
CORRECTED P
ROOF

Argument & Computation -1 (2024) 1–31 1
DOI 10.3233/AAC-230012
IOS Press

Tractable algorithms for strong admissibility

Martin Caminada a,∗ and Sri Harikrishnan b

a Cardiff University, United Kingdom
E-mail: CaminadaM@cardiff.ac.uk
b Vienna University of Economics and Business, Austria
E-mail: Sri.Harikrishnan@wu.ac.at

Abstract. Much like admissibility is the key concept underlying preferred semantics, strong admissibility is the key concept
underlying grounded semantics, as membership of a strongly admissible set is sufficient to show membership of the grounded
extension. As such, strongly admissible sets and labellings can be used as an explanation of membership of the grounded
extension, as is for instance done in some of the proof procedures for grounded semantics. In the current paper, we present two
polynomial algorithms for constructing relatively small strongly admissible labellings, with associated min–max numberings,
for a particular argument. These labellings can be used as relatively small explanations for the argument’s membership of the
grounded extension. Although our algorithms are not guaranteed to yield an absolute minimal strongly admissible labelling for
the argument (as doing so would have implied an exponential complexity), our best performing algorithm yields results that
are only marginally larger. Moreover, the runtime of this algorithm is an order of magnitude smaller than that of the existing
approach for computing an absolute minimal strongly admissible labelling for a particular argument. As such, we believe
that our algorithms can be of practical value in situations where the aim is to construct a minimal or near-minimal strongly
admissible labelling in a time-efficient way.

Keywords: Abstract argumentation, strong admissibility, algorithms

1. Introduction

In formal argumentation, one would sometimes like to show that a particular argument is (credulously)
accepted according to a particular argumentation semantics, without having to construct the entire ex-
tension the argument is contained in. For instance, to show that an argument is in a preferred extension,
it is not necessary to construct the entire preferred extension. Instead, it is sufficient to construct a set
of arguments that is admissible. Similarly, to show that an argument is in the grounded extension, it is
not necessary to construct the entire grounded extension. Instead, it is sufficient to construct a set of
arguments that is strongly admissible.

The concept of strong admissibility was introduced by Baroni and Giacomin [1] as one of the proper-
ties to describe and categorise argumentation semantics. It was subsequently studied by Caminada and
Dunne [3,6] who further developed strong admissibility in both its set and labelling form. In particular,
the strongly admissible sets (resp. labellings) were found to form a lattice with the empty set (resp. the
all-undec labelling) as its bottom element and the grounded extension (resp. the grounded labelling) as
its top element [3,6].

As a strongly admissible set (labelling) can be used to explain that a particular argument is in the
grounded extension (for instance, by using the discussion game of [4]) a relevant question is whether

*Corresponding author. E-mail: CaminadaM@cardiff.ac.uk.

1946-2166 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:CaminadaM@cardiff.ac.uk
mailto:Sri.Harikrishnan@wu.ac.at
mailto:CaminadaM@cardiff.ac.uk
https://creativecommons.org/licenses/by-nc/4.0/

CORRECTED P
ROOF

2 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

one can identify an expanation that is minimal. That is, given an argument A that is in the grounded
extension, how can one obtain:

(1) a strongly admissible set that contains A, of which the number of arguments is minimal among all
strongly admissible sets containing A, and

(2) a strongly admissible labelling that labels A in, of which the number of in and out labelled
arguments (its size, cf. [7]) is minimal among all strongly admissible labellings that label A in.

It has been found that the problem of computing (1) is NP-hard [11, Theorem 2]1 whereas the verifi-
cation problem of (2) is co-NP-complete [7, Theorem 2].2 Moreover, it has also been observed that even
computing a c-approximation for the minimum size of a strongly admissible set for a given argument is
NP-hard for every c � 1 [11]. This is in sharp contrast with the complexity of the general verification
problem of strong admissibility (i.e. verifying whether a set/labelling is strongly admissible, without the
constraint that it also has to be minimal) which has been found to be polynomial [6].

The complexity results related to minimal strong admissibility pose a problem when the aim is to
provide the user with a relatively small explanation of why a particular argument is in the grounded
extension. For this, one can either apply an algorithmic approach that yields an absolute minimal expla-
nation, but has a worst-case exponential runtime, or one can apply an algorithmic approach that has a
less than exponential runtime, but does not come with any formal guarantees of how close the outcome
is to an absolute minimal explanation [11]. The former approach is taken in [11]. The latter approach is
taken in our current paper.

In the absence of a dedicated algorithm for strong admissibility, one may be tempted to simply apply
an algorithm for computing the grounded extension or labelling instead (such as [12,13]) if the aim is
to do the computation in polynomial time. Still, from the perspective of minimality, this would yield the
absolute worst outcome, as the grounded extension (labelling) is the maximal strongly admissible set
(labelling). In the current paper we therefore introduce an alternative algorithm which, like the grounded
semantics algorithms, runs in polynomial time but tends to produce a strongly admissible set (resp.
labelling) that is significantly smaller than the grounded extension (resp. labelling). As the complexity
results from [11] prevent us from giving any theory-based guarantees regarding how close the outcome
of the algorithm is to an absolute minimal strongly admissible set, we will instead assess the performance
of the algorithm using a wide range of benchmark examples.

The remaining part of the current paper is structured as follows. First, in Section 2 we give a brief
overview of the formal concepts used in the current paper, including that of a strongly admissible set
and a strongly admissible labelling. In Section 3 we then proceed to provide the proposed algorithm,
including the associated proofs of correctness. Then, in Section 4 we assess the performance of our
approach, and compare it with the results yielded by the approach in [11] both in terms of outcome and
runtime. We round off with a discussion of our findings in Section 5.

1Theorem 2 of [11] states that “Computing a c-approximation for the minimal size of a strongly admissible set for a given
argument is NP-hard for every c � 1.” Trivially, this also holds when c = 1.

2Theorem 2 of [7] assumes that it has already been verified that the labelling in question is strongly admissible and that
the only thing that still needs to be verified is that it is also minimal strongly admissible. However, the problem of verifying
whether a set of arguments is strongly admissible is polynomial [6] (which carries over also to the problem of verifying whether
an argument labelling is strongly admissible) including this check does not affect the co-NP-completeness of the overall problem
of verifying minimal strong admissibility.

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 3

2. Preliminaries

In the current section, we briefly restate some of the basic concepts in formal argumentation the-
ory, including strong admissibility. For current purposes, we restrict ourselves to finite argumentation
frameworks.

Definition 1. An argumentation framework is a pair (Ar, att) where Ar is a finite set of entities, called
arguments, whose internal structure can be left unspecified, and att is a binary relation on Ar. For any
x, y ∈ Ar we say that x attacks y iff (x, y) ∈ att.

As for notation, we use lower case letters at the end of the alphabet (such as x, y and z) to denote
variables containing arguments, upper case letters at the end of the alphabet (such as X, Y and Z) to
denote program variables containing arguments, and upper case letters at the start of the alphabet (such
as A, B and C) to denote concrete instances of arguments.

When it comes to defining argumentation semantics, one can distinguish the extension approach and
the labelling approach [5]. We start with the extensions approach.

Definition 2. Let (Ar, att) be an argumentation framework, x ∈ Ar and Args ⊆ Ar. We define x+ as
{y ∈ Ar|x attacks y}, x− as {y ∈ Ar|y attacks x}, Args+ as

⋃{x+|x ∈ Args}, and Args− as
⋃{x−|x ∈

Args}. Args is said to be conflict-free iff Args ∩ Args+ = ∅. Args is said to defend x iff x− ⊆ Args+. The
characteristic function F : 2Ar → 2Ar is defined as F(Args) = {x|Args defends x}.
Definition 3. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is

• an admissible set iff Args is conflict-free and Args ⊆ F(Args)
• a complete extension iff Args is conflict-free and Args = F(Args)
• a grounded extension iff Args is the smallest (w.r.t. ⊆) complete extension
• a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

As mentioned in the introduction, the concept of strong admissibility was originally introduced by
Baroni and Giacomin [1]. For current purposes we will apply the equivalent definition of Caminada
[3,6].

Definition 4. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is strongly admissible iff every
x ∈ Args is defended by some Args′ ⊆ Args \ {x} which in its turn is again strongly admissible.

As an example (taken from [6]), in the argumentation framework of Figure 1 the strongly admissible
sets are ∅, {A}, {A, C}, {A, C, F }, {D}, {A, D}, {A, C, D}, {D, F }, {A, D, F } and {A, C, D, F }, the
latter also being the grounded extension. The set {A, C, F } is strongly admissible as A is defended by
∅, C is defended by {A} and F is defended by {A, C}, each of which is a strongly admissible subset
of {A, C, F } not containing the argument it defends. Please notice that although the set {A, F } defends
argument C in {A, C, F }, it is in its turn not strongly admissible (unlike {A}). Hence the requirement in

Fig. 1. An example of an argumentation framework.

CORRECTED P
ROOF

4 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Definition 4 for Args′ to be a subset of Args\{A}. We also observe that although {C, H } is an admissible
set, it is not a strongly admissible set, since no subset of {C, H } \ {H } defends H .

It can be shown that each strongly admissible set is conflict-free and admissible [6]. The strongly
admissible sets form a lattice (w.r.t. ⊆), of which the empty set is the bottom element and the grounded
extension is the top element [6].

The above definitions essentially follow the extension based approach as described in [10]. It is also
possible to define the key argumentation concepts in terms of argument labellings [2,8].

Definition 5. Let (Ar, att) be an argumentation framework. An argument labelling is a function Lab :
Ar → {in,out,undec}. An argument labelling is called an admissible labelling iff for each x ∈ Ar it
holds that:

• if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out
• if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in

Lab is called a complete labelling iff it is an admissible labelling and for each x ∈ Ar it also holds that:

• if Lab(x) = undec then there is a y that attacks x such that Lab(y) = undec, and for each y that
attacks x such that Lab(y) 	= undec it holds that Lab(y) = out

As a labelling is essentially a function, we sometimes write it as a set of pairs. Also, if Lab is a
labelling, we write in(Lab) for {x ∈ Ar|Lab(x) = in}, out(Lab) for {x ∈ Ar|Lab(x) = out} and
undec(Lab) for {x ∈ Ar|Lab(x) = undec}. As a labelling is also a partition of the arguments into
sets of in-labelled arguments, out-labelled arguments and undec-labelled arguments, we sometimes
write it as a triplet (in(Lab),out(Lab),undec(Lab)).

