Argument & Computation -1 (2024) 1-7 1
DOI 10.3233/AAC-230019

10S Press

CORRECTED PROOF

pygarg: A Python engine for argumentation

Jean-Guy Mailly
IRIT, Université Toulouse Capitole, France
E-mail: jean-guy.mailly @irit.fr

Abstract. Recent advancements in algorithms for abstract argumentation make it possible now to solve reasoning problems
even with argumentation frameworks of large size, as demonstrated by the results of the various editions of the International
Competition on Computational Models of Argumentation (ICCMA). However, the solvers participating to the competition may
be hard to use for non-expert programmers, especially if they need to incorporate these algorithms in their own code instead of
simply using the command-line interface. Moreover, some ICCMA solvers focus on the ICCMA tracks, and do not implement
algorithms for other problems. In this paper we describe pygarg, a Python implementation of the SAT-based approach used in
the argumentation solver CoQuiAAS. Contrary to CoQuiAAS and most of the participants to the various editions of ICCMA,
pygarg incorporates all problems that have been considered in the main track of any edition of ICCMA. We show how to
easily use pygarg via a command-line interface inspired by ICCMA competitions, and then how it can be used in other Python
scripts as a third-party library.

Keywords: Abstract argumentation, SAT-based solver, Python software

1. Introduction

Abstract argumentation [11] provides a simple framework for representing conflicting pieces of in-
formation and deducing which of them can be accepted. In his seminal paper, Dung shows how it can
be used to represent problems such as non-monotonic reasoning or stable marriage problems. Recent
works show various other applications like fair allocation of resources [20] or explainability of (black
box) classification models [1]. Despite the generally high complexity of argumentation reasoning [13],
recent advancements in SAT-based solving techniques for argumentation [18] have permitted to handle
harder instances and problems, as can be seen from the results of the International Competition on Com-
putational Models of Argumentation ICCMA) [15]. However, from a practical point of view, the solvers
participating to the competition tend to focus on the problems that are part of the competition track. This
means, for instance, that most of the solvers that participated to the last editions of ICCMA (in 2021 and
2023) may not solve the extension enumeration task. If a user requires several types of reasoning tasks,
he may need to use different argumentation solvers in the same project, which may increase the difficulty
especially for non-expert programmers. This may make it difficult for some part of the community to
actually implement and test their ideas. This is why we propose pygarg, a Python implementation of
the SAT-based algorithms initially proposed in CoQuiAAS [18],' the solver that won the first edition of
ICCMA in 2015.> While pygarg can be used with a command-line interface inspired by the ICCMA
requirements, it is also easy to incorporate it as a third-party library in any Python script. So, anyone in

Notice that most of these SAT-based techniques are also incorporated in Crustalbri, which won several tracks at [CCMA
2023. See https://github.com/crillab/crustabri.

Zhttp://argumentationcompetition.org/2015/index.html

1946-2166 © 2024 — The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:jean-guy.mailly@irit.fr
https://github.com/crillab/crustabri
http://argumentationcompetition.org/2015/index.html
https://creativecommons.org/licenses/by-nc/4.0/

2 J.-G. Mailly / pygarg: A Python engine for argumentation

need of solving problems for abstract argumentation can use pygarg for problems such as deciding the
(credulous or skeptical) acceptability of an argument, computing one or all the extensions, or counting
the extensions, for Dung’s semantics [11], the semi-stable [8] and ideal semantics [12], with a single
tool.

Section 2 recalls basic notions of abstract argumentation. Section 3 describes the design of pygarg,
and how to use it either as a command-line tool or in one’s own script. Section 4 concludes the paper.

2. Background notions

We start with a reminder of basic notions of abstract argumentation.

Definition 1. An abstract argumentation framework (AF) [11] is a directed graph F = (A, R) where
A is the (finite) set of arguments and R C A x A is the attack relation.

