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Abstract. It is often necessary and reasonable to justify preferences before reasoning from them. Moreover, justifying a pref-
erence ordering is reduced to justifying the criterion that produces the ordering. This paper builds on the well-known ASPIC+
formalism to develop a model that integrates justifying qualitative preferences with reasoning from the justified preferences. We
first introduce a notion of preference criterion in order to model the way in which preferences are justified by an argumentation
framework. We also adapt the notion of argumentation theory to build a sequence of argumentation frameworks, in which an
argumentation framework justifies preferences that are to underlie the next framework. That is, in our formalism, preferences
become not only an input of an argumentation framework, but also an output of it. This kind of input-output process can be
applied in the further steps of argumentation. We also explore some interesting properties of our formalism.
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1. Introduction

Argumentation is one of the mainstream approaches dealing with inconsistent information in intelli-
gent systems. Dung’s argumentation framework (AF) consists of a set of arguments and a binary attack
relation between them [11,31]. A semantics is used for identifying acceptable arguments and drawing
plausible conclusions. A set of arguments identified by a semantics as acceptable is called an extension.
The attack relation in an AF can represent inconsistency of information and an extension identified by a
semantics represents the ability of an AF to model inferences to plausible conclusion under inconsistent
information.

In the field of argumentation theory, there has been a general consensus that arguments may not have
the same strength [3,17] and the preferences should be considered in the evaluation of the successfulness
of argument attacks [56,59]. Preferences are so important in evaluating arguments that preference-based
(and value-based) AFs (PAFs) cover a crucial part of the spectrum of the existing argumentation for-
malisms. In a PAF, a preference ordering over the set of arguments is set to filter out the attack relation
between arguments. A semantics is applied to the remained attacks. When we set a preference ordering
over the set of arguments of an AF, some decision problems that may be intractable in the standard
AF become very easier to solve. Preference-based (and value-based) AFs can be employed in the wide
range of applications and domains such as merging conflicting knowledge bases [5], modeling dialogues
[4,49], practical reasoning [13,57], legal reasoning [14,16] and even moral reasoning [10,63].

In this paper, our primary concern is to develop a model that enables not only reasoning from prefer-
ences but also justifying the preferences before applying them to reasoning. In practice, different people
have different preferences and often a different context calls for different preferences. Therefore, any
given preference ordering is not a ‘universally accepted assumption’ and may be questioned. This ad-
vises a rational agent to justify preferences before applying them to reasoning.
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Indeed, every preference ordering comes from the criteria behind it. Any preference ordering is based
on comparative evaluations, which “cannot begin until you come up with one or more classes or cat-
egories to which the objects of comparison can belong.” Then, the class or category will provide the
criterion for the comparative evaluation. Such a criterion “may amount to an ideal definition of the
class” [16, p.244]. Therefore, justifying a preference ordering is reduced to justifying the criteria. Sev-
eral papers have emphasized the need to support a given preference ordering in an AF [15,38,43]. Fur-
thermore, there may be more than one criterion behind a preference ordering. That is why multi-criteria
decision-making (MCDM) is dominant in the field. Multiple criteria may cooperatively produce a single
preference ordering over different objects.

Although justifying multiple preference criteria before applying them to reasoning follows a gen-
eral pattern by which we think, such formalisms have not been widely studied. Most of the existing
preference-based AFs take a preference ordering over the set of arguments as its input, but make no
justifications for the preference ordering or criteria behind it. The audience-dependency of selecting a
preference (value order) was addressed by Bench-Capon and his colleagues in their value-based AF
[13,15]. Thus, in their framework, a specific audience, which is defined as a total ordering over a set
of values, can be regarded as a criterion from which a preference ordering over arguments is produced.
Modgil has integrated reasoning about preferences with reasoning from the preferences mainly in his
so-called extended argumentation framework [43,44]. He employed recursive attacks as the means of
reasoning about preferences, thus his framework enables not only reasoning from preferences, but also
reasoning about preferences. Sedki [58] suggests the use of an AF for preference elicitation with an
approach based on the association between a given PQCL (Prioritized Qualitative Choice Logic [18])
theory and a value-based AF.