Definition 6 ([9]). Let Lab and Lab′ be argument labellings of argumentation framework (Ar, att). We
say that Lab
 Lab′ iff in(Lab) ⊆ in(Lab′) and out(Lab) ⊆ out(Lab′).

Definition 7. Let Lab be a complete labelling of argumentation framework (Ar, att). Lab is said to be

• the grounded labelling iff Lab is the (unique) smallest (w.r.t.
) complete labelling
• a preferred labelling iff Lab is a maximal (w.r.t.
) complete labelling

We refer to the size of a labelling Lab as |in(Lab)∪out(Lab)|. We observe that if Lab
 Lab′ then
the size of Lab is smaller or equal to the size of Lab′, but not necessarily vice versa. In the remainder
of the current paper, we use the terms smaller, bigger, minimal and maximal in relation to the size of the
respective labellings, unless stated otherwise.

The next step is to define a strongly admissible labelling. In order to do so, we need the concept of a
min-max numbering [6].

Definition 8. Let Lab be an admissible labelling of argumentation framework (Ar, att). A min-max
numbering is a total function MMLab : in(Lab) ∪ out(Lab) → N ∪ {∞} such that for each x ∈
in(Lab) ∪ out(Lab) it holds that:

• if Lab(x) = in then MMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1
(with max(∅) defined as 0)

• if Lab(x) = out then MMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in})+1 (with
min(∅) defined as ∞)

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 5

It has been proved that every admissible labelling has a unique min-max numbering [6]. A strongly
admissible labelling can then be defined as follows [6].

Definition 9. A strongly admissible labelling is an admissible labelling whose min-max numbering
yields natural numbers only (so no argument is numbered ∞).

As an example (taken from [6]), consider again the argumentation framework of Figure 1. Here, the
admissible labelling Lab1 = ({A, C, F, G}, {B, E, H }, {D}) has min-max numbering {(A : 1), (B : 2),

(C : 3), (E : 4), (F : 5), (G : ∞), (H : ∞)}, which means that it is not strongly admissible. The
admissible labelling Lab2 = ({A, C, D, F }, {B, E}, {G, H }) has min-max numbering {(A : 1), (B : 2),

(C : 3), (D : 1), (E : 2), (F : 3)}, which means that it is strongly admissible.
It has been shown that the strongly admissible labellings form a lattice (w.r.t.
), of which the

all-undec labelling is the bottom element and the grounded labelling is the top element [6].
The relationship between extensions and labellings has been well-studied [2,8]. A common way to

relate extensions to labellings is through the functions Args2Lab and Lab2Args. These translate a
conflict-free set of arguments to an argument labelling, and an argument labelling to a set of arguments,
respectively. More specifically, given an argumentation framework (Ar, att), and an associated conflict-
free set of arguments Args and a labelling Lab, Args2Lab(Args) is defined as (Args, Args+, Ar\(Args∪
Args+)) and Lab2Args(Lab) is defined as in(Lab). It has been proven [8] that if Args is an admissible
set (resp. a complete, grounded or preferred extension) then Args2Lab(Args) is an admissible labelling
(resp. a complete, grounded or preferred labelling), and that if Lab is an admissible labelling (resp. a
complete, grounded or preferred labelling) then Lab2Args(Lab) is an admissible set (resp. a complete,
grounded or preferred extension). It has also been proven [6] that if Args is a strongly admissible set then
Args2Lab(Args) is a strongly admissible labelling, and that if Lab is a strongly admissible labelling
then Lab2Args(Lab) is a strongly admissible set.

3. The algorithms

In the current section, we present an algorithmic approach for computing a relatively small3 strongly
admissible labelling. For this, we provide three different algorithms. The first algorithm (Algorithm 1)
basically constructs a strongly admissible labelling bottom-up, starting with the arguments that have no
attackers and continuing until the main argument (the argument for which one want to show membership
of a strongly admissible set) is labelled in. The second algorithm (Algorithm 2) then takes the output
of the first algorithm and tries to prune it. That is, it tries to identify only those in and out labelled ar-
guments that are actually needed in the strongly admissible labelling. The third algorithm (Algorithm 3)
then combines Algorithm 1 (which is used as the construction phase) and Algorithm 2 (which is used as
the pruning phase). Overall, we assume that it has already been established that the main argument is in
the grounded extension and that the aim is merely to find a (relatively small) explanation for this.

3.1. Algorithm 1

The basic idea of Algorithm 1 is to start constructing the grounded labelling bottom-up, until we
reach the main argument (that is, until we reach the argument that we are trying to construct a strongly

3Small with respect to the size of the labelling.

CORRECTED P
ROOF

6 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Algorithm 1 Construct a strongly admissible labelling that labels A in and its associated min-max
numbering

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF.
Output: A strongly admissible labelling Lab where A ∈ in(Lab),
the associated min-max numbering MMLab.

1: // We start with the type definitions
2: Lab : Ar → {in,out,undec}
3: MMLab : in(Lab) ∪ out(Lab) → N ∪ {∞}
4: undec_pre : Ar → N

5: unproc_in : [X1, . . . Xn] (Xi ∈ Ar for each 1 � i � n) // list of arguments
6:
7: // Next, we initialize and process the arguments that have no attackers
8: unproc_in ← []
9: for each X ∈ Ar do

10: Lab(X) ← undec
11: undec_pre(X) ← |X−|
12: if undec_pre(X) = 0 then
13: add X to the rear of unproc_in
14: Lab(X) ← in
15: MMLab(X) ← 1
16: if X = A then return Lab and MMLab

17: end if
18: end for
19:
20: // We proceed to process the arguments that do have attackers
21: while unproc_in is not empty do
22: let X be the argument at the front of unproc_in
23: remove X from unproc_in
24: for each Y ∈ X+ with Lab(Y) 	= out do
25: Lab(Y) ← out
26: MMLab(Y) ← MMLab(X) + 1
27: for each Z ∈ Y+ with Lab(Z) = undec do
28: undec_pre(Z) ← undec_pre(Z) − 1
29: if undec_pre(Z) = 0 then
30: add Z to the rear of unproc_in
31: Lab(Z) ← in
32: MMLab(Z) ← MMLab(Y) + 1
33: if Z = A then return Lab and MMLab

34: end if
35: end for
36: end for
37: end while
38:
39: // If we get here, A is not in the grounded extension,
40: // so we may want to print an error message

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 7

admissible labelling for; this argument should hence be labelled in). As such, the idea is to take an
algorithm for computing the grounded labelling (e.g. [12] or [13]) and modify it accordingly. We have
chosen the algorithm of [13] for this purpose, as it has been proved to run faster than some of the
alternatives (such as [12]). We had to adjust this algorithm in two ways. First, as mentioned above, we
want the algorithm to stop once it hits the main argument, instead of continuing to construct the entire
grounded labelling. Second, we want it to compute not just the strongly admissible labelling itself, but
also its associated min-max numbering.

Obtaining the min-max numbering is important, as it can be used to show that the obtained admissible
labelling is indeed strongly admissible, through the absence of ∞ in its min-max numbering. Addi-
tionally, the min-max numbering is also needed for some of the applications of strong admissibility, in
particular the Grounded Discussion Game [4] where the combination of a strongly admissible labelling
and its associated min-max numbering serves as a roadmap for obtaining a winning strategy.

Instead of first computing the strongly admissible labelling and then proceeding to compute the min-
max numbering, we want to compute both the strongly admissible labelling and the min-max numbering
in just a single pass, in order to achieve the best performance.

To see how the algorithm works, consider again the argumentation framework of Figure 1. Let C be
the main argument. At the start of the first iteration of the while loop (line 21) it holds that Lab =
({A, D},∅, {B, C, E, F, G, H }), MMLab = {(A : 1), (D : 1)} and unproc_in = [A, D]. At the
first iteration of the while loop, the argument in front of unproc_in (A) is selected (line 22). This then
means that B gets labelled out and C gets labelled in. Hence, the algorithm hits the main argument (C)
at line 33 and terminates. This yields a labelling Lab = ({A, C, D}, {B}, {E, F, G, H }) and associated
min-max numbering MMLab = {(A : 1), (B : 2), (C : 3), (D : 1)}.

We now proceed to prove some of the formal properties of the algorithm. The first property to be
proved is termination.

Theorem 1. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that the algorithm termi-
nates.

Proof. As for the first loop (the for loop of lines 9–18) we observe that it terminates as the number of
arguments in Ar is finite.

As for the second loop (the while loop of lines 21–37) we first observe that no argument can be added
to unproc_in more than once (that is, once an argument has been added to unproc_in, it can never
be added again). This is because for an argument to be added, it has to be labelled undec (line 27)
whereas after adding it, it will be labelled in (line 31). Moreover, once an argument is labelled in, it
will never be labelled undec again and therefore cannot be added to unproc_in again. Given that
(1) there is only a finite number of arguments in Ar, (2) each argument can be added to unproc_in at
most once, and (3) each iteration of the while loop removes an argument from unproc_in, it follows
that the loop has to terminate. �

Next, we need to show that the algorithm is correct. That is, we need to show that the algorithm yields
a strongly admissible labelling Lab that labels A in, together with its associated min-max numbering
MMLab. In order to do so, we first need to state and prove a number of lemmas. We start with showing
that Lab is admissible in every stage of the algorithm.

CORRECTED P
ROOF

8 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Lemma 2. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that during any stage in
the algorithm, Lab is an admissible labelling.

Proof. Consider the value of Lab at an arbitrary point during the execution of Algorithm 1. According
to the definition of an admissible labelling (Definition 5) we need to prove two things, for an arbitrary
argument x ∈ Ar:

(1) if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out
Suppose Lab(x) = in. We distinguish two cases:

(a) x was labelled in at line 14. This implies that und_pre(x) = 0 in line 12, which implies that
x has no attackers. Therefore, trivially Lab(y) = out for each y ∈ Ar that attacks x.