Dung does not assume the finiteness of the set of arguments, however it is the case for our implemen-
tation. Notice that the set of argument can be empty. We say that a € A (respectively S C A) attacks
b € A when (a,b) € R (respectively some a € § attacks b). Then, a set of arguments S defends an
argument a if S attacks all the arguments attacking a. Classical reasoning with AFs is based on the no-
tion of extensions, i.e. sets of jointly acceptable arguments. An extension must usually satisfy two basic
properties: S C A is conflict-free if Va, b € S, (a,b) ¢ R;and S C A is self-defending if S defends all
its elements. A set satisfying both these properties is admissible. We write c¢f(F) and ad(F) for the sets
of conflict-free and admissible sets of F. Then, classical Dung’s semantics [11] are defined as follows.

Definition 2. Let 7 = (A, R) be an AF. Then, the set S C A is:

a complete extension if S € ad(F) and S contains all the arguments that it defends;
a preferred extension if S is a C-maximal admissible set;

a stable extension if S € cf(F) and S attacks all the arguments in A4 \ S;

a grounded extension if S is a C-minimal complete extension.

We use co(F), pr(F), st(F) and gr(F) for these sets of extensions. It is well-known [11] that
|gr(F)| = 1 for any AF, that st(F) C pr(F), and preferred extensions also correspond to C-maximal
complete extensions. Finally, from all the semantics studied in this paper, only the stable semantics may
collapse, i.e. for any o # st, o(F) # @ for any AF. From the preferred semantics, one can define a
“more skeptical” semantics as follows.

Definition 3. Let 7 = (A, R) be an AF. Then, the set S C A is an ideal extension [12] if it is a
C-maximal admissible set included in all the preferred extensions.

We write id(F) the set of ideal extensions of an AF. Similarly to the grounded semantics, the ideal
extension is unique for any AF. Finally, we also focus on one last semantics, based on the notion of
range. Given an AF F = (A, R) and a € A, we write a™ = {b € A|(a, b) € R} the set of arguments
attacked by a. We generalize it to sets, with ST = | s a™ for the set of arguments attacked by S. The
range of Sis S® = S U S, i.e. the set of arguments which are either members of S or attacked by S.

Definition 4. Let 7 = (A, R) be an AF. Then, the set S C A is a semi-stable extension [8]if § € co(F)
and the range of S is C-maximal among the ranges of all complete extensions of F.

J.-G. Mailly / pygarg: A Python engine for argumentation 3

—®

O-0-GrD-E(
o)

Fig. 1. An example of AF F.

g
G-

We write sst(F) for the semi-stable extensions. Notice that st(F) C sst(F), and if st(F) # ¢ then
both semantics coincide, but sst(F) # @ even when there is no stable extension.

Example 1. Let 7 = (A, R) be the AF shown in Fig. 1. Its complete extensions are co(F) =
{{a1}, {a1, a10}, {a1, a3, a0}, {a1, a4, as, ajp}}. Among them, the preferred extensions are pr(F) =
{{a1, a3, a1}, {a1, aq, ae, ajp}} (the C-maximal ones), and the grounded extension is gr(F) = {{a;}}
(the C-minimal one). Among the preferred extensions, there is no stable extension (because of the self-
attacking argument ag), and only one semi-stable extension st(F) = {{ay, a4, ae, a10}}, which is also the
unique semi-stable extension in this case. Finally, since the intersection of the preferred extensions is
{a1, a10}, which is an admissible set, we deduce that the ideal extension is id(F) = {{a;, ai0}}.

Reasoning with these semantics is generally hard, with complexity up to the second level of the poly-
nomial hierarchy, depending on the semantics and the exact decision problem [13]. However, various
implementations based on SAT solvers have been proposed for reasoning with abstract argumentation,
mainly based on the logical encoding by Besnard and Doutre [3]. Describing in details these algorithms
is out of the scope of this paper, but we refer the interested reader to [18], since our work is essentially
a Python implementation of the SAT-based approach from CoQuiAAS.

