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Energy decay of dissipative plate equations
with memory-type boundary conditions
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Abstract. In this paper we consider a plate equation with internal feedback and viscoelastic damping localized on a part of
the boundary. Without imposing restrictive assumptions on the time-dependent frictional damping, we establish an explicit
and general decay rate result that allows a wider class of relaxation functions and generalizes previous results existing in the
literature.
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1. Introduction

In this paper we are concerned with the following problem

utt + �2u + θ(t)h(ut ) = 0 in � × (0, ∞), (1.1)

u = ∂u

∂ν
= 0 on �0 × (0, ∞), (1.2)

−u +
∫ t

0
g1(t − s)β2u(s) ds = 0 on �1 × (0, ∞), (1.3)

∂u

∂ν
+

∫ t

0
g2(t − s)β1u(s) ds = 0 on �1 × (0, ∞), (1.4)

u(x, y, 0) = u0(x, y), ut (x, y, 0) = u1(x, y) in �, (1.5)

which is a Kirchhoff plates equation with internal frictional damping and memory conditions at a part of
the boundary. Here � is a bounded domain of R2 with a smooth boundary ∂� = �0 ∪ �1, ν = (ν1, ν2)

is the unit outward normal to ∂�, η = (−ν2, ν1) is the unit tangent positively oriented on ∂�, the
integral terms in (1.3) and (1.4) are the memories responsible for the viscoelastic damping where g1, g2

are positive functions called the relaxation functions, θ is a time dependent coefficient of the frictional
damping, and h is a specific function. We are denoting by β1, β2 the following differential operators:

β1u = �u + (1 − μ)B1u, β2u = ∂�u

∂ν
+ (1 − μ)

∂B2u

∂η
,
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where

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx, B2u = (
ν2

1 − ν2
2

)
uxy + ν1ν2(uyy − uxx)

and μ ∈ (0, 1
2) represents the Poisson coefficient. This system describes the transversal displacement

u = u(x, y, t) of a thin vibrating plate subjected to internal time-dependent frictional damping and
boundary viscoelastic damping.

The uniform stabilization of Kirchhoff plates with linear or nonlinear internal feedback, with θ ≡ 1,
was investigated by several authors. In Ammari and Tucsnak [4], Cavalcanti et al. [7], Guzman and
Tucsnak [11], Komornik [18], Pazoto et al. [39], and Vasconcellos and Teixeira [41], it was proved that
if h satisfies

c1 min
{|s|, |s|q} �

∣∣h(s)
∣∣ � c2 max

{|s|, |s| 1
q
}
,

where c1, c2 are positive constants, then for q = 1 the energy decay rate is exponential while for q > 1
we obtain a polynomial decay rate. Similar results were also obtained for boundary frictional damping
(see Horn [14], Komornik [19], Lagnese [21], Lasiecka [22], and Ji and Lasiecka [15]). Decay results for
arbitrary growth of the frictional damping term have been given by Amroun and Benaissa [5] motivated
by the works done by Lasiecka and Tataru [22], Liu and Zuazua [24], and Martinez [26,27] for damped
wave equations. They established an explicit formula for the energy decay rates that need not to be of
exponential or polynomial types. Similarly, Han and Wang [12] studied a coupled system of plate and
wave equations and used internal frictional damping terms without imposing growth conditions near zero
to achieve the stability and controllability of the system. In the presence of the time dependent coefficient
θ(t), Mustafa [35] and Mustafa and Messaoudi [36] established for the wave equation a general energy
decay result depending on both h and θ .

On the other hand, when the unique damping mechanism is given by memory conditions, we refer
to Lagnese [20] and Rivera et al. [32] who considered internal viscoelastic damping and proved that
the energy decays exponentially if the relaxation function g decays exponentially and polynomially if
g decays polynomially. The same results were obtained by Alabau-Boussouira et al. [3] for a more

general abstract equation. For boundary viscoelastic damping, if ki is the resolvent kernel of
−g′

i

gi (0)
for

i = 1, 2, Santos and Junior [40] showed that the energy decays exponentially (polynomially), provided
the resolvent kernels also decay exponentially (polynomially). In Rivera et al. [33,34] investigated a
class of abstract viscoelastic systems of the form

utt (t) + Au(t) − (
g ∗ Aβu

)
(t) = 0, (1.6)

where A is a strictly positive, self-adjoint operator with D(A) a subset of a Hilbert space and ∗ denotes
the convolution product in the variable t . The authors showed that solutions for (1.6), when 0 < β < 1,
decay polynomially even if the kernel g decays exponentially. While, in the case β = 1, the solution
energy decays at the same decay rate as the relaxation function.

Then, a natural question was raised: how does the energy behave as the kernel function does not
necessarily decay polynomially or exponentially? Han and Wang gave an answer to the above question
when treating (1.6), for β = 1, in [13]. They considered relaxation functions satisfying

g′(t) � −ξ(t)g(t), ∀t � 0, (1.7)
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where ξ : R+ → R+ is a nonincreasing differentiable function with

∣∣∣∣ξ
′(t)

ξ(t)

∣∣∣∣ � k, ∀t � 0 (1.8)

for some constant k and showed that the rate of the decay of the energy is exactly the rate of decay of g

which is not necessarily of polynomial or exponential decay type. These conditions (1.7) and (1.8) on g

where first used by Messaoudi [28,29] in studying a viscoelastic wave equation. After that, Messaoudi
and Mustafa [30] and Mustafa and Messaoudi [37] eliminated condition (1.8) and used only (1.7) to
establish more general stability results of viscoelastic Timoshenko beams. Similarly, condition (1.7)
was used by Ferreira and Messaoudi [9] to treat a nonlinear viscoelastic plate equation with a −→

p (x, t)-
Laplacian operator. We also mention the work of Alabau-Boussouira and Cannarsa [2] who considered
wave equation with memory whose relaxation function is satisfying

g′ � −χ
(
g(t)