(b) x was labelled in at line 31. This implies that undec_pre(x) = 0 in line 29, which implies
that each attacker y of x has been relabelled to out. To see that this is the case, let n be
the number of attackers of x (that is, n = |x−|). It follows that undec_pre(x) is initially
n (line 11) and at least 1 (otherwise x would have been labelled in at line 14 instead of
at line 31). In order for undec_pre(x) to have fallen to 0 (line 29) it will need to have
decremented (at line 28) n times (as no other line changes the value of undec_pre(x)). Each
time this happens at line 28, an attacker of x that wasn’t previously labelled out (line 24) is
labelled out (line 25). Therefore, by the time undec_pre(x) became 0, it follows that all
attackers of x have become labelled out.

(2) if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in
Suppose Lab(x) = out. This implies that x was labelled out at line 25, which implies that an
attacker y of x was an element of unproc_in. This means that at some point, argument y was
added to unproc_in. This could have happened at line 13 or 30. In both cases, it follows that
(line 14 and 31) y is labelled in. �

The next lemma presents an intermediary result that will be needed further on in the proofs.

Lemma 3. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. It holds that for each argument x

that is added to unproc_in, MMLab(x) � 1

Proof. We prove this by induction over the number of arguments that are added to unproc_in during
the execution of the while loop of lines 21–37.

BASIS (n = 0) Suppose the while loop has not yet added any arguments to unproc_in. This means
that any argument x that was added to unproc_in was added by the for loop (lines 9–18). This
could only have been done at line 13. Line 15 then implies that MMLab(x) = 1 so trivially
MMLab(x) � 1.

STEP Suppose that at a particular point, the while loop has added n (� 0) arguments to unproc_in
and that for each argument x that has been added to unproc_in (either by the while loop of lines
21–37 or by the for loop of lines 9–18) it holds that MMLab(x) � 1. We distinguish two cases:

• x was added to unproc_in previously. From the induction hypothesis it follows that
MMLab(x) � 1 at the moment x was added. As Algorithm 1 does not change any value
of MMLab once it is assigned, it follows that MMLab(x) � 1 still holds at the current point.

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 9

• x is the argument that is currently being added to unproc_in (so x = Z at line 30). This
implies that Z is labelled in at line 31 and is numbered MMLab(Y) + 1 at line 32. Fol-
lowing line 26, it holds that MMLab(Y) = MMLab(X) + 1, with X being an in labelled
attacker of Y that was added to unproc_in previously. We can therefore apply the induction
hypothesis and obtain that MMLab(X) � 1, which together with the earlier observed facts
that MMLab(Z) = MMLab(Y) + 1 (line 32) and MMLab(Y) = MMLab(X) + 1 (line 26)
implies that MMLab(Z) � 3 which trivially implies that MMLab(Z) � 1. Hence (as x = Z)
we obtain that MMLab(x) � 1. �

Algorithm 1 (especially line 22 and line 30) implements a FIFO queue for the in labelled arguments
it processes. This is an important difference with the algorithm of [13], which uses a set for this purpose.
Using a set is fine if the aim is merely to compute a strongly admissible labelling (as is the case for [13]
where the aim is to compute the grounded labelling). However, if the aim is also to compute the asso-
ciated min-max numbering, having a set as the basic data structure could compromise the algorithm’s
correctness.

As an example, consider again the argumentation framework of Figure 1. Let F be the main ar-
gument. Now suppose that unproc_in is a set instead of a queue. In that case, at the start of
the first iteration of the while loop (line 21) it holds that Lab = ({A, D},∅, {B, C, E, F, G, H }),
MMLab = {(A : 1), (D : 1)} and unproc_in = {A, D}. At the first iteration of the while loop,
an argument X from unproc_in is selected (line 22). Suppose A is the selected argument (so X = A).
This then means that B gets labelled out and C gets labelled in. Hence, at the end of the first iter-
ation of the while loop (and therefore at the start of the second iteration of the while loop) it holds
that Lab = ({A, C, D}, {B}, {E, F, G, H }), MMLab = {(A : 1), (B : 2), (C : 3), (D : 1)} and
unproc_in = {C, D}. At the second iteration of the while loop, the fact that a set has no order would
make it possible to select C (so X = C). This means that E gets labelled out and F gets labelled in.
Hence, at the moment the algorithm hits the main argument (F , at line 33) and terminates, it holds that
Lab = ({A, C, D, F }, {B, E}, {G, H }) and MMLab = {(A : 1), (B : 2), (C : 3), (D : 1), (E : 4),

(F : 5)}. Unfortunately MMLab is incorrect. This is because out labelled argument E is numbered 4,
whereas its two in labelled attackers C and D are numbered 3 and 1, respectively, so the correct min-
max number of E should be 2 instead of 4, which implies that the correct min-max number of F should
be 3 instead of 5.

One of the conditions of a min-max numbering is that the min-max number of an out labelled ar-
gument should be the minimal value of its in labelled attackers, plus 1. This seems to require that the
min-max number of the in labelled attackers is already known, before assigning the min-max number of
the out labelled argument. At the very least, it would seem that the min-max number of an out labelled
argument would potentially need to be recomputed each time the min-max number of one of its in la-
belled attackers becomes known. Yet, Algorithm 1 does none of this. It determines the min-max number
of an out labelled argument as soon as the min-max number of its first in labelled attacker becomes
known (line 26) without waiting for the min-max number of any other in labelled attacker to become
available. Yet, Algorithm 1 still somehow manages to always yield the correct min-max numbering.

The key to understanding how Algorithm 1 manages to always yield the correct min-max numbering
is that the in labelled arguments are processed in the order of their min-max numbers. That is, once an
in labelled attacker is identified, any subsequently identified in labelled attacker will have a min-max
number greater or equal to the first one and will therefore not change the minimal value (in the sense of

CORRECTED P
ROOF

10 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Definition 8, first bullet point). This avoids having to recalculate the min-max number of an out labelled
argument once more of its in labelled attackers become available, therefore speeding up the algorithm.

To make sure that arguments are processed in the order of their min-max numbers, we need to apply
a FIFO queue instead of the set that was applied by [13]. The following two lemmas (Lemma 4 and
Lemma 5) state that the in labelled arguments are indeed added and removed to the queue in the order of
their min-max numbers. These properties are subsequently used to prove the correctness of the computed
min-max numbering (Lemma 6 and Theorem 10).

Lemma 4. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. The order in which argu-
ments are added to unproc_in is non-descending w.r.t. MMLab. That is, if argument x1 is added
to unproc_in before argument x2 is added to unproc_in, then MMLab(x1) � MMLab(x2).

Proof. We first observe that this property is satisfied just after finishing the for loop of lines 9–18. This
is because the for loop makes sure that for each argument x, MMLab(x) = 1 (line 15) so it is trivially
satisfied that if x1 is added before x2, then MMLab(x1) � MMLab(x2). We proceed the proof by
induction over the number of arguments added by the while loop (lines 21–37).

BASIS (n = 0) Suppose no arguments have yet been added to unproc_in by the while loop. In that
case, all arguments that have been added to unproc_in were added by the for loop (lines 9–18)
for which we have observed that the property holds.

STEP (n + 1) Suppose the property holds after n arguments have been added to unproc_in by the
while loop. We now show that if the while loop adds another argument (n + 1) to unproc_in,
the property still holds. In the while loop, only line 30 adds an argument to unproc_in. Let Znew

be the argument (n + 1) that is currently added and let Zold be an argument that was previously
added. We distinguish two cases:

(1) Zold has been added by the while loop (so at a previous run of line 30). Let Ynew be the out
labelled attacker of Znew at line 25 and Yold be the out labelled attacker of Zold at line 25. Let
Xnew be the in labelled attacker of Ynew at line 22 and let Xold be the in labelled attacker of
Yold at line 22. It holds that either

(a) Xold was added to unproc_in before Xnew (at a previous iteration of the while
loop, in which case it follows from our induction hypothesis that MMLab(Xold) �
MMLab(Xnew), or

(b) Xnew = Xold, in which case it trivially holds that MMLab(Xold) � MMLab(Xnew).

In either case, we obtain that MMLab(Xold) � MMLab(Xnew). Furthermore, as it holds that
MMLab(Yold) = MMLab(Xold) + 1 (line 26)
MMLab(Ynew) = MMLab(Xnew) + 1 (line 26)
MMLab(Zold) = MMLab(Yold) + 1 (line 32)
MMLab(Znew) = MMLab(Ynew) + 1 (line 32)
it follows that MMLab(Zold) � MMLab(Znew).

(2) Zold has been added by the for loop of lines 9–18. In that case, it holds that MMLab(Zold) =
1 (line 15). As MMLab(Znew) � 1 (Lemma 3) it directly follows that MMLab(Zold) �
MMLab(Znew). �

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 11

Lemma 5. Let AF = (Ar, att) be an argumentation framework and A an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. The order in which arguments are
removed from unproc_in is non-descending w.r.t. MMLab. That is, if argument x1 is removed from
unproc_in before argument x2 is removed from unproc_in, then MMLab(x1) � MMLab(x2).

Proof. This follows directly from Lemma 4, together with the fact that additions to and removals from
unproc_in are done according to the FIFO (First In First Out) principle. �

We proceed to show the correctness of MMLab in an inductive way. That is, we show that MMLab

is correct at the start of each iteration of the while loop. We then later need to do a bit of additional
work to state that MMLab is still correct at the moment we jump out of the while loop using the return
statement.

Lemma 6. Let AF = (Ar, att) be an argumentation framework and A an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 1. At the start of each iteration of the
while loop, it holds that MMLab is a correct min-max numbering of Lab.