3. Describing pygarg

pygarg is an open-source software,” implemented in Python, relying on PySAT [16] for performing
calls to SAT solvers. In this section, we describe how pygarg can be used, either as a command-line
tool, or as a library integrated to another Python code.

3.1. Using pygarg as a command-line tool

The source code of pygarg is based on five Python files:

e main .py (in the main package) provides the command-line interface of the software,
e in the dung package,

* apx_parser.py provides tools for parsing an APX file [14] (as used notably in ICCMA 2015,
2017, 2019 and 2021) into an argumentation framework usable by the solvers,

* dimacs parser.py provides tools for parsing a Dimacs file [17] (as used in ICCMA 2023)
into an argumentation framework usable by the solvers,

3pygarg is available online: https:/github.com/jgmailly/pygarg, under the GNU Lesser General Public License version 3.
It is also available in the Python Package Index and can be installed with the commande line pip install pygarg.

https://github.com/jgmailly/pygarg

4 J.-G. Mailly / pygarg: A Python engine for argumentation

python3 main.py -p EE-CO -fo apx -f test.apx
al

al a4 a6

al a3

% 2 = »

Fig. 2. Enumerating extensions with pygarg on the command-line.

args = ["al", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "al0"]

atts = [["al", "a2"], ["a2", "a3"], ["a3", "a4"], ["a3", "a9"],
["a4", "a3"], ["ad4", "aS5"], ["a4", "a9"], ["a5", "a6"],
["a6", "a7"], ["a7", "aS5"], ["a8", "a8"], ["a9", "alO0"],
["al0", "a9"]]

Listing 1. Python data structure for the sets of arguments and attacks.

* encoding.py provides the tools used to translate argumentation problems into SAT solving,
* gsolver.py provides the functions for solving argumentation reasoning tasks.

Using the main .py file, one can use a command-line interface reminiscent of the ICCMA
requirements, which is described in details in the README file of the software. In summary, one can use
the command-line options:

e -p PROBLEM to define the problem to be solved, with PROBLEM being XX -YY where XX is one of
DC, DS, SE, EE, CE (for credulous acceptability, skeptical acceptability, computing some extension,
enumerating extensions and counting extensions) and YY must be one of CF, AD, ST, CO, PR, GR,
ID, SST corresponding to o € {cf, ad, st, co, pr, gr, id, sst},

e -fo FORMAT to define the format of the input file describing an AF, which must be equal to apx
or dimacs,

e -f FILENAME to specify the path to the input file,

e -a ARGNAME to specify the name of the argument to be checked (for DC and DS problems).

The output of these commands follows the requirements of ICCMA 2023. This means that (when
possible), an extension is provided as a witness for the (non-)acceptability of an argument, in a line
starting with w. The same syntax is used for providing one (or each) extension of the AF. For instance,
if test . apx corresponds to the AF from Fig. 1, we obtain the result presented at Fig. 2.

In case there is an empty extension, a line with only w will be printed.

3.2. Using pygarg in another Python program

Now we focus on how to use pygarg in one’s own Python code. The data structures used to repre-
sent an AF are simply a list of strings (representing the arguments names), and a list of lists of strings
(representing the attacks). For instance, the AF from Fig. 1 corresponds to the structure from Listing 1.

Instead of manually constructing the list of arguments and attacks, one can use the
parse (filename) function provided in both apx parser.py and dimacs parser.py. For
instance, Listing 2 shows how to parse an apx file.

J.-G. Mailly / pygarg: A Python engine for argumentation

import pygarg.dung.apx_parser
args , atts = apx_parser.parse("test.apx")

Listing 2. Parsing a text file with pygarg.

from pygarg.dung import solver as solver
from pygarg.dung import apx_parser as parser

args , atts = parser.parse("test.apx")
for sem in ["CO"., "PR". "GR", "ST", "SST"., "ID"]:
print(f"{sem}—extensions:_", end="")

print(solver.extension_enumeration(args, atts, sem))

Fig. 3. Enumerating extensions with pygarg imported in one’s own code.