)
,

where χ is a non-negative function, with χ(0) = χ ′(0) = 0, and χ is strictly increasing and strictly
convex on (0, k0], for some k0 > 0. They also required that

∫ k0

0

dx

χ(x)
= +∞,

∫ k0

0

x dx

χ(x)
< 1, lim

s→0+ inf
χ(s)/s

χ ′(s)
>

1

2

and proved an energy decay result. In addition to these assumptions, if

lim
s→0+ sup

χ(s)/s

χ ′(s)
< 1 and g′ = −χ

(
g(t)

)

then, in this case, an explicit rate of decay is given. Recently, the above conditions were strongly weak-
ened by Mustafa and Messaoudi [38] and an explicit and general decay rate formula was obtained.

The interaction between viscoelastic and frictional dampings was considered by several authors. Cav-
alcanti and Oquendo [8] looked into wave equation of the form

utt − �u +
∫ t

0
div

[
a(x)g(t − s)∇u(s)

]
ds + b(x)h(ut ) + f (u) = 0, x ∈ �, t > 0

and established exponential stability for g decaying exponentially and h linear and polynomial stability
for g decaying polynomially and h having a polynomial growth near zero. Using (1.7), h having no
restrictive growth assumption near the origin, with time dependent coefficient and a(x) = b(x) = 1, Liu
[25] proved a more general decay result. Similarly, Guesmia and Messaoudi [10] studied Timoshenko
systems with frictional versus viscoelastic damping and Messaoudi and Mustafa [31] studied viscoelastic
wave equation with boundary feedback and obtained general energy decay estimates. Once again, Kang
[16,17] imposed the condition (1.7) on the relaxation functions for viscoelastic dampings in plate models
which are also subject to frictional damping and they established general stability results.

Our aim in this work is to investigate (1.1)–(1.5) with both weak frictional damping and boundary
viscoelastic damping. We obtain a general relation between the decay rate for the energy (when t goes
to infinity) and the functions gi , θ , and h using resolvent kernels of general-type decay and without
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imposing any growth assumption near the origin on h. The result of this paper generalizes previous
related results where it allows a larger class of functions g and h, from which the energy decay rates are
not necessarily of exponential or polynomial types and takes into account the effect of a time dependent
coefficient θ(t). The proof is based on the multiplier method and makes use of some properties of convex
functions including the use of the general Young’s inequality and Jensen’s inequality. These convexity
arguments were introduced by Lasiecka and Tataru [23] and used by Liu and Zuazua [24] and Alabau-
Boussouira [1]. The paper is organized as follows. In Section 2, we present some notation and material
needed for our work. Some technical lemmas and the proof of our main result will be given in Section 3.

2. Preliminaries

We use the standard Lebesgue and Sobolev spaces with their usual scalar products and norms.
Throughout this paper, c is used to denote a generic positive constant. We first consider the following
hypothesis

(A1). � is a bounded domain of R2 with a smooth boundary ∂� = �0 ∪�1, where �0 and �1 are closed
and disjoint, with meas(�0) > 0, ν = (ν1, ν2) is the unit outward normal to ∂�, η = (−ν2, ν1) is the unit
tangent positively oriented on ∂�, and there exists a fixed point x0 ∈ R

2 such that, for m(x) = x − x0,
m · ν � 0 on �0 and m · ν > 0 on �1.

Remark. Hypothesis (A1) implies that there exist constants δ0 and R such that

m · ν � δ0 > 0 on �1 and
∣∣m(x)

∣∣ � R for all x ∈ �.

We denote by ki the resolvent kernel of (−g′
i/gi(0)) which satisfies

ki(t) + 1

gi(0)

(
g′

i ∗ ki

)
(t) = − 1

gi(0)
g′

i(t), ∀i = 1, 2,

where ∗ points to the convolution product

(u ∗ v)(t) =
∫ t

0
u(t − s)v(s) ds.

By differentiating Eqs (1.3) and (1.4), we arrive at the following Volterra equations:

β2u + 1

g1(0)
g′

1 ∗ β2u = 1

g1(0)
ut ,

β1u + 1

g2(0)
g′

2 ∗ β1u = − 1

g2(0)

∂ut

∂ν
.

Using the Volterra’s inverse operator and taking τi = 1
gi (0)

, for i = 1, 2, we get

β2u = τ1{ut + k1 ∗ ut}, on �1 × (0, ∞),

β1u = −τ2

{
∂ut

∂ν
+ k2 ∗ ∂ut

∂ν

}
, on �1 × (0, ∞),
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which gives, assuming throughout the paper that u0 ≡ 0,

β2u = τ1
{
ut + k1(0)u + k′

1 ∗ u
}
, on �1 × (0, ∞), (2.1)

β1u = −τ2

{
∂ut

∂ν
+ k2(0)

∂u

∂ν
+ k′

2 ∗ ∂u

∂ν

}
, on �1 × (0, ∞). (2.2)

Therefore, we use (2.1) and (2.2) instead of the boundary conditions (1.3) and (1.4), and also consider
the following assumptions.

(A2). ki : R+ → R+, for i = 1, 2, are C2 functions such that

ki(0) > 0, lim
t→∞ ki(t) = 0, k′

i(t) � 0

and there exists a positive function H ∈ C1(R+) and H is a linear function or it is a strictly increasing
and strictly convex C2 function on (0, r], r < 1, with H(0) = H ′(0) = 0, such that

k′′
i (t) � H

(−k′
i(t)

)
, (i = 1, 2) ∀t > 0. (2.3)

(A3). h : R → R is a nondecreasing C0 function and there exist constants c1, c2 > 0 such that

c1|s| �
∣∣h(s)

∣∣ � c2|s| if |s| � r,

s2 + h2(s) � H−1
(
sh(s)

)
if |s| � r.