Proof. We prove this by induction over the number of loop iterations.
As for the basis of the induction (n = 1), let us consider the first loop iteration. This is just after the for

loop of lines 9–18 has finished. We need to prove that MMLab is a correct min-max numbering of Lab
According to the definition of a min-max numbering (Definition 8) we need to prove that for every x

in Ar:

(1) if Lab(x) = in then MMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1
Suppose Lab(x) = in. This means that x has been labelled in by the for loop of lines 9–18,
which implies that x does not have any attackers and is numbered 1. That is, MMLab(x) =
1 and max({MMLab(y)|y attacks x and Lab(y) = out}) = 0 (by definition). Therefore
MMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1

(2) if Lab(x) = out then MMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1
This is trivially the case, as at the end of the for loop (lines 9–18) no argument is labelled out.

As for the induction step, suppose that at the start of a particular loop iteration, MMLab is a correct
min-max numbering of Lab. We need to prove that if there is a next loop iteration, then at the start of
this next loop iteration it is still the case that MMLab is a correct min-max numbering of Lab. For this,
we need to prove that at the end of the current loop iteration, for any x ∈ Ar it holds that:

(1) if Lab(x) = in then MMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1
We distinguish two cases:

(a) x was already labelled in at the start of the current loop iteration. Then, as Lab is an ad-
missible labelling at each point of the algorithm (Lemma 2) each attacker y of x is labelled
out by Lab. These attackers are still labelled out at the end of the current loop iteration
(once an argument is labelled out, it stays labelled out). Also, the value MMLab(y) of
these out labelled attackers remains unchanged. Hence, from the fact that MMLab(x) =
max({MMLab(y)|y attacks x and Lab(y) = out}) + 1 at the start of the current iteration,
it follows that MMLab(x) = max({MMLab(y)|y attacks x and Lab(y) = out}) + 1 at the
end of the current iteration.

CORRECTED P
ROOF

12 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

(b) x became labelled in during the current loop iteration. In that case, x was labelled in at
line 31 (with Z = x). So Z = x in MMLab(Z) = MMLab(Y) + 1 (line 32). We
therefore need to show that MMLab(Y) = max({MMLab(y)|y attacks Z and Lab(y) =
out}). As Y is an out labelled attacker of Z, we already know that max({MMLab(y)|
y attacks Z and Lab(y) = out}) will be at least MMLab(Y). We now proceed to show
that max({MMLab(y)|y attacks Z and Lab(y) = out}) will be at most MMLab(Y). That
is, for each out labelled attacker y of Z we show that MMLab(y) � MMLab(Y). Let Y ′ be
an arbitrary out labelled attacker of Z. Let X be the in labelled attacker of Y (line 22 of the
current loop iteration) and let X′ be the in labelled attacker of Y ′ (line 22 of the current or a
previous loop iteration). We distinguish two cases:

• X′ = X

In that case, from the fact that MMLab(Y) = MMLab(X) + 1 (line 26) and
MMLab(Y

′) = MMLab(X
′) + 1 (line 26) it follows that MMLab(Y

′) = MMLab(Y) so
(trivially) also that MMLab(Y

′) � MMLab(Y).
• X′ 	= X

As X was removed from unproc_in during the current loop iteration, it follows that X′
was removed from unproc_in during one of the previous loop iterations. This means
that X′ was removed from unproc_in before X was removed from unproc_in, which
implies (Lemma 5) that MMLab(X

′) � MMLab(X). From the fact that MMLab(Y) =
MMLab(X) + 1 (line 26) and MMLab(Y

′) = MMLab(X
′) + 1 (line 26) it follows that

MMLab(Y
′) � MMLab(Y).

As we now observed that MMLab(x) is the correct min-max number of x at the moment it
was assigned (line 32) we can use similar reasoning as at the previous point (point (a)) to obtain
that it is still the correct min-max number at the end of the current loop iteration.

(2) if Lab(x) = out then MMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1
We distinguish two cases:

(a) x was already labelled out at the start of the current loop iteration. In that case, our induction
hypothesis that the min-max numbers are correct at the start of the current loop iteration implies
that MMLab(x) = min({MMLab(y)|y attacks x and Lab(y) = in}) + 1 at the start of the
current loop iteration. As the current loop iteration does not change the value of MMLab(x)

(once a value for MMLab(x) is assigned, the algorithm never changes it) this value will still be
the same at the end of the current loop iteration. We therefore only need to verify that this value
is still correct at the end of the current loop iteration. For this, we need to be sure that any newly
in labelled argument (that is, an argument that became labelled in during the current loop
iteration) does not change the value of min({MMLab(y)|y attacks x and Lab(y) = in}). Let
Z be a newly in labelled attacker of x (line 31). Then Z was added to the rear of unproc_in
(line 30). Let Z′ be an arbitrary in labelled attacker of x. We distinguish two cases:

• Z′ = Z

In that case, it directly follows that MMLab(Z
′) = MMLab(Z) so (trivially) also that

MMLab(Z
′) � MMLab(Z).

• Z′ 	= Z

In that case, it follows that Z′ was added to unproc_in before Z was added to
unproc_in. Lemma 4 then implies that MMLab(Z

′) � MMLab(Z).

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 13

In both cases, we obtain that MMLab(Z
′) � MMLab(Z). This means that whenever x gets a

new in labelled attacker min({MMLab(y)|y attacks x and Lab(y) = in}) does not change.
Therefore, the value of MMLab(x) is still the correct min-max number of x at the end of the
current loop iteration.

(b) x became labelled out during the current loop iteration. This can only have happened at
line 25, so x = Y . MMLab(Y) is then assigned MMLab(X) + 1 at line 26. In order
for MMLab(Y) to be a correct min-max number, we need to verify that MMLab(X) =
min({MMLab(y)|y attacks Y and Lab(y) = in}). This is the case because at line 25, X is
the only in labelled attacker of Y (otherwise Y would have been labelled out before). As we
have observed that MMLab(Y) is the correct min-max value at the moment it was assigned,
we can use similar reasoning as at the previous point (point (a)) to obtain that it is still the
correct min-max number at the end of the current loop iteration. �

In order for a labelling to be strongly admissible, its min-max numbering has to contain natural num-
bers only (no ∞). We therefore proceed to show the absence of ∞ in an inductive way. That is, we
show the absence of ∞ at the start of each iteration of the while loop. We then later need to do a bit of
additional work to show the absence of ∞ at the moment we jump out of the while loop using the return
statement.

Lemma 7. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the
grounded extension of AF. Let both AF and A be given as input to Algorithm 1. At the start of each
iteration of the while loop at lines 21–37, it holds that for each in or out labelled argument x ∈ Ar,
MMLab(x) is a natural number (no ∞)

Proof. We prove this by induction over the number of iterations of the while loop at lines 21–37.
As for the basis of induction(n = 1), let us consider the first loop iteration. This is just after the for

loop at lines 9–18 has finished. We need to prove that for each in or out labelled argument x ∈ Ar,
MMLab(x) is a natural number. We therefore need to prove that:

(1) if Lab(x) = in then MMLab(x) 	= ∞
Let x be labelled in by the for loop at lines 9–18. This can only have happened at line 14. Accord-
ing to line 15, it then follows that MMLab(x) = 1. Hence MMLab(x) 	= ∞.

(2) if Lab(x) = out then MMLab(x) 	= ∞
This is trivially the case as the end of the for loop at lines 9–18, no argument is labelled out.

As for the induction step, suppose that at the start of a particular loop iteration, for each in or out
labelled argument x ∈ Ar, MMLab(x) is a natural number. We therefore need to prove that by the end
of the iteration (and therefore also at the start of the next loop iteration) it holds that:

(1) if Lab(x) = in then MMLab(x) 	= ∞
We distinguish two cases:

• x was already labelled in at the start of the current loop iteration. From the induction hypothesis
it follows that MMLab(x) 	= ∞ at the start of the current iteration. As Algorithm 1 does not
change any values of MMLab once these have been assigned, it follows that MMLab(x) 	= ∞
will hold at the end of the current loop iteration.

CORRECTED P
ROOF

14 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

• x became labelled in during the current loop iteration. In the case x was labelled in at line 31
(with Z = x). Following line 32, MMLab(X) = MMLab(Y) + 1. According to line 26,
MMLab(Y) = MMLab(X) + 1 with X being an attacker of Y that became labelled in
during a previous iteration of the while loop. From our induction hypothesis it follows that
MMLab(X) 	= ∞. As MMLab(Y) = MMLab(X) + 1 it follows that MMLab(Y) 	= ∞.
As MMLab(Z) = MMLab(Y) + 1 it follows that MMLab(Z) 	= ∞. That is (as x = Z)
MMLab(x) 	= ∞.

(2) if Lab(x) = out them MMLab(x) 	= ∞
We distinguish two cases:

• x was already labelled out at the start of the current loop iteration. From the induction hypothe-
sis it follows that MMLab(x) 	= ∞ at the start of the current iteration. As Algorithm 1 does not
change any values of MMLab once these have been assigned, it follows that MMLab(x) 	= ∞
will hold at the end of the current loop iteration.

• x became labelled out during the current loop iteration. This can only have happened at line
25 (with x = Y). MMLab(Y) is then assigned MMLab(X) + 1 at line 26, with X being an
attacker of Y that became labeled in during a previous iteration of the while loop. From the
induction hypothesis, it follows that MMLab(X) 	= ∞. As MMLab(Y) = MMLab(X) + 1
(line 26) it follows that MMLab(Y) 	= ∞. That is (as x = Y) MMLab(x) 	= ∞. �

Although most of our results so far are about the algorithm itself, we also need an additional theoretical
property of grounded semantics, stated in the following lemma.

Lemma 8. Let AF = (Ar, att) be an argumentation framework. It holds that the grounded labelling of
AF is the only argument labelling that is both strongly admissible and complete.

Proof. First of all, it has been observed that the grounded labelling is both strongly admissible [6]
and complete (Definition 7). We proceed to prove that it is also the only argument labelling that is
both strongly admissible and complete. Let Lab be an argument labelling that is both strongly admis-
sible and complete. From the fact that the grounded labelling (Labgr) is the unique biggest strongly
admissible labelling [6] it follows that Lab
 Labgr. From the fact that the grounded labelling is the
unique smallest complete labelling (Definition 7) it follows that Labgr
 Lab. Together, this implies
that Lab = Labgr. �

If we would not finish the algorithm after hitting the main argument and instead continued to exe-
cute the algorithm until unproc_in is empty, we would be computing the grounded labelling with its
associated min-max numbering as stated by the following lemma.

