∣ � | Im α|
Re α

(
Re μα + Re α‖u‖2

L2(∂�)

)
� | Im α|

Re α

(
Re
〈(
Bα − λ

)
u, u

〉+ λ
)

� | Im α|
Re α − λ

2−dSd

Re
〈(
Bα − λ

)
u, u

〉
.

Using standard generation theorems about analytic semigroups, the next statement follows.

Proposition 7.1. The operator −(Bα −λ) generates a bounded analytic semigroup in the sector �π
2 −θλ

,
where

θλ = arctan

( | Im α|
Re α − λ

2−dSd

)
.
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Equivalently, −Bα generates an analytic semigroup with∥∥exp
(−zBα

)∥∥ � exp(−λz) ∀z ∈ �π
2 −θλ

.

Proof. See [6, Ch. IX.1.6]. �

7.2. Decay of e−t (Aα
ε −Id)

In this section we denote Bα
ε := Aα

ε − Id. By calculations analogous to the above, we have

∣∣Im〈Bα
ε u, u

〉∣∣ � | Im α|
Re α

Re
〈
Bα

ε u, u
〉
,

that is, Bα
ε is sectorial with sector �θ0 , where θ0 = arctan(| Im α|/ Re α), and hence generates a bounded

analytic semigroup in the sector �π
2 −θ0 . In this subsection we improve this a priori result using spectral

convergence. To this end, let δ > 0 and define the compact set

Kδ := {
x + iy : x ∈ [0, Re μα], y ∈ [−| Im μα|, | Im μα|

]}
.

Note that then �θ0 ∩ {Re z � Re μα − δ} ⊂ Kδ. By [4, Th. III.2.3] one has Kδ ⊂ ρ(Bα) for every δ > 0.
Applying Corollary 3.3 we see that for every δ > 0 there exists a ε0 > 0 such that Kδ ⊂ ρ(Bα

ε ) for all
ε < ε0.

In particular we have shown that the resolvent norm ‖(Bα
ε − z)−1‖ is bounded on �θ0 ∩ {Re z �

Re μα − δ}. By a trivial calculation analogous to the previous subsection this leads to the following
statement.

Lemma 7.2. For every λ ∈ (0, Re μα − δ) one has

σ
(
Bα

ε − λ
) ⊂ �θδ

λ
, θδ

λ = arctan

( | Im μα|
Re μα − λ − δ

)
.

Furthermore, we obtain the following lemma.

Lemma 7.3. For every λ ∈ (0, Re μα − δ) one has C \ �θδ
λ

⊂ ρ(Bα
ε − λ) and there exists a M =

M(λ, δ) > 0 such that

∥∥(Bα
ε − λ − z

)−1∥∥ � M

|z| ∀z ∈ C \ �θδ
λ
.

Proof. This is obtained by combining Lemma 7.2 with the following two facts:

∣∣Im〈Bα
ε u, u

〉∣∣ � | Im α|
Re α

Re
〈
Bα

ε u, u
〉
,

∥∥(Bα
ε − z

)−1∥∥ � C on Kδ. �

By the theory of analytic semigroups (cf. [6, Ch. IX.1.6]), we immediately obtain the following corol-
lary.
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Corollary 7.4. For all λ ∈ (0, Re μα −δ), the operator Bα
ε −λ generates a bounded analytic semigroup

in the sector �π
2 −θδ

λ
.

This yields the main result of this section, as follows.

Theorem 7.5. For every δ > 0 there exists ε0 > 0 such that for every λ ∈ (0, Re μ − δ) there exists
M > 0 such that∥∥exp

(−zBα
ε

)∥∥ � M exp(−λ Re z) ∀z ∈ �θδ
λ
, ε ∈ (0, ε0).

Remark 7.6. It is straightforward to repeat the above proof for the case of Dirichlet boundary conditions
to obtain an analogous result for ‖ exp(−t (AD − Id))‖. Here, the selfadjointness of AD allows us to
choose the half-angle θ arbitrarily close to π/2.

8. Conclusion

We have shown norm-resolvent convergence in the classical perforated domain problem with Dirich-
let boundary conditions which has the interesting implication of spectral convergence (Cor. 3.3).
Some questions remain open and will be addressed in the future. While the norm ‖JεA

−1
ε −

A−1Jε‖L(L2(�ε),L2(�)) converges to 0, it is not clear from our method of proof how fast this happens.
It would be desirable to obtain a precise convergence rate. In the case of Dirichlet boundary conditions
a explicit convergence rate has been found by [10]. Another interesting question is whether in the case
� = R

d there exist gaps in the spectrum of Aε and how these depend on ε. The existence of spectral
gaps has been confirmed in two dimensions [9], but to the authors’ knowledge the higher-dimensional
case is still open.
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