(A4). θ : R+ → R+ is a nonincreasing C1 function.

In the sequel we assume that system (1.1)–(1.5) has a unique solution

u ∈ L∞(
R+;H 4(�) ∩ W

) ∩ W 1,∞(R+;W) ∩ W 2,∞(
R+;L2(�)

)
,

where W = {w ∈ H 2(�) : w = ∂w
∂ν

= 0 on �0}. This result can be proved, for initial data in suitable
function spaces, using standard arguments such as the Galerkin method (see [40]).

Let us define the bilinear form a(·, ·) as follows

a(u, v) =
∫

�

{
uxxvxx + uyyvyy + μ(uxxvyy + uyyvxx) + 2(1 − μ)uxyvxy

}
dx dy (2.4)

and, as meas �0 > 0, we know that
√

a(u, u) is an equivalent norm on W ; that is, for some positive
constants α and β,

α‖u‖2
H 2(�)

� a(u, u) � β‖u‖2
H 2(�)

.

We state the following lemma which will be useful in what follows.
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Lemma 2.1 ([21]). Let u and v be functions in H 4(�) and μ ∈ R. Then we have
∫

�

(
�2u

)
v dx = a(u, v) +

∫
�

{
(β2u)v − (β1u)

∂v

∂ν

}
d� (2.5)

and ∫
�

(m · ∇v)�2v dx = a(v, v) + 1

2

∫
�

m · ν[
v2

xx + v2
yy + 2μvxxvyy + 2(1 − μ)v2

xy

]
d�

+
∫

�

[
(β2v)m · ∇v − (β1v)

∂

∂ν
(m · ∇v)

]
d�. (2.6)

Now, we introduce the energy functional

E(t) := 1

2

[∫
�

|ut |2 dx + a(u, u) + τ1

∫
�1

(
k1(t)|u|2 − (

k′
1 ◦ u

))
d�

+ τ2

∫
�1

(
k2(t)

∣∣∣∣∂u

∂ν

∣∣∣∣
2

−
(

k′
2 ◦ ∂u

∂ν

))
d�

]
,

where

(f ◦ w)(t) =
∫ t

0
f (t − s)

∣∣w(t) − w(s)
∣∣2

ds.

Our main stability result is the following

Theorem 2.1. Assume that (A1)–(A4) hold. Then there exist positive constants c1, c2, c3 and ε0 such
that the solution of (1.1)–(1.5) satisfies

E(t) � c3H
−1
1

(
c1

∫ t

0
θ(s) ds + c2

)
∀t � 0, (2.7)

where

H1(t) =
∫ 1

t

1

sH ′
0(ε0s)

ds and H0(t) = H
(
D(t)

)

provided that D is a positive C1 function, with D(0) = 0, for which H0 is a strictly increasing and
strictly convex C2 function on (0, r] and

∫ +∞

0

−k′
i(s)

H−1
0 (k′′

i (s))
ds < +∞ for i = 1, 2. (2.8)

Moreover, if
∫ 1

0 H1(t) dt < +∞ for some choice of D, then we have the improved estimate

E(t) � c3G
−1

(
c1

∫ t

0
θ(s) ds + c2

)
where G(t) =

∫ 1

t

1

sH ′(ε0s)
ds. (2.9)



M.I. Mustafa / Energy decay of dissipative plate equations with memory-type boundary conditions 47

In particular, this last estimate is valid for the special case H(t) = ctp, for 1 � p < 3
2 .

Remarks.

1. Using the properties of H , one can show that the function H1 is strictly decreasing and convex on
(0, 1], with limt→0 H1(t) = +∞. Therefore, Theorem 2.1 ensures

lim
t→+∞ E(t) = 0.

2. Hypothesis (A3) implies that sh(s) > 0, for all s �= 0.
3. The condition (A3), with r = 1 and θ ≡ 1, was introduced and employed by Lasiecka and Tataru

[23] in their study of the asymptotic behavior of solutions of nonlinear wave equations with nonlin-
ear frictional boundary damping where they obtained decay estimates that depend on the solution
of an explicit nonlinear ordinary differential equation. It was also shown there that the monotonic-
ity and continuity of h guarantee the existence of the function H with the properties stated in (A3).
In our present work, we study the plate equation with both frictional damping, modulated by a time
dependent coefficient θ(t), and boundary viscoelastic damping. We investigate the influence of
these simultaneous damping mechanisms on the decay rate of the energy and establish an explicit
and general energy decay formula, depending on the resolvent kernels k1 and k2, h, and θ .

4. The usual exponential and polynomial decay rate estimates, already proved for H(t) = ctp, 1 �
p < 3/2, are special cases of our result. We will provide a “simpler” proof for these special cases.

5. The condition k′′
i � d(−k′

i)
p, 1 � p < 3/2, assumes (−k′

i(t)) � ωe−dt when p = 1 and
(−k′

i(t)) � ω

t
1

p−1
when 1 < p < 3/2. Our result allows resolvent kernels whose derivatives are not

necessarily of exponential or polynomial decay. For instance, if

k′
i(t) = − exp

(−tq
)
, i = 1, 2

for 0 < q < 1, then k′′
i (t) = H(−k′

i(t)) where, for t ∈ (0, r], r < 1,

H(t) = qt

[ln(1/t)] 1
q
−1

which satisfies hypothesis (A2). Also, by taking D(t) = tα, (2.8) is satisfied for any α > 1.
Therefore, if h satisfies (A3) with this function H , then we can use Theorem 2.1 and do some
calculations (see [38]) to deduce that the energy decays at the rate

E(t) � c exp

(
−ω

[∫ t

0
θ(s) ds

]q)
.