Lemma 9. If in Algorithm 1 one would comment out line 16 and line 33 and add the following line
(line 41) at the end:

return Lab and MMLab

then the output of the thus modified algorithm would be the grounded labelling Lab of AF, together
with its min-max numbering MMLab.

Proof. We first observe that Lab is a strongly admissible labelling. This follows from the facts that

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 15

(1) Lab is an admissible labelling
This can be proved in a similar way as Lemma 2.

(2) MMLab is a correct min-max numbering of Lab
This can be proved in a similar way as Lemma 6.

(3) MMLab does not contain ∞ (natural numbers only)
This can be proved in a similar way as 7.

We proceed to show that Lab is also a complete labelling. For this, we first show the following two
properties:

(1) if Lab(y) = out for each attacker y of x then Lab(x) = in
Suppose Lab(y) = out for each attacker of x. This means that at the end of the algorithm, it holds
that undec_pre(x) = 0 which implies that x became labelled in (either at line 14 or at line 31)
at the moment when undec_pre(x) became 0 (at either line 11 or line 28)

(2) if Lab(y) = in for some attacker y of x then Lab(x) = out
Suppose Lab(y) = in for some attacker y of x. At the end of the algorithm, it holds that
unproc_in is empty. As each in labelled argument in Lab (such as y) was added to unproc_in
when it became labelled in, this implies that each in labelled argument in Lab (in particular y)
was subsequently removed from unproc_in. This removal can only have happened at line 23,
which implies (line 24 and 25) that each argument that is attacked by y (in particular x) is labelled
out.

Suppose Lab(x) = undec. From point 1 and the fact that Lab(x) 	= in we obtain that (3) there is
an attacker y of x such that Lab(y) 	= out. From point 2 and the fact that Lab(x) 	= out we obtain
that (4) there is no attacker y of x such that Lab(y) = in. From point (3) and (4) it follows that

• if Lab(x) = undec then there is a y that attacks x such that Lab(y) = undec and for each y that
attacks x such that Lab(y) 	= undec it holds that Lab(y) = out

This, together with the fact that Lab is an admissible labelling implies that Lab is a complete labelling
(Definition 5).

From the thus obtained facts that Lab is both a strongly admissible labelling and a complete labelling
it follows (Lemma 8) that Lab is the grounded labelling. �

Using the above lemmas, we now proceed to show the correctness of the algorithm.

Theorem 10. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the
grounded extension of AF. Let both AF and A be given as input to Algorithm 1. Let Lab and MMLab

be the output of the algorithm. It holds that Lab is a strongly admissible labelling that labels A in and
has MMLab as its min-max numbering.

Proof. We first observe that as A is in the grounded extension of AF, the modified algorithm of Lemma 9
would have produced the grounded labelling, which labels A in. This implies that at some moment in
Algorithm 1, line 16 or line 33 is triggered, meaning that Lab as returned by Algorithm 1 labels A in.
At the moment the return statement of line 16 or 33 is triggered, it holds that:

(1) Lab is an admissible labelling.
This follows directly from Lemma 2.

CORRECTED P
ROOF

16 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

(2) MMLab is a correct min-max numbering of Lab.
To see that this is the case, we distinguish two cases:

(a) The return statement that was triggered was the one at line 16. In that case, MMLab is the cor-
rect min-max numbering of Lab. The proof is similar to the first half of the proof of Lemma 6.

(b) The return statement that was triggered was the one at line 33. In that case, Lemma 6 tells
us that the value of MMLab at the start of the last iteration of the while loop was a correct
min-max numbering of the value of Lab at the start of the last iteration of the while loop.
We then need to show that the value of MMLab at the time of the return statement (line 33)
is still a correct min-max numbering of the value of Lab at the time of the return statement
(line 33). This can be proved in a similar way as is done in the second half of the proof of
Lemma 6 (instead of going until the end of the loop iteration, one goes until the moment the
return statement of line 33 is triggered).

(3) MMLab numbers each in or out labelled argument with a natural number (no ∞).
To see that this is the case, we distinguish two cases:

(a) The return statement that was triggered is the one at line 16. In that case, for each in or out
labelled argument x it holds that MMLab(x) 	= ∞. The proof is similar to the first half (the
basis) of the proof of Lemma 7.

(b) The return statement that was triggered is the one at line 33. In that case, Lemma 7 tells us that
at the start of the last iteration of the while loop, MMLab(x) 	= ∞ for each argument x that
was labelled in or out. We need to show that this is still the case at the time of the return
statement (line 33). This can be proved in a similar was as is done in the second half of the
proof of Lemma 7 (instead of going until the end of the loop iteration, the idea is to go until
the return statement of line 33 is triggered). �

It turns out that the algorithm runs in polynomical time (more specific, in cubic time).

Theorem 11. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the
grounded extension of AF. Let both AF and A be given as input to Algorithm 1. Let Lab and MMLab

be the output of the algorithm. It holds that Algorithm 1 computes Lab and MMLab in O(n3) time.

Proof. Let n be the number of arguments in AF (that is, n = |Ar|). The for loop (lines 9–18) can have
at most n iterations. The while loop (lines 21–37) can also have at most n iterations. This is because
each iteration of the while loop removes an argument from unproc_in, which can be done n times at
most, given that no argument can be added to unproc_in more than once (this follows from line 31
and line 27). For each iteration of the while loop, the outer for loop (lines 24–36) will run at most n

times. Also, for each iteration of the outer for loop, the inner for loop (lines 27–35) will run at most n

times. This means that the total number of instructions executed by the while loop is of the order n3 at
most. This, combined with the earlier observed fact that the for loop of lines 9–18 runs at most n times
brings the total complexity of Algorithm 1 to O(n + n3) = O(n3). �

3.2. Algorithm 2

The basic idea of Algorithm 2 is to prune the part of the strongly admissible labelling that is not
needed, by identifying the part that actually is needed. This is done in a top-down way, starting by

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 17

Algorithm 2 Prune a strongly admissible labelling that labels A in and its associated min-max num-
bering

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF, A strongly admissible labelling LabI

where A ∈ in(LabI), the associated min-max numbering MMLabI .
Output: A strongly admissible labelling LabO
 LabI where A ∈ in(LabO),
the associated min-max numbering MMLabO .

1: // We start with the type definitions
2: LabO : Ar → {in,out,undec}
3: MMLabO : in(LabO) ∪ out(LabO) → N ∪ {∞}
4: unproc_in : [X1, . . . Xn] (Xi ∈ Ar for each 1 � i � n) // list of arguments
5: // Initialize LabO and include the main argument
6: LabO ← (∅, ∅, Ar) // LabO becomes the all-undec labelling
7: unproc_in ← [A]
8: LabO(A) ← in
9: MMLabO(A) ← MMLabI (A)

10:

11: // Next, process the other arguments in a top-down way
12: while unproc_in is not empty do
13: let X be the argument at the front of unproc_in
14: remove X from unproc_in
15: for each attacker Y of X do
16: LabO(Y) ← out
17: MMLabO(Y) ← MMLabI (Y)

18: if there is no minimal (w.r.t MMLabI) in labelled (w.r.t LabI) attacker of Y that is also
labelled in by LabO then

19: Let Z be a minimal (w.r.t MMLabI) in labelled (w.r.t LabI) attacker of Y

20: Add Z to the rear of unproc_in
21: LabO(Z) ← in
22: MMLabO(Z) ← MMLabI (Z)

23: end if
24: end for
25: end while

including the main argument (which is labelled in), then including all its attackers (which are labelled
out), for each of which a minimally numbered in labelled attacker is included, etc. The idea is to keep
doing this until reaching the (in labelled) arguments that have no attackers. Each argument that has
not been included by this process is unnecessary for the strongly admissible labelling and can be made
undec, resulting in a labelling that is smaller or equal to the strongly admissible labelling one started
with.

To see how the algorithm works, consider again the argumentation framework of Figure 1. Let C be the
main argument. Suppose the input labelling LabI is ({A, C, D}, {B}, {E, F, G, H }) and its associated

CORRECTED P
ROOF

18 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

input labelling numbering MMLabO is {(A : 1), (B : 2), (C : 3), (D : 1)}.4 At the start of the first
iteration of the while loop, it holds that LabO = ({C},∅, {A, B, D, E, F, G, H }), MMLabO = {(C :
1)} and unproc_in = [C]. The first iteration of the while loop then removes C from unproc_in
(line 14), labels its attacker B out (line 16), numbers B with 2 (line 17), adds A to unproc_in
(line 20), labels A in (line 21) and numbers A with 1 (line 22). The second iteration of the while loop
then removes A from unproc_in (line 14). However, as A does not have any attackers, the for loop
(lines 15–24) is skipped. As unproc_in is now empty, the while loop is finished and the algorithm
terminates, with LabO = ({A, C}, {B}, {D, E, F, G, H }) and MMLabO = {(A : 1), (B : 2), (C : 3)}
being its results.

We now proceed to prove some of the formal properties of the algorithm. The first property to be
proved is termination.

Theorem 12. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. It
holds that the algorithm terminates.

Proof. At the while loop of lines 12–25, we observe that only a finite number of arguments can be
added to unproc_in. This is because there are only a finite number of arguments in the argumentation
framework, and because no argument can be added to unproc_in more than once. The latter can be
seen as follows. Following line 18, only arguments that are not already labelled in by LabO can be
added to unproc_in. Also, if an argument is labelled in by LabO , it will stay labelled in by LabO

as there is nothing in the algorithm that will change it. Following line 14, at each iteration of the while
loop, an argument is removed from unproc_in. From the fact that only a finite number of arguments
can be added to unproc_in, it directly follows that only a finite number of arguments can be removed
from unproc_in. Hence, the while loop can run only a finite number of times before unproc_in is
empty. Hence, Algorithm 2 terminates. �

Next, we prove that the labelling that is yielded by the algorithm is smaller or equal to the labelling
the algorithm started with.