CO-extensions: [['al'], ['al', 'ale'], ['al', 'a4', 'a6', 'al0'l, ['al', 'a3', 'ale'l]
PR-extensions: [['al', 'a4', 'aé', 'ale@'l], ['al', 'a3', 'ale'l]

GR-extensions: [['al']]

ST-extensions: []

SST-extensions: [['al', 'a4', 'aé', 'ale']]

ID-extensions: [['al', 'al@']]

Fig. 4. Result of running the extension enumeration.

Then, one needs to focus on some functions provided in the file solver.py:

e credulous acceptability(args, atts, argname, sem) determines whether the

argument argname is credulously accepted under the semantics sem,

e skeptical acceptability(args, atts, argname, sem) determines whether the

argument argname is skeptically accepted under the semantics sem,
e compute some_ extension(args, atts, sem) computesone sem-extension,
e extension enumeration(args, atts, sem) enumerates all the sem-extensions,
e extension counting(args, atts, sem) counts the number of sem-extensions.

In these functions, the sem argument must be a string describing the semantics, using the same con-

ventions as the command-line interface (for instance, the complete semantics is described by "CO™).

Example 2. Continuing the previous example, Fig. 3 shows how we enumerate the extensions of the AF

from Fig. 1, for the semantics o € {co, pr, gr, st, sst, id}. The result is shown in Fig. 4.

4. Discussion

As far as we know, the most similar implementation of reasoning tasks for abstract argumentation is
PyArg [6,22]. However, the focus of PyArg is not on efficient algorithms, but rather on its graphical
interface* and various other advanced features like computing explanations of acceptability or structured
argumentation, which are not included in the current version of pygarg. For this reason, the algorithms

4See https:/pyarg.npai.science.uu.nl.

https://pyarg.npai.science.uu.nl

6 J.-G. Mailly / pygarg: A Python engine for argumentation

included in this platform are more “naive” (for instance they are not based on SAT solving techniques),
and thus they do not scale up as well as SAT-based algorithms. This is not a major problem for the
purpose of PyArg, which is visualisation (and one can assume that users interested in visualising graphs
do not use large graphs with dozens or hundreds of arguments). An empirical evaluation [21] shows
that pygarg clearly outperforms PyArg for all tasks except the ones related to the (polynomially
computable) grounded semantics.

For future work, we envision various possible directions. A first one would be to replace “naive”
SAT-based algorithms by more efficient ones when possible (for instance, the current implementation
of skeptical acceptability under the preferred semantics and reasoning with the ideal semantics is based
on the enumeration of preferred extensions, but it could benefit from the techniques proposed by [24]).
We are also interested in implementing algorithms for other semantics (like the stage semantics [25],
or the more challenging semantics based on weak admissibility [2]), or other problems (like verifying
if a set of arguments is an extension). Still in line with recent ICCMA competitions, we would like to
incorporate techniques for dynamic re-computation of extensions when an AF evolves [4], or approxi-
mation algorithms (in the spirit of [10]). Other problems related to extension-based semantics could be
added, like counting the number of extensions (not) containing a given argument. The labelling-based [7]
counterpart of the problems already implemented could also be added. Finally, more long term projects
include the integration of gradual and ranking-based semantics [5], as well as more general argumenta-
tion frameworks like Bipolar AFs [9], Strength-based AFs [23] or Incomplete AFs [19].

Acknowledgement

This work is supported by the ANR project AGGREEY (ANR-22-CE23-0005) and the chair AIDAL
(ANR-22-CPJ1-0061-01).

References

[1] L. Amgoud, Non-monotonic explanation functions, in: Proceedings of the 16th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2021, Lecture Notes in Computer Science,
Vol. 12897, Springer, 2021, pp. 19-31. doi:10.1007/978-3-030-86772-0_2.