6. The well-known Jensen’s inequality will be of essential use in establishing our main result. If F is
a convex function on [a, b], f : � → [a, b] and j are integrable functions on �, j (x) � 0, and∫
�

j (x) dx = C > 0, then Jensen’s inequality states that

F

[
1

C

∫
�

f (x)j (x) dx

]
� 1

C

∫
�

F
[
f (x)

]
j (x) dx.
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7. Since limt→+∞ ki(t) = 0 and (−k′
i(t)) is nonnegative and nonincreasing, then we can easily

deduce that limt→+∞(−k′
i(t)) = 0. Similarly, assuming the existence of the limit, we find that

limt→+∞ k′′
i (t) = 0. Hence, there is t1 > 0 large enough such that k′

i(t1) < 0 and

max
{
ki(t), −k′

i(t), k
′′
i (t)

}
< min

{
r, H(r), H0(r)

}
, (i = 1, 2) ∀t � t1. (2.10)

As k′
i is nondecreasing, k′

i(0) < 0 and k′
i(t1) < 0, then k′

i(t) < 0 for any t ∈ [0, t1] and

0 < −k′
i(t1) � −k′

i(t) � −k′
i(0), (i = 1, 2) ∀t ∈ [0, t1].

Therefore, since H is a positive continuous function, then

a � H
(−k′

i(t)
)

� b, (i = 1, 2) ∀t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

k′′
i (t) � H

(−k′
i(t)

)
� a = a

k′
i(0)

k′
i(0) � a

k′
i(0)

k′
i(t) (i = 1, 2)

which gives, for some positive constant d,

k′′
i (t) � −dk′

i(t), (i = 1, 2) ∀t ∈ [0, t1]. (2.11)

8. If different functions H1, H2, and H3 have the properties mentioned in (A2) and (A3) such that
k′′

1 (t) � H1(−k′
1(t)), k′′

2 (t) � H2(−k′
2(t)), and s2 + h2(s) � H−1

3 (sh(s)), then there is r <

min{r1, r2, r3} small enough so that, say, H1(t) � min{H2(t), H3(t)} on the interval (0, r]. Thus,
the function H(t) = H1(t) satisfies both (A2) and (A3), ∀t � t1.

3. Proof of the main result

In this section we prove Theorem 2.1. For this purpose, we establish several lemmas.

Lemma 3.1. Under the assumptions (A1)–(A4), the energy functional satisfies, along the solution of
(1.1), the estimate

E′(t) = −θ(t)

∫
�

uth(ut ) dx − τ1

2

∫
�1

(
2|ut |2 − k′

1(t)|u|2 + k′′
1 ◦ u

)
d�

− τ2

2

∫
�1

(
2

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

− k′
2(t)

∣∣∣∣∂u

∂ν

∣∣∣∣
2

+ k′′
2 ◦ ∂u

∂ν

)
d�

� 0. (3.1)
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Proof. Multiplying the equation (1.1) by ut , integrating by parts over �, and using (2.5) and the bound-
ary conditions (2.1) and (2.2), we get

1

2

d

dt

{∫
�

|ut |2 dx + a(u, u)

}

= −
∫

�1

(β2u)ut d� +
∫

�1

(β1u)
∂ut

∂ν
d� − θ(t)

∫
�

uth(ut ) dx

= −τ1

∫
�1

u2
t − k1(0)τ1

2

d

dt

∫
�1

u2 − τ1

∫
�1

{
k′

1 ∗ u
}
ut d� − τ2

∫
�1

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

− k2(0)τ2

2

d

dt

∫
�1

∣∣∣∣∂u

∂ν

∣∣∣∣
2

− τ2

∫
�1

{
k′

2 ∗ ∂u

∂ν

}
∂ut

∂ν
d� − θ(t)

∫
�

uth(ut ) dx.

Then, making use of the identity

(f ∗ w)wt = −1

2
f (t)

∣∣w(t)
∣∣2 + 1

2
f ′ ◦ w − 1

2

d

dt

[
f ◦ w −

(∫ t

0
f (s) ds

)
|w|2

]
,

our conclusion follows. �

Now we are going to construct a Lyapunov functional L equivalent to E, with which we can show the
desired result.

Lemma 3.2. Under the assumptions (A1)–(A4), the functional

ψ(t) :=
∫

�

(m · ∇u)ut dx

satisfies, along the solution,the estimate

d

dt
ψ(t) � 1

2

∫
�1

m · ν|ut |2 d� −
∫

�

|ut |2 dx −
(

1 − εc

2

)
a(u, u)

+ 2τ 2
1

ε

∫
�1

[|ut |2 + k2
1(t)|u|2 − k1(0)

(
k′

1 ◦ u
)]

d� + c

2ε

∫
�

h2(ut ) dx

+ 2τ 2
2

ε

∫
�1

[∣∣∣∣∂ut

∂ν

∣∣∣∣
2

+ k2
2(t)

∣∣∣∣∂u

∂ν

∣∣∣∣
2

− k2(0)

(
k′

2 ◦ ∂u

∂ν

)]
d�

−
(

1

2
− εc

2

) ∫
�1

m · ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�. (3.2)

Proof. Direct computations, taking v = u in (2.6), we get

d

dt
ψ(t) =

∫
�

(m · ∇ut)ut dx +
∫

�

(m · ∇u)utt dx
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= 1

2

∫
�1

m · ν|ut |2 d� −
∫

�

|ut |2 dx − θ(t)

∫
�

(m · ∇u)h(ut) dx

− a(u, u) −
∫

�

[
(β2u)(m · ∇u) − (β1u)

∂

∂ν
(m · ∇u)

]
d�

− 1

2

∫
�

m · ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�. (3.3)

Let us examine the integrals over �0 in (3.3). Since u = ∂u
∂ν

= 0 on �0, we have B1u = B2u = 0 on �0

and

∂

∂ν
(m · ∇u) = (m · ν)�u,

u2
xx + u2

yy + 2μuxxuyy + 2(1 − μ)u2
xy = (�u)2 on �0

since

uxxuyy − (uxy)
2 = 0 on �0.