Theorem 13. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let
LabO and MMLabO be the output of Algorithm 2. It holds that LabO
 LabI

Proof. In order to prove that LabO
 LabI , we must show:

(1) in(LabO) ⊆ in(LabI)

Let x be an arbitrary argument that is labelled in by LabO . We distinguish two cases:

• x became labelled in at line 8. Therefore, it follows x is main the argument (with x = A).
Therefore, A is also labelled in by LabI . That is, x is also labelled in by LabI

• x became labelled in at line 21. According to line 19, x is a minimal in labelled attacker of
some out labelled argument y w.r.t LabI . Therefore, x is also labelled in within LabI .

4The reader may have noticed that this was the output of Algorithm 1 for the example that was given in Section 3.1.

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 19

(2) out(LabO) ⊆ out(LabI)

Let y be an arbitrary out labelled argument within LabO . It follows that y must have been labelled
out at line 16 (so y = Y). From line 15, it follows that Y attacks X, which was removed from
unproc_in at line 14. This means that X at some point was added to unproc_in, which could
only have happened at line 7 or line 20. In either case, it holds that LabO(X) = in (line 8 or 21,
respectively). From point 1 above, we infer that LabI (X) = in. As LabI is an admissible labelling,
it follows that each attacker of X (such as Y) is labelled out by LabI . As y = Y it directly follows
that y is labelled out by LabI . �

Next, we prove that the output of the algorithm is at least admissible (the fact that it is also strongly
admissible is proved further on).

Theorem 14. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let
LabO and MMLabO be the output of Algorithm 2. It holds that LabO is an admissible labelling that
labels A in.

Proof. The fact that LabO labels A in follows from line 8. In order to prove that LabO is an admissible
labelling, we must show that it satisfies the following two properties (Definition 5):

(1) if LabO(x) = in, then for each y that attacks x it holds that LabO(y) = out
Let x be an arbitrary in labelled argument within LabO . This means that x became in at line 8 or
line 21. In either case, x has been added to unproc_in (at line 7 or line 20, respectively). Once
the algorithm is terminated, unproc_in has to be empty. This means that at some point, x must
have been removed from unproc_in. This can only have happened at line 14, which implies that
(lines 15 and 16) each attacker y of x is labelled out by LabO .

(2) if LabO(x) = out, then there exists a y that attacks x such that LabO(y) = in
Let x be an arbitrary out labelled argument within LabO . It follows that x has been labelled out
at line 16 (x = Y). According to Theorem 13, Y is also labelled out by LabI . Since LabI is an
admissible labelling of AF, at least one of Y ’s attackers is labelled in by LabI . Following lines
18–21, a minimal (w.r.t MMLabI) in labelled attacker of Y (w.r.t LabI), y has been labelled in
by LabO . That is, there exists a y that attacks x such that LabO(y) = in. �

Next, we prove that the algorithm does not change the min-max values of the arguments it labels in
or out.

Lemma 15. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let
LabO and MMLabO be the output of Algorithm 2. It holds that for each argument x that is labelled in
or out by LabO , MMLabO(x) = MMLabI (x).

Proof. This follows from Theorem 13 and lines 9, 17 and 22 of Algorithm 2. �

Next, we prove that the output numbering is actually the correct min-max numbering of the output
labelling.

CORRECTED P
ROOF

20 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Theorem 16. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be
the associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2.
Let LabO and MMLabO be the output of Algorithm 2. It holds that MMLabO is the correct min-max
numbering of LabO .

Proof. Since LabO has been shown to be admissible (Theorem 14), we need to show that (Definition 8):

(1) if LabO(x) = in then MMLabO(x) = max({MMLabO(y)|y attacks x and LabO(y) =
out}) + 1
Let x be an arbitrary in labelled argument within LabO . From the fact that LabO(x) = in and
that LabO
 LabI (Theorem 13) it follows that LabI (x) = in. Since MMLabI is the correct
min-max numbering of LabI , MMLabI (x) = max({MMLabI (y)|y attacks x and LabI (y) =
out}) + 1. From the fact that MMLabO(x) = MMLabI (x) (Lemma 15) it follows that
MMLabO(x) = max({MMLabI (y)|y attacks x and LabI (y) = out}) + 1. As both LabI and
LabO are admissible labellings, it holds that in both labellings, all attackers of x are labelled
out. It follows that {y|y attacks x and LabI (y) = out} = {y|y attacks x and LabO(y) =
out}. From Lemma 15, it then follows that {MMLabI (y)|y attacks x and LabI (y) = out} =
{MMLabO(y)|y attacks x and LabO(y) = out}. Therefore, from the earlier observed fact that
MMLabO(x) = max({MMLabI (y)|y attacks x and LabI (y) = out}) + 1 we obtain that
MMLabO(x) = max({MMLabO(y)|y attacks x and LabO(y) = out}) + 1.

(2) if LabO(x) = out then MMLabO(x) = min({MMLabO(y)|y attacks x and LabO(y) =
in}) + 1
Let x be an arbitrary out labelled argument within LabO . From the fact that LabO(x) = out
and that LabO
 LabI (Theorem 13) it follows that LabI (x) = out. As MMLabI is the cor-
rect min–max numbering of LabI it holds that MMLabI (x) = min({MMLabI (y)|y attacks x

and LabI (y) = in}) + 1. As MMLabO(x) = MMLabI (x) (Lemma 15), it follows
that MMLabO(x) = min({MMLabI (y)|y attacks x and LabI (y) = in}) + 1. The fact
that LabO(x) = out means that x must have become labelled out at line 16. From lines
18–22, it follows that LabO will also contain a minimal (w.r.t. MMLabI) in labelled at-
tacker (w.r.t. LabI). This implies that min({MMLabI (y)|y attacks x and LabI (y) = in}) =
min({MMLabO(y)|y attacks x and LabO(y) = in}). So from the earlier obtained fact that
MMLabO(x) = min({MMLabI (y)|y attacks x and LabI (y) = in}) + 1, it follows that
MMLabO(x) = min({MMLabO(y)|y attacks x and LabO(y) = in}) + 1. �

We are now ready to state one of the main results of the current section: the output labelling is strongly
admissible.

Theorem 17. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
associated min-max numbering. Let AF, A, LabI and MMLabI be given as input to Algorithm 2. Let
LabO and MMLabO be the output of Algorithm 2. It holds that LabO is a strongly admissible labelling
of AF.

Proof. In order to show that LabO is strongly admissible, we need to show that LabO is an admissible
labelling for which the min-max numbering does not contain any ∞ (Definition 4). First, we observe

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 21

that LabO is an admissible labelling of AF (Theorem 14) with MMLabO as its correct min-max num-
bering (Theorem 16). As LabI is a strongly admissible labelling of AF, its min-max numbering does not
contain ∞. This, together with the fact that LabO
 LabI (Theorem 13) and the fact that for each in
or out labelled argument x by LabO , x is assigned the same min-max numbering by MMLabO as by
MMLabI (Lemma 15) implies that MMLabO does not contain any ∞. Hence, we observe that LabO

is an admissible labelling whose min-max numbering MMLabO does not contain ∞. That is, LabO is
a strongly admissible labelling of AF. �

It turns out that the algorithm runs in polynomial time (more specific, in cubic time).

Theorem 18. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF, LabI be a strongly admissible labelling where A is labelled in and MMLabI be the
correct min-max numbering of LabI . Let AF, A, LabI and MMLabI be given as input to Algorithm 2.
Let LabO and MMLabO be the output of Algorithm 2. It holds that Algorithm 2 computes LabO and
MMLabO in O(n)3 time.

Proof. Let n be the number of arguments in AF (that is, n = |Ar|). The while loop (lines 12–25) can
have at most n iterations. This is because each iteration of the while loop removes an argument from
unproc_in, which can be done n times at most, given that no argument can be added to unproc_in
more than once (this follows from lines 18–21). For each iteration of the while loop, the for loop (lines
15–24) will run at most n times. In addition, for each iteration of the for loop, a sequential search (lines
18–19) will run at most n times. This means that the total number of instructions executed by the while
loop is of the order n3 at most. Therefore, Algorithm 2 computes LabO in O(n)3 time. �

3.3. Algorithm 3

The idea of Algorithm 3 is to combine Algorithm 1 and Algorithm 2, by running them in sequence.
That is, the output of Algorithm 1 is used as input for Algorithm 2.

As an example, consider again the argumentation framework of Figure 1. Let C be the main argument.
Running Algorithm 1 yields a labelling ({A, C, D}, {B}, {E, F, H, H }) with associated numbering {(A :
1), (B : 2), (C : 3), (D : 1)} (as explained in Section 3.1). Feeding this labelling and numbering

Algorithm 3 Construct a relatively small strongly admissible labelling that labels A in and its associated
min-max numbering

Input: An argumentation framework AF = (Ar, att),
an argument A ∈ Ar that is in the grounded extension of AF.
Output: A strongly admissible labelling Lab where A ∈ in(Lab),
the associated min-max numbering MMLab.

1: run Algorithm 1
2: LabI ← Lab

3: MMLabI ← MMLab

4: run Algorithm 2
5: Lab ← LabO

6: MMLab ← MMLabO

CORRECTED P
ROOF

22 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

into Algorithm 2 then yields an output labelling ({A, C}, {B}, {D, E, F, G, H }) with associated output
numbering {(A : 1), (B : 2), (C : 3)} (as explained in Section 3.2).

Given the properties of Algorithm 1 and Algorithm 2, we can prove that Algorithm 3 terminates,
correctly computes a strongly admissible labelling and its associated min-max numbering, and runs in
polynomial time (more specific, in cubic time).

Theorem 19. Let AF = (Ar, att) be an argumentation framework and A be an argument in the grounded
extension of AF. Let both AF and A be given as input to Algorithm 3. It holds that the algorithm termi-
nates.

Proof. This follows from Theorem 1 and Theorem 12. �

Theorem 20. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the
grounded extension of AF. Let both AF and A be given as input to Algorithm 3. Let Lab and MMLab

be the output of the algorithm. It holds that Lab is a strongly admissible labelling that labels A in and
has MMLab as its min-max numbering.