[2] R. Baumann, G. Brewka and M. Ulbricht, Shedding new light on the foundations of abstract argumentation: Modulariza-
tion and weak admissibility, Artif. Intell. 310 (2022), 103742. doi:10.1016/j.artint.2022.103742.

[3] P. Besnard and S. Doutre, Checking the acceptability of a set of arguments, in: /0th International Workshop on Non-
monotonic Reasoning (NMR 2004), 2004, pp. 59-64, http://www.pims.math.ca/science/2004/NMR/papers.html.

[4] S. Bistarelli, L. Kotthoff, F. Santini and C. Taticchi, Containerisation and dynamic frameworks in ICCMA’19, in: Pro-
ceedings of the Second International Workshop on Systems and Algorithms for Formal Argumentation (SAFA 2018) Co-
Located with the 7th International Conference on Computational Models of Argument (COMMA 2018), CEUR Workshop
Proceedings, Vol. 2171, CEUR-WS.org, 2018, pp. 4-9, https://ceur-ws.org/Vol-2171/paper_1.pdf.

[5] E.Bonzon, J. Delobelle, S. Konieczny and N. Maudet, A comparative study of ranking-based semantics for abstract argu-
mentation, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI Press, 2016, pp. 914-920.
doi:10.1609/aaai.v30i1.10116.

[6] A.Borgand D. Odekerken, PyArg for solving and explaining argumentation in Python: Demonstration, in: Computational
Models of Argument — Proceedings of COMMA 2022, Frontiers in Artificial Intelligence and Applications, Vol. 353, IOS
Press, 2022, pp. 349-350. doi:10.3233/FAIA220167.

[71 M. Caminada, On the issue of reinstatement in argumentation, in: Proceedings of the 10th European Conference on Logics
in Artificial Intelligence, JELIA 2006, Lecture Notes in Computer Science, Vol. 4160, Springer, 2006, pp. 111-123. doi:10.
1007/11853886_11.

[8] M.W.A. Caminada, W.A. Carnielli and P.E. Dunne, Semi-stable semantics, J. Log. Comput. 22(5) (2012), 1207-1254.
doi:10.1093/logcom/exr033.

https://doi.org/10.1007/978-3-030-86772-0_2
https://doi.org/10.1016/j.artint.2022.103742
http://www.pims.math.ca/science/2004/NMR/papers.html
https://ceur-ws.org/Vol-2171/paper_1.pdf
https://doi.org/10.1609/aaai.v30i1.10116
https://doi.org/10.3233/FAIA220167
https://doi.org/10.1007/11853886_11
https://doi.org/10.1007/11853886_11
https://doi.org/10.1093/logcom/exr033

(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

J.-G. Mailly / pygarg: A Python engine for argumentation 7

C. Cayrol and M.-C. Lagasquie-Schiex, Bipolarity in argumentation graphs: Towards a better understanding, Int. J. Ap-
prox. Reason. 54(7) (2013), 876-899. doi:10.1016/j.ijar.2013.03.001.

J. Delobelle, J.-G. Mailly and J. Rossit, Revisiting approximate reasoning based on grounded semantics, in: Seventeenth
European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023), 2023.
P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artif. Intell. 77(2) (1995), 321-358. doi:10.1016/0004-3702(94)00041-X.

P.M. Dung, P. Mancarella and F. Toni, Computing ideal sceptical argumentation, Artif. Intell. 171(10-15) (2007), 642-674.
doi:10.1016/j.artint.2007.05.003.

W. Dvordk and P.E. Dunne, Computational problems in formal argumentation and their complexity, in: Handbook of
Formal Argumentation, College Publications, 2018, pp. 631-688.

U. Egly, S.A. Gaggl and S. Woltran, ASPARTIX: Implementing argumentation frameworks using answer-set program-
ming, in: Proceedings of the 24th International Conference on Logic Programming, ICLP 2008, Lecture Notes in Com-
puter Science, Vol. 5366, Springer, 2008, pp. 734-738. doi:10.1007/978-3-540-89982-2_67.