Therefore, from (3.3), we have

d

dt
ψ(t) = 1

2

∫
�1

m · ν|ut |2 d� −
∫

�

|ut |2 dx − θ(t)

∫
�

(m · ∇u)h(ut) dx

− a(u, u) + 1

2

∫
�0

m · ν(�u)2 d�

− 1

2

∫
�1

m · ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�

−
∫

�1

(β2u)(m · ∇u) d� +
∫

�1
(β1u)

∂

∂ν
(m · ∇u) d�. (3.4)

Using the Young inequality, we have

∣∣∣∣
∫

�1

(β2u)(m · ∇u) d�

∣∣∣∣ � 1

2ε

∫
�1

|β2u|2 d� + ε

2

∫
�1

|m · ∇u|2 d�, (3.5)

∣∣∣∣
∫

�1
(β1u)

∂

∂υ
(m · ∇u) d�

∣∣∣∣ � 1

2ε

∫
�1

|β1u|2 d� + ε

2

∫
�1

∣∣∣∣ ∂

∂υ
(m · ∇u)

∣∣∣∣
2

d�, (3.6)

−θ(t)

∫
�

(m · ∇u)h(ut) dx � c

2ε

∫
�

h2(ut ) dx + ε

2

∫
�

|m · ∇u|2 dx, (3.7)

where ε is a positive constant. Using the trace theory, we obtain

∫
�1

|m · ∇u|2 d� +
∫

�1

∣∣∣∣ ∂

∂ν
(m · ∇u)

∣∣∣∣
2

d� +
∫

�

|m · ∇u|2 dx



M.I. Mustafa / Energy decay of dissipative plate equations with memory-type boundary conditions 51

� ca(u, u) + c

∫
�1

m · ν[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�. (3.8)

Substituting the inequalities (3.5)–(3.8) into (3.4) and taking into account the fact that m · ν � 0 on �0,
we have

d

dt
ψ(t) � 1

2

∫
�1

m · ν|ut |2 d� −
∫

�

|ut |2 dx −
(

1 − εc

2

)
a(u, u)

+ 1

2ε

∫
�1

|β1u|2 d� + 1

2ε

∫
�1

|β2u|2 d� + c

2ε

∫
�

h2(ut ) dx

−
(

1

2
− εc

2

) ∫
�1

m · ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�.

Since, by Hölder inequality,

(
k′

1 ∗ u
)
(t) = −

∫ t

0
k′

1(t − s)
(
u(t) − u(s)

)
ds + k1(t)u(t) − k1(0)u(t)

�
[
−

∫ t

0
k′

1(s) ds

] 1
2 [(

k′
1 ◦ u

)
(t)

] 1
2 + k1(t)u(t) − k1(0)u(t)

�
[−k1(0)

(
k′

1 ◦ u
)
(t)

] 1
2 + k1(t)u(t) − k1(0)u(t)

then

β2u � τ1
{
ut + k1(t)u + [−k1(0)

(
k′

1 ◦ u
)
(t)

] 1
2
}
,

similarly

β1u � −τ2

{
∂ut

∂ν
+ k2(t)

∂u

∂ν
+

[
−k2(0)

(
k′

2 ◦ ∂u

∂ν

)
(t)

] 1
2
}
.

Consequently, our conclusion easily follows. �

Proof of Theorem 2.1. For N > 0, we define

L(t) := NE(t) + ψ(t).

Combining (3.1) and (3.2) and using the facts that k′
i < 0, k′′

i > 0 and |m · ν| � R, we obtain

L′(t) � −
(

τ1N − R

2
− 2τ 2

1

ε

)∫
�1

|ut |2 d� −
(

τ2N − 2τ 2
2

ε

) ∫
�1

∣∣∣∣∂ut

∂ν

∣∣∣∣
2

d�

−
(

1 − εc

2

)
a(u, u) + 2τ 2

1

ε

∫
�1

k2
1(t)|u|2 d� + 2τ 2

2

ε

∫
�1

k2
2(t)

∣∣∣∣ ∂u

∂υ

∣∣∣∣
2

d�
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−
∫

�

|ut |2 dx − 2τ 2
1 k1(0)

ε

∫
�1

k′
1 ◦ u d� − 2τ 2

2 k2(0)

ε

∫
�1

k′
2 ◦ ∂u

∂ν
d�

−
(

1

2
− εc

2

) ∫
�1

m · ν
[
u2

xx + u2
yy + 2μuxxuyy + 2(1 − μ)u2

xy

]
d�

+ c

2ε

∫
�

h2(ut ) dx. (3.9)

Then choosing 0 < ε < 1
c
, and N large enough so that

τ1N − R

2
− 2τ 2

1

ε
> 0, τ2N − 2τ 2

2

ε
> 0,

so, we arrive at

L′(t) � −
∫

�

|ut |2 dx − 1

2
a(u, u) + c

∫
�

h2(ut ) dx + 2ι2
1

ε

∫
�1

k2
1(t)|u|2 d�

+ 2ι2
2

ε

∫
�1

k2
2(t)

∣∣∣∣∂u

∂ν

∣∣∣∣
2

d� − c

∫
�1

k′
1 ◦ u d� − c

∫
�1

k′
2 ◦ ∂u

∂ν
d�,

which, using Trace theory and the fact that limt→∞ ki(t) = 0, for i = 1, 2, yields, for large t1,

L′(t) � −mE(t) − c

∫
�1

k′
1 ◦ u d� − c

∫
�1

k′
2 ◦ ∂u

∂ν
d� + c

∫
�

h2(ut ) dx, ∀t � t1. (3.10)

On the other hand, we can choose N even larger (if needed) so that

L(t) ∼ E(t), (3.11)

which means that, for some constants α1, α2 > 0,

α1E(t) � L(t) � α2E(t).