Proof. This follows from Theorem 10, Theorem 14, Theorem 16 and Theorem 17. �

Theorem 21. Let AF = (Ar, att) be an argumentation framework and let A be an argument in the
grounded extension of AF. Let both AF and A be given as input to Algorithm 3. Let Lab and MMLab

be the output of the algorithm. It holds that Algorithm 3 computes Lab and MMLab in O(n3) time.

Proof. This follows from Theorem 11 and Theorem 18. �

Theorem 22. Let AF = (Ar, att) be an argumentation framework, A be an argument in the grounded
extension of AF. Let AF and A be given as input to Algorithm 1 and Algorithm 3. Let LabI and MMLabI

be the output of Algorithm 1 and let Lab3 and MMLab3 be the output of Algorithm 3. It holds that
Lab3
 LabI .

Proof. This follows from Theorem 13, together with Theorem 10 and the way Algorithm 3 is defined
(by successively applying Algorithm 1 and Algorithm 2). �

4. Empirical results

Now that the correctness of our algorithms has been proved and their computational complexity has
been stated, the next step is to empirically evaluate their performance. For this, we compare both their
runtime and output with that of other computational approaches.

4.1. Minimality

Although Algorithm 3 aims to find a relatively small strongly admissible labelling, it is not guaranteed
to find an absolute smallest. This is because the problem of finding the absolute smallest admissible
labelling is coNP-complete, whereas Algorithm 3 is polynomial (Theorem 21). In essence, we have given
up absolute minimality in order to achieve tractability. The question, therefore, is how much we had to

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 23

compromise on minimality. That is, how does the outcome of Algorithm 3 compare with what would
have been an absolute minimal outcome? In order to make the comparison, we apply the ASPARTIX
ASP encodings of [11] to determine the absolute minimal strongly admissible labelling.

Apart from comparing the strongly admissible labelling yielded by our algorithm with an absolute
minimal strongly admissible labelling, we also compare it with the absolute maximal strongly admis-
sible labelling. That is, we compare it with the grounded labelling. The reason for doing so is that the
grounded semantics algorithms (e.g. [12,13]) are to the best of our knowledge currently the only poly-
nomial algorithms for computing a strongly admissible labelling (in particular, for the maximal strongly
admissible labelling) that have been stated in the literature. As Algorithm 3 is also polynomial (Theo-
rem 21) this raises the question of how much improvement is made regarding minimality.

For queries, we considered the argumentation frameworks in the benchmark sets of ICCMA’17, IC-
CMA’19 and ICCMA’21.5 For each of the argumentation frameworks we generated a query argument
that is in the grounded extension (provided the grounded extension is not empty). We used the queried
argument when one was provided by the competition (for instance, when considering the benchmark
examples of the Admbuster class, we took ‘a’ to be the queried argument as this was suggested by the
authors of this class). After considering 994 argumentation frameworks, we found that 277 argumenta-
tion frameworks yielded a grounded extension that is not empty (meaning they could used for current
purposes).

We conducted our experiments on a MacBook Pro 2020 with 8 GB of memory and an Intel Core i5
processor. To run the ASPARTIX system we used clingo v5.6.2. We set a timeout limit of 1000 seconds
and a memory limit of 8 GB per query.

For each of the selected benchmark examples, we have assessed the following:

(1) the size of the grounded labelling (determined using the modified version of Algorithm 1 as de-
scribed in Lemma 9)

(2) the size of the strongly admissible labelling yielded by Algorithm 1
(3) the size of the strongly admissible labelling yielded by Algorithm 3
(4) the size of the absolute minimal strongly admissible labelling (yielded by the approach of [11])

We start our analysis with comparing the output of Algorithm 1 and Algorithm 3 with the grounded
labelling regarding the size of the respective labellings. We found that the size of the strongly admissible
labelling yielded by Algorithm 1 tends to be smaller than the size of the grounded labelling. More
specifically, the strongly admissible labelling yielded by Algorithm 1 is smaller than the size of the
grounded labelling in 63% of the 277 examples we tested for. In the remaining 37% of the examples,
their sizes are the same.

Figure 2 provides a more detailed overview of our findings, in the form of a bar graph. The rightmost
bar represents the 37% of the cases where the output of Algorithm 1 has the same size as the grounded
labelling (that is, where the size of the output of Algorithm 1 is 100% of the size of the grounded
labelling). The bars on the left of this are for the cases where the size of the output of Algorithm 1 is less
than the size of the grounded labelling. For instance, it was found that in 10% of the examples, the size
of output of Algorithm 1 is 80% to 89% of the size of the grounded labelling. On average, we found that
the size of the output of Algorithm 1 is 76% of the size of the grounded labelling.

As for Algorithm 3, we found an even bigger improvement in the size of it’s output labelling compared
to the grounded labelling. More specifically, the size of the strongly admissible labelling yielded by

5See http://argumentationcompetition.org/.

http://argumentationcompetition.org/

CORRECTED P
ROOF

24 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Fig. 2. The size of output of Algorithm 1 (as a percentage of the grounded labelling).

Fig. 3. The size of output of Algorithm 3 (as a percentage of the grounded labelling).

Algorithm 3 is smaller than the grounded labelling in 88% of the 277 examples we tested for. Figure 3
provides a more detailed overview of our findings in a similar way as we previously did for Algorithm 1.
On average, we found that the output of Algorithm 3 has a size that is 25% of the size of the grounded
labelling.

Apart from comparing Algorithm 1 and Algorithm 3 with the grounded labelling, it can also be in-
sightful to compare the two algorithms with each other. In Figure 4, each dot represents one of the 277

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 25

Fig. 4. The size of output of Algorithm 1 compared to the output Algorithm 3 (as a percentage of the size of the grounded
labelling).

examples.6 The horizontal axis represents the size of the output of Algorithm 1, as a percentage of the
size of the grounded labelling. The vertical axis represents the size of the output of Algorithm 3 as a
percentage of the size of the grounded labelling. For easy reference, we have included a dashed line
indicating the situation where the output of Algorithm 1 has the same size as the output of Algorithm 3.
Any dots below the dashed line represent the cases where Algorithm 3 outperforms Algorithm 1, in that
it yields a smaller strongly admissible labelling. Any dots above the dashed line represents the cases
where Algorithm 3 under performs Algorithm 1 in that it yields a bigger strongly admissible labelling.
Unsurprisingly, there are no such cases as Theorem 22 states that the output of Algorithm 3 cannot be
bigger than the output of Algorithm 1. We found that for 95% of the examples, Algorithm 3 produces
a smaller labelling than Algorithm 1. Moreover, we found that on average, the output of Algorithm 3 is
32% smaller than output of Algorithm 1.

The next question is how the output of our best performing algorithm (Algorithm 3) compares with
what would have been the ideal output. That is, we compare the size of the output of Algorithm 3
with the size of a minimal strongly admissible labelling for the main argument, as computed using the
ASPARTIX encodings of [11]. The results are shown in Figure 5.

We found that in 91% of the 277 examples, the output of Algorithm 3 is of the same size as the smallest
strongly admissible labelling for the output of the main argument. For the other 9% of the examples, the
output of Algorithm 3 has a bigger size. On average, we found that the output of Algorithm 3 is 3%
bigger than the smallest strongly admissible labelling for the main argument. Figure 6, provides a more

6Please be aware that some of the dots overlap each other.

CORRECTED P
ROOF

26 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Fig. 5. The size of output of Algorithm 3 compared to a smallest strongly admissible labelling (as a percentage of the size of
the grounded labelling).

Fig. 6. The size of output of Algorithm 3 compared to a smallest strongly admissible labelling.

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 27

Fig. 7. The runtime of Algorithm 3 compared to the runtime of computing the grounded labelling using Algorithm 3 of [13].

detailed overview of how much bigger the output of Algorithm 3 is compared to the smallest strongly
admissible labelling for the main argument.

4.2. Runtime

The next thing to study is how the runtime of our algorithms compares with the runtime of some
of the existing computational approaches. In particular, we compare the runtime of Algorithm 1 and
Algorithm 3 with the runtime of the ASPARTIX-based approach of [11].

We first compare the runtime of Algorithm 3 to the runtime of the modified version of Algorithm 3
of [13] for computing the grounded labelling. It turns out that the runtimes of these algorithms are very
similar. On average, Algorithm 3 of [13] took 0.02 seconds (3%) more than Algorithm 3 to solve the test
instances. These runtime results of Algorithm 3 and Algorithm 3 of [13] are shown in Figure 7.

The next question is how does the runtime of computing Algorithm 3 compare to the runtime of the
ASPARTIX encoding for minimal strongly admissibility. It was observed that the runtime of ASPARTIX
encoding is significantly longer than the runtime of Algorithm 3. A detailed overview of the difference
in runtimes of Algorithm 3 and the ASPARTIX encoding on minimal strong admissibility is shown in
Figure 8. On average, the ASPARTIX framework took 12.5 seconds (907%) more than Algorithm 3 to
solve the test instances.

5. Discussion

In the current paper, we provided two algorithms (Algorithm 1 and Algorithm 3) for computing a
relatively small strongly admissible labelling for an argument that is in the grounded extension. We

CORRECTED P
ROOF

28 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

Fig. 8. The runtime of computing a smallest admissible labelling using the ASPARTIX encodings compared with the runtime
of Algorithm 3.

proved that both algorithms are correct in the sense that each of them returns a strongly admissible
labelling (with associated min-max numbering) that labels the main argument in (Theorem 10 and 20).
Moreover, each algorithm runs in polynomial (cubic) time (Theorem 11 and Theorem 21). It was also
shown that the strongly admissible labelling yielded by Algorithm 3 is smaller than or equal to the
strongly admissible labelling yielded by Algorithm 1 (Theorem 13).

The next question we examined is how small the output of Algorithm 1 and Algorithm 3 is compared to
the smallest strongly admissible for the main argument. Unfortunately, previous findings make it difficult
to provide formal theoretical results on this. This is because the c-approximation problem for strong
admissibility is NP-hard, meaning that a polynomial algorithm (such as Algorithm 1 and Algorithm 3)
cannot provide any guarantees of yielding a result within a fixed parameter c from the size of the absolute
smallest strongly admissible labelling for the main argument.