S.A. Gaggl, T. Linsbichler, M. Maratea and S. Woltran, Design and results of the second international competition on
computational models of argumentation, Artif. Intell. 279 (2020). doi:10.1016/j.artint.2019.103193.

A. Ignatiev, A. Morgado and J. Marques-Silva, PySAT: A Python toolkit for prototyping with SAT Oracles, in: SAT, 2018,
pp- 428-437. doi:10.1007/978-3-319-94144-8_26.

M. Jarvisalo, T. Lehtonen and A. Niskanen, Design of ICCMA 2023, 5th international competition on computational
models of argumentation: A preliminary report (invited paper), in: Proceedings of the First International Workshop
on Argumentation and Applications (Arg&App 2023) Co-Located with 20th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2023), CEUR Workshop Proceedings, Vol. 3472, CEUR-WS.org, 2023,
pp- 4-10, https://ceur-ws.org/Vol-3472/invited1.pdf.

J.-M. Lagniez, E. Lonca and J.-G. Mailly, CoQuiAAS: A constraint-based quick abstract argumentation solver, in:
27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, IEEE Computer Society, 2015,
pp- 928-935. doi:10.1109/ICTAL.2015.134.

J.-G. Mailly, Yes, no, maybe, I don’t know: Complexity and application of abstract argumentation with incomplete knowl-
edge, Argument Comput. 13(3) (2022), 291-324. doi:10.3233/AAC-210010.

J.-G. Mailly, Abstract argumentation applied to fair resources allocation: A preliminary study, in: Proceedings of the First
International Workshop on Argumentation and Applications (Arg&App 2023) Co-Located with 20th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2023), CEUR Workshop Proceedings, Vol. 3472,
CEUR-WS.org, 2023, pp. 85-91, https://ceur-ws.org/Vol-3472/short2.pdf.

J.-G. Mailly, pygarg: A Python engine for argumentation, Technical report, IRIT/RR-2024-02-FR, IRIT, Institut de
Recherche en Informatique de Toulouse, 2024.

D. Odekerken, A. Borg and M. Berthold, Accessible algorithms for applied argumentation, in: Proceedings of the First
International Workshop on Argumentation and Applications (Arg&App 2023) Co-Located with 20th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2023), CEUR Workshop Proceedings, Vol. 3472,
CEUR-WS.org, 2023, pp. 92-98, https://ceur-ws.org/Vol-3472/short3.pdf.

J. Rossit, J.-G. Mailly, Y. Dimopoulos and P. Moraitis, United we stand: Accruals in strength-based argumentation, Argu-
ment Comput. 12(1) (2021), 87-113. doi:10.3233/AAC-200904.

M. Thimm, F. Cerutti and M. Vallati, Skeptical reasoning with preferred semantics in abstract argumentation without
computing preferred extensions, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, ijcai.org, 2021, pp. 2069-2075. doi:10.24963/ijcai.2021/285.

B. Verheij, Two approaches to dialectical argumentation: Admissible sets and argumentation stages, in: Proceedings of
the Eighth Dutch Conference on Artificial Intelligence (NAIC’96), 1996, pp. 357-368.

https://doi.org/10.1016/j.ijar.2013.03.001
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2007.05.003
https://doi.org/10.1007/978-3-540-89982-2_67
https://doi.org/10.1016/j.artint.2019.103193
https://doi.org/10.1007/978-3-319-94144-8_26
https://ceur-ws.org/Vol-3472/invited1.pdf
https://doi.org/10.1109/ICTAI.2015.134
https://doi.org/10.3233/AAC-210010
https://ceur-ws.org/Vol-3472/short2.pdf
https://ceur-ws.org/Vol-3472/short3.pdf
https://doi.org/10.3233/AAC-200904
https://doi.org/10.24963/ijcai.2021/285

	Introduction
	Background notions
	Describing pygarg
	Using pygarg as a command-line tool
	Using pygarg in another Python program

	Discussion
	Acknowledgement
	References