Now, we consider the following partition of �

�1 = {
x ∈ � : |ut | � r

}
, �2 = {

x ∈ � : |ut | > r
}

and use (A3), (A4), (2.11), and (3.1) to conclude that, for any t � t1,

−θ(t)

∫ t1

0
k′

1(s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds + cθ(t)

∫
�2

h2(ut ) dx

� c

d

∫ t1

0
k′′

1 (s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds + cθ(t)

∫
�2

uth(ut ) dx

� −cE′(t), (3.12)
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−θ(t)

∫ t1

0
k′

2(s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds

� c

d

∫ t1

0
k′′

2 (s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

� −cE′(t). (3.13)

Next, we take F(t) = θ(t)L(t) + 2cE(t), which is clearly equivalent to E(t) as θ is nonincreasing, and
use (3.10) and (3.12)–(3.13), to get, for all t � t1,

F ′(t) � −mθE(t) − cθ

∫ t

t1

k′
1(s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

− cθ

∫ t

t1

k′
2(s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds + cθ

∫
�1

h2(ut ) dx. (3.14)

(I) H(t) = ctp and 1 � p < 3
2 : This means, using Holder’s inequality, that

cθ

∫
�1

h2(ut ) dx � cθ

∫
�1

[
uth(ut )

] 1
p dx � cθ

[∫
�1

uth(ut ) dx

] 1
p

� cθ
p−1
p

[−E′(t)
] 1

p .

• Case 1. p = 1: Estimate (3.14) yields

F ′(t) � −mθ(t)E(t) + cθ(t)

∫
�1

(
k′′

1 ◦ u
)
(t) d� + cθ(t)

∫
�1

k′′
2 ◦ ∂u

∂ν
− cE′(t)

� −mθ(t)E(t) − cE′(t), ∀t � t1,

which gives

(F + cE)′(t) � −mθ(t)E(t), ∀t � t1.

Hence, using the fact that F + cE ∼ E, we easily obtain

E(t) � c′e−c
∫ t

0 θ(s) ds = c′G−1

(
c

∫ t

0
θ(s) ds

)
.

• Case 2. 1 < p < 3
2 : One can easily show that

∫ +∞
0 [−k′

i(s)]1−δ0 ds < +∞ for any δ0 < 2 − p

and i = 1, 2. Using this fact (3.1), and the trace theory and choosing t1 even larger if needed,
we deduce that, for all t � t1,

η(t) :=
∫ t

t1

[−k′
1(s)

]1−δ0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

� 2
∫ t

t1

[−k′
1(s)

]1−δ0

∫
�1

(∣∣u(t)
∣∣2 + ∣∣u(t − s)

∣∣2)
d� ds
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� cE(0)

∫ t

t1

[−k′
1(s)

]1−δ0
ds < 1 (3.15)

and

γ (t) :=
∫ t

t1

[−k′
2(s)

]1−δ0

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds

� 2
∫ t

t1

[−k′
2(s)

]1−δ0

∫
�1

∣∣∣∣∂u(t)

∂ν

∣∣∣∣
2

+
∣∣∣∣∂u(t − s)

∂ν

∣∣∣∣
2

d� ds

� cE(0)

∫ t

t1

[−k′
2(s)

]1−δ0
ds < 1. (3.16)

Then, Jensen’s inequality (3.1), hypothesis (A2), and (3.15) lead to

−
∫ t

t1

k′
1(s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

=
∫ t

t1

[−k′
1(s)

]δ0
[−k′

1(s)
]1−δ0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

=
∫ t

t1

[−k′
1(s)

](p−1+δ0)(
δ0

p−1+δ0
)[−k′

1(s)
]1−δ0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

� η(t)

[
1

η(t)

∫ t

t1

[−k′
1(s)

](p−1+δ0)
[−k′

1(s)
]1−δ0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

] δ0
p−1+δ0

�
[∫ t

t1

[−k′
1(s)

]p

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

] δ0
p−1+δ0

� c

[∫ t

t1

k′′
1 (s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

] δ0
p−1+δ0

� c
[−E′(t)

] δ0
p−1+δ0 .

Similarly

−
∫ t

t1

k′
2(s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds � c
[−E′(t)

] δ0
p−1+δ0 .

Then, particularly for δ0 = 1
2 , we find that (3.14) becomes

F ′(t) � −mθE(t) + cθ
[−E′(t)

] 1
2p−1 + cθ

p−1
p

[−E′(t)
] 1

p .

Now, we multiply by E2p−2(t) to get, using (3.1),

(
FE2p−2

)′ � F ′(t)E2p−2 � −mθE2p−1 + cθE2p−2
[−E′] 1

2p−1 + cθ
p−1
p E2p−2

[−E′] 1
p .
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Then, Young’s inequality gives

(
FE2p−2

)′ � −mθE2p−1(t) + εθE2p−1(t) + Cεθ
(−E′(t)

) + δθE2p + Cδ

(−E′(t)
)
.