Hence, instead of developing theoretical results, we decided to approach the issue of minimality in
an empirical way, using a number of experiments. These experiments were based on the benchmark
examples that were submitted to ICCMA’17, ICCMA’19 and ICCMA’21. We compared the output of
Algorithm 1 and Algorithm 3 with both the biggest and the smallest strongly admissible set for the main
argument (the biggest was computed using Algorithm 3 described in [13] and the smallest was computed
using the ASPARTIX based approach on computing minimal strong admissibility in [11]). Overall, we
found that Algorithm 3 yields results that are only marginally bigger than the smallest strongly admis-
sible labelling, with a run-time that is a fraction of the time that would be required to find this smallest
strongly admissible labelling. The outputs of both algorithms return a strongly admissible labelling that
is significantly smaller than the biggest strongly admissible labelling (the grounded labelling), with the
output of Algorithm 3 on average being only 25% of the size of the biggest strongly admissible labelling.

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 29

Fig. 9. An example of an argumentation framework where Algorithm 3 yields a strongly admissible labelling that is not minimal.

Although our Algorithm 3 tends to yield good results in most cases (obtaining an absolute small-
est strongly admissible labelling in 91% of the examples we tested for) there are some argumentation
frameworks where it will not perform well. An example of such an argumentation framework is shown
in Figure 9.

For the argumentation framework of Figure 9, Algorithm 3 will yield the strongly admissible labelling
({A, H, J, L, N}, {B, I, K, M}, {C, D, E, F, G}) with associated min-max numbering {(A : 5), (B :
4), (H : 3), (I : 2), (K : 2), (M : 2), (J : 1), (L : 1), (N : 1)}. However, this labelling is not minimal,
as the minimal strongly admissible labelling is ({A, C, E, G}, {B, D, F }, {H, I, J, K, L, M, N}) with
associated min-max numbering {(A : 7), (B : 6), (C : 5), (D : 4), (E : 3), (F : 2), (G : 1)}.

To understand how such a suboptimal result was produced, it is important to realise that Algoritm 2,
when choosing an in-labelled attacker of an out-labelled argument (e.g. Algorithm 2 arriving at argu-
ment B and having to choose between C and H) makes this choice based on which of those attackers
have the smallest min-max number (line 19 of Algorithm 2). In the case of the argumentation framework
of Figure 9, Algorithm 2 will choose H instead of C, even though C would have been a better choice.
This is because even though the branch starting with C is longer, it does not have the same fan-out as the
branch starting with H , resulting in fewer arguments that need to be labelled in and out. In general,
the heuristic of choosing the attacker with the smallest min-max number can be suboptimal,7 especially
for argumentation frameworks where shorter branches tend to have a higher fan-out. It is likely to still
perform quite reasonable when the fan-out is spread more or less equally among branches of different
length. The fact that our Algorithm 3 manages to yield an absolute smallest strongly admissible labelling
in 91% of cases, based on the ICCMA’17, ICCMA’19 and ICCMA’21 benchmark sets, indicates that the
kind of argumentation frameworks where our algorithm performs poorly are perhaps not very common.

Algorithm 1 requires that the main argument (argument A) is in the grounded extension. At first
sight, this would seem to require some additional computation before our algorithms are run, in order to
determine whether this is indeed the case. However, it would not be difficult to modify Algorithm 1 to
provide an answer to this as well.8 This could be done by not only returning a labelling and its associated
min-max numbering, but by also returning a flag that indicates whether argument A is actually part of the
grounded extension. This flag would be set to true if Lab and MMLab are returned at line 16 or line 33.

7A small performance improvement could perhaps be made by altering line 19 of Algorithm 2. The current algorithm chooses
argument Z in a non-deterministic way if there is more than one in-labelled attacker with minimal min-max number. This could
be changed to select the attacker with the lowest fan-out among the attackers with minimal min-max number. This would not
help for the argumentation framework of Figure 9. However, it would help in case arguments F and G were removed from the
argumentation framework. This would result in C and H having equal min-max numbers. The modified algorithm would then
choose argument C over argument H as C has the lower fan-out (number of attackers).

8We thank one of the anonymous reviewers for pointing this out.

CORRECTED P
ROOF

30 M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility

The idea is to return false if the algorithm reaches line 39 (instead of printing an error message). In
the latter case, one could additionally return Lab and MMLab, which would be the grounded labelling
and its associated min-max numbering (the proof of this would be similar to that of Lemma 9). This
grounded labelling and associated min-max numbering would provide evidence that argument A is not
part of the grounded extension. It can easily be verified that Theorem 1 as well as Lemma 2, 3, 4, 5,
6, 7 still hold in such a case, as none of these depend on argument A being in the grounded extension.
Moreover, the complexity of the algorithm would remain cubic.

Algorithm 2 could to some extent be optimised by adding an extra condition to line 15, so that the
for-loop only runs for attackers that are not yet labelled out.9 Without such a condition, lines 16 and
17 could run unnecessary, as the two assignments may already have been done previously. However, in
such a case the if-statement of line 18 will never have its condition fulfilled, hence putting a limit in the
advantages of implementing the extra condition in line 15.

The research of the current paper fits into our long-term research agenda of using argumentation theory
to provide explainable formal inference. In our view, it is not enough for a knowledge-based system to
simply provide an answer regarding what to do or what to believe. There should also be a way for this
answer to be explained. One way of doing so is by means of (formal) discussion. Here, the idea is that
the knowledge-based system should provide the argument that is at the basis of its advice. The user
is then allowed to raise objections (counterarguments) which the system then replies to (using counter-
counter-arguments), etc. In general, we would like such a discussion to be (1) sound and complete for the
underlying argumentation semantics, (2) not be unnecessarily long, and (3) be close enough to human
discussion to be perceived as natural and convincing

As for point (1), sound and complete discussion games have been identified for grounded, preferred,
stable and ideal semantics [4]. As for point (2), this is what we studied in the current paper, as well as in
[3,6]. As for point (3), this is something that we are aiming to report on in future work.

For future research, it is possible to conduct a similar sort of analysis (as in this paper) on mini-
mal admissible labellings. It was reported obtaining an absolute minimal admissible labelling for a main
argument is also of coNP-complete complexity [3,6] therefore, it would be interesting to look into devel-
oping an algorithm that generates a small admissible labelling in polynomial time complexity. Similarly,
it would also be interesting to look at the complexity and empirical results on generating minimal ideal
sets.

References

[1] P. Baroni and M. Giacomin, On principle-based evaluation of extension-based argumentation semantics, Artificial Intelli-
gence 171(10–15) (2007), 675–700. doi:10.1016/j.artint.2007.04.004.

[2] M.W.A. Caminada, On the issue of reinstatement in argumentation, in: Logics in Artificial Intelligence; 10th European
Conference, JELIA 2006, M. Fischer, W. van der Hoek, B. Konev and A. Lisitsa, eds, Springer, 2006, pp. 111–123, LNAI
4160.

[3] M.W.A. Caminada, Strong admissibility revisited, in: Computational Models of Argument, S. Parsons, N. Oren, C. Reed
and F. Cerutti, eds, Proceedings of COMMA 2014, IOS Press, 2014, pp. 197–208.

[4] M.W.A. Caminada, A discussion game for grounded semantics, in: Theory and Applications of Formal Argumentation
(Proceedings TAFA 2015), E. Black, S. Modgil and N. Oren, eds, Springer, 2015, pp. 59–73. doi:10.1007/978-3-319-
28460-6_4.

[5] M.W.A. Caminada, P. Baroni and M. Giacomin, Abstract argumentation frameworks and their semantics, in: Handbook
of Formal Argumentation, Vol. 1, College Publications, 2018.

9We thank one of the anonymous reviewers for pointing this out.

https://doi.org/10.1016/j.artint.2007.04.004
https://doi.org/10.1007/978-3-319-28460-6_4
https://doi.org/10.1007/978-3-319-28460-6_4

CORRECTED P
ROOF

M. Caminada and S. Harikrishnan / Tractable algorithms for strong admissibility 31

[6] M.W.A. Caminada and P.E. Dunne, Strong admissibility revisited: Theory and applications, Argument & Computation 10
(2019), 277–300. doi:10.3233/AAC-190463.

[7] M.W.A. Caminada and P.E. Dunne, Minimal strong admissibility: A complexity analysis, in: Proceedings of COMMA
2020, H. Prakken, S. Bistarelli, F. Santini and C. Taticchi, eds, IOS Press, 2020, pp. 135–146.

[8] M.W.A. Caminada and D.M. Gabbay, A logical account of formal argumentation, Studia Logica 93(2–3) (2009), 109–145,
Special issue: new ideas in argumentation theory. doi:10.1007/s11225-009-9218-x.

[9] M.W.A. Caminada and G. Pigozzi, On judgment aggregation in abstract argumentation, Autonomous Agents and Multi-
Agent Systems 22(1) (2011), 64–102. doi:10.1007/s10458-009-9116-7.

[10] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artificial Intelligence 77 (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.

[11] W. Dvořák and J. Wallner, Computing strongly admissible sets, in: Proceedings of COMMA 2020, H. Prakken,
S. Bistarelli, F. Santini and C. Taticchi, eds, IOS Press, 2020, pp. 179–190.

[12] S. Modgil and M.W.A. Caminada, Proof theories and algorithms for abstract argumentation frameworks, in: Argumen-
tation in Artificial Intelligence, I. Rahwan and G.R. Simari, eds, Springer, 2009, pp. 105–129. doi:10.1007/978-0-387-
98197-0_6.

[13] S. Nofal, K. Atkinson and P.E. Dunne, Computing grounded extensions of abstract argumentation frameworks, The Com-
puter Journal 64 (2021), 54–63. doi:10.1093/comjnl/bxz138.

https://doi.org/10.3233/AAC-190463
https://doi.org/10.1007/s11225-009-9218-x
https://doi.org/10.1007/s10458-009-9116-7
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-0-387-98197-0_6
https://doi.org/10.1007/978-0-387-98197-0_6
https://doi.org/10.1093/comjnl/bxz138

	Introduction
	Preliminaries
	The algorithms
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Empirical results
	Minimality
	Runtime

	Discussion
	References