Consequently, as E2p(t) � E(0)E2p−1(t), picking ε + δE(0) < m, we obtain

F ′
0(t) � −m′θ(t)E2p−1(t),

where F0 = FE2p−2 + CE ∼ E. Hence we have, for some a0 > 0,

F ′
0(t) � −a0θ(t)F

2p−1
0 (t)

from which we easily deduce that

E(t) � a

(a′ ∫ t

0 θ(s) ds + a′′)
1

2p−2

. (3.17)

By recalling that p < 3/2 and using (3.17), we find that
∫ +∞

0 θ(s)E(s) ds < +∞. Hence, by
noting that

θ(t)

∫ t

0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds � c

∫ t

0
θ(s)E(s) ds,

θ(t)

∫ t

0

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds � c

∫ t

0
θ(s)E(s) ds,

estimate (3.14) gives

F ′(t) � −mθE(t) + cθ

∫
�1

([−k′
1

]p· 1
p ◦ u

)
(t) d� + cθ

∫
�1

([−k′
2

]p· 1
p ◦ ∂u

∂ν

)
(t) d�

+ cθ
p−1
p

[−E′(t)
] 1

p

� −mθE(t) + cθ
1
p

[∫
�1

([−k′
1

]p ◦ u
)
(t) d�

] 1
p

+ cθ
1
p

[∫
�1

([−k′
2

]p ◦ ∂u

∂ν

)
(t) d�

] 1
p

+ cθ
p−1
p

[−E′(t)
] 1

p

� −mθE(t) + cθ
p−1
p

[∫
�1

(
k′′

1 ◦ u
)
(t) d�

] 1
p

+ cθ
p−1
p

[∫
�1

(
k′′

2 ◦ ∂u

∂ν

)
(t) d�

] 1
p

+ cθ
p−1
p

[−E′(t)
] 1

p

� −mθE(t) + cθ
p−1
p

[−E′(t)
] 1

p .
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Therefore, repeating the above steps, with multiplying by Ep−1(t), we arrive at

E(t) � a

(a′ ∫ t

0 θ(s) ds + a′′)
1

p−1

= cG−1

(
c′

∫ t

0
θ(s) ds + c′′

)
.

(II) The general case: We define I (t) by

I (t) :=
∫ t

t1

−k′
1(s)

H−1
0 (k′′

1 (s))

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds,

where H0 is such that (2.8) is satisfied. As in (3.15), we find that I (t) satisfies, for all t � t1,

I (t) < 1. (3.18)

We also assume, without loss of generality that I (t) > 0, for all t > t1; otherwise (3.14) yields
an exponential decay. In addition, we define ξ(t) by

ξ(t) :=
∫ t

t1

k′′
1 (s)

−k′
1(s)

H−1
0 (k′′

1 (s))

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

and infer from (A2) and the properties of H0 and D that

−k′
i(s)

H−1
0 (k′′

i (s))
� −k′

i(s)

H−1
0 (H(−k′

i(s)))
= −k′

i(s)

D−1(−k′
i(s))

� k0 ∀i = 1, 2,

for some positive constant k0. Then, using (3.1) and choosing t1 even larger (if needed), one can
easily see that ξ(t) satisfies, for all t > t1,

ξ(t) � k0

∫ t

t1

k′′
1 (s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

� cE(0)

∫ t

t1

k′′
1 (s) � −ck′

1(t1)E(0)

<
1

3
min

{
r, H(r), H0(r)

}
. (3.19)

Since H0 is strictly convex on (0, r] and H0(0) = 0, then

H0(μx) � μH0(x)

provided 0 � μ � 1 and x ∈ (0, r]. The use of this fact, hypothesis (A2), (2.10), (3.18), (3.19),
and Jensen’s inequality leads to

ξ(t) = 1

I (t)

∫ t

t1

I (t)H0
[
H−1

0

(
k′′

1 (s)
)] −k′

1(s)

H−1
0 (k′′

1 (s))

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds
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� 1

I (t)

∫ t

t1

H0
[
I (t)H−1

0

(
k′′

1 (s)
)] −k′

1(s)

H−1
0 (k′′

1 (s))

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

� H0

(
1

I (t)

∫ t

t1

I (t)H−1
0

(
k′′

1 (s)
) −k′

1(s)

H−1
0 (k′′

1 (s))

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

)

= H0

(
−

∫ t

t1

k′
1(s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds

)
.

This implies that

−
∫ t

t1

k′
1(s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds � H−1
0

(
ξ(t)

)
. (3.20)

We also define

φ(t) :=
∫ t

t1

−k′
2(s)

H−1
0 (k′′

2 (s))

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds,

χ(t) :=
∫ t

t1

k′′
2 (s)

−k′
2(s)

H−1
0 (k′′

2 (s))

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds.

We similarly deduce, for all t > t1, that

φ(t) < 1

and

χ(t) <
1

3
min

{
r, H(r), H0(r)

}
. (3.21)

Repeating the above steps, we arrive at

−
∫ t

t1

k′
2(s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds � H−1
0

(
χ(t)

)
. (3.22)

Now we estimate the last integral in (3.14). First, we can assume that r is small enough such that

sh(s) � 1

3
min

{
r, H(r), H0(r)

}
for all |s| � r. (3.23)

Then, with S(t) defined by

S(t) := 1

|�1|
∫

�1

uth(ut ) dx.
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(A3) and Jensen’s inequality give

H−1
(
S(t)

)
� c

∫
�1

H−1
(
uth(ut )

)
dx � c

∫
�1

h2(ut ) dx. (3.24)

Inserting the estimates (3.20), (3.22), and (3.24) into (3.14), we obtain

F ′(t) � −mθ(t)E(t) + cθ(t)
[
H−1

0

(
ξ(t)

) + H−1
0

(
χ(t)

) + H−1
(
S(t)

)]
, ∀t � t1.

One can easily make use of the properties of H, D, H0 and the fact that H−1
0 (S(t)) =

D−1(H−1(S(t))), D−1(0) = 0, and H−1(S(t)) � r to deduce, for some positive constant c,
that H−1(S(t)) � cH−1

0 (S(t)). Therefore

F ′(t) � −mθ(t)E(t) + cθ(t)
[
H−1

0

(
ξ(t)

) + H−1
0

(
χ(t)

) + H−1
0

(
S(t)

)]
� −mθ(t)E(t) + cθ(t)H−1

0

(
ξ(t) + χ(t) + S(t)

)
. (3.25)

Now, for ε0 < r and c0 > 0, using (3.25), and the fact that E′ � 0, H ′
0 > 0, H ′′

0 > 0 on (0, r], we
find that the functional F1, defined by

F1(t) := H ′
0

(
ε0

E(t)

E(0)

)
F(t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F1(t) � E(t) � α2F1(t) (3.26)

and, for all t � t1,

F ′
1(t) = ε0

E′(t)
E(0)

H ′′
0

(
ε0

E(t)

E(0)

)
F(t) + H ′

0

(
ε0

E(t)

E(0)

)
F ′(t) + c0E

′(t)

� −mθE(t)H ′
0

(
ε0

E(t)

E(0)

)
+ cθH ′

0

(
ε0

E(t)

E(0)

)
H−1

0

(
ξ(t) + χ(t) + S(t)

) + c0E
′(t).

(3.27)

Let H ∗
0 be the convex conjugate of H0 in the sense of Young (see [6] pp. 61–64), then

H ∗
0 (s) = s

(
H ′

0

)−1
(s) − H0

[(
H ′

0

)−1
(s)

]
, if s ∈ (

0, H ′
0(r)

]
(3.28)

and H ∗
0 satisfies the following Young’s inequality

AB � H ∗
0 (A) + H0(B), if A ∈ (

0, H ′
0(r)

]
, B ∈ (0, r]. (3.29)
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With A = H ′
0(ε0

E(t)

E(0)
) and B = H−1

0 (ξ(t) + χ(t) + S(t)), using (3.1), (3.19), (3.21), (3.23), and
(3.27)–(3.29), we arrive at

F ′
1(t) � −mθ(t)E(t)H ′

0

(
ε0

E(t)

E(0)

)
+ cθ(t)H ∗

1

(
H ′

0

(
ε0

E(t)

E(0)

))

+ cθ(t)
(
ξ(t) + χ(t) + S(t)

) + c0E
′(t)

� −mθ(t)E(t)H ′
0

(
ε0

E(t)

E(0)

)
+ cε0θ(t)

E(t)

E(0)
H ′

0

(
ε0

E(t)

E(0)

)
− cE′(t) + c0E

′(t).

Consequently, with a suitable choice of ε0 and c0, we obtain, for all t > t1,

F ′
1(t) � −τθ(t)

(
E(t)

E(0)

)
H ′

0

(
ε0

E(t)

E(0)

)
= −τθ(t)H2

(
E(t)

E(0)

)
, (3.30)

where H2(t) = tH ′
0(ε0t).

Since H ′
2(t) = H ′

0(ε0t)+ ε0tH
′′
0 (ε0t), then, using the strict convexity of H0 on (0, r], we find that

H ′
2(t), H2(t) > 0 on (0, 1]. Thus, with

R(t) = α1F1(t)

E(0)
,

taking in account (3.26) and (3.30), we have

R(t) ∼ E(t) (3.31)

and, for some c1 > 0,

R′(t) � −c1θ(t)H2
(
R(t)

)
, ∀t > t1.

Considering H1(t) = ∫ 1
t

1
H2(s)

ds, we deduce that (H1(R))′(t) > 0, ∀t � t1, which implies that
H1(R(t)), t � t1, is increasing. Thus,

k1

∫ t

t1

θ(s) ds �
∫ t

t1

(
H1(R)

)′
(s) ds � H1

(
R(t)

) − H1
(
R(t1)

)
,

and so, for some c2 > 0,

R(t) � H−1
1

(
c1

∫ t

t1

θ(s) ds + c2

)
, ∀t � t1. (3.32)

Here, we used, based on the properties of H2, the fact that H1 is strictly decreasing on (0, 1].
Using (3.31)–(3.32) and by virtue of continuity and boundedness of E and θ , we obtain (2.7).



60 M.I. Mustafa / Energy decay of dissipative plate equations with memory-type boundary conditions

Moreover, if
∫ 1

0 H1(t) dt < +∞, then
∫ +∞

0 H−1
1 (t) dt < +∞, and so, by (2.7),

∫ +∞
0 E(t) dt <

+∞. Then, we have

∫ t

0

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds � c

∫ t

0
E(s) ds < +∞,

∫ t

0

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds � c

∫ t

0
E(s) ds < +∞.

Therefore, we can repeat the same procedures with

I (t) :=
∫ t

t1

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds,

φ(t) :=
∫ t

t1

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds

and

ξ(t) :=
∫ t

t1

k′′
1 (s)

∫
�1

∣∣u(t) − u(t − s)
∣∣2

d� ds,

χ(t) :=
∫ t

t1

k′′
2 (s)

∫
�1

∣∣∣∣∂u(t)

∂ν
− ∂u(t − s)

∂ν

∣∣∣∣
2

d� ds

to establish (2.9).
�
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