Integrating justification for preferences with reasoning from the justified preferences has been done in
the field of recommender systems. Teze et al. proposed a recommender system with dynamic multiple
criteria by extending DeLP-server [60]. Their system embeds multiple preference criteria in a DeLP-
query and justifies them by generating a derivation from a DeLP-program. However, the selection of
an appropriate criterion is derived from facts and strict rules. In other words, the selection of a crite-
rion in their system is based on perfect information, thus can never be doubted. However, in everyday
and legal argumentation, the selection of a criterion can often be doubted and be in conflict. Like all
human judgments and actions, the selection of a criterion may be based on imperfect, especially incon-
sistent information rather than perfect and consistent information. Since argumentation is an effective
approach dealing with inconsistent information, we can justify a preference criterion by means of an
argumentation-based approach.

The legal reasoning, where a lawyer must demonstrate the priority of a legal norm to other conflicting
norms [38], backs up our idea of this integration. In our proposal, an AF is not only used for drawing
plausible conclusions, but also used for justifying preferences. Therefore, a preference ordering over
a set of arguments becomes both output and input of an AF. In order to represent the condition under
which a preference criterion is justified, we borrow the notion of guard from [60]. The guard of a
preference criterion is defined as the information which must be drawn from an AF in order to justify the
criterion. If the guard of a criterion is empty, the preference criteria can be said to be always justified,
thus, applicable, under any condition.

To develop a model that enables not only reasoning from preferences but also justifying preferences,
we choose ASPIC+, which is structured and preference-based, as the basic formal framework [39,46,
55]. ASPIC+ has been proposed on the basis of several former works on rule-based argumentation [54,
56,64] cognitive science [52,53], classical logics and contemporary argumentation schemes [62,65–67].
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It has also been proven that this formalism satisfies rationality postulates stipulated in [27] even when
applying preferences under some assumptions.1 We modify the notion of argumentation theory with the
concept of preference criterion to develop a model which enables not only reasoning from preferences,
but also justifying the preferences. Then we devise a sequence of PAFs built over the theory, in which a
PAF justifies some preference criteria that are to be also taken as an input of the next PAF.

Traditional preference-based argumentation formalisms including the ASPIC+ framework have only
one repairing step where the attack relation is filtered through preferences. But our proposal has two
or more repairing steps. One, where the attack relation is filtered through preferences whose criteria
have empty guard, is for selecting appropriate preference criteria. The other, where the attack relation
is filtered through justified preferences, is for drawing plausible conclusions taking into account the
justified preferences. Then, the justified preferences are the output of the first step and the input of the
second step. If repairing an AF twice through preferences is not enough for resolving conflicts between
extensions, then our framework enables further repairing steps.

The remainder of this paper is organized as follows: Section 2 briefly reviews Dung’s abstract AF
and PAF and some basic definitions of the ASPIC+ formalism are together with it interesting property.
In Section 3, we give some motivations for developing the model that is able to not only reason from
preferences but also justify the preferences. Section 4 is dedicated to integrating justification for pref-
erence criteria with reasoning from the justified preferences. In Section 5, the results and properties of
our formalism are deeply discussed with some decision-making examples. Section 6 shows some related
works, and finally we conclude the paper in Section 7.

2. Preliminaries

In this section, we briefly review preference-based AF that is an extended version of Dung’s abstract
AF and the well-known ASPIC+ framework.

2.1. Preference-based argumentation framework

Let us first recall Dung’s notion of abstract argumentation framework. An abstract argumentation
framework (AF) is a pair H = 〈A,R〉 where A is a set of arguments and R ⊆ A × A is a binary attack
relation among the arguments [31]. We say that an argument A attacks an argument B iff 〈A, B〉 ∈ R
(denoted by ARB). A set of arguments S ⊆ A is said to be conflict-free wrt. R iff �A, B ∈ S, such that
〈A, B〉 ∈ R. A set of arguments S ⊆ A is also said to defend an argument A ∈ A iff for all B ∈ A, such
that 〈B, A〉 ∈ R, there exists a C ∈ S, such that 〈C, B〉 ∈ R. We write F(S) for the set of all arguments
that S defends. Then, the acceptability semantics over a set of arguments are defined as follows:

• A set S ⊆ A of arguments is an admissible set iff it is conflict-free and defends all its elements;
• A set S ⊆ A of arguments is a complete extension iff S is conflict-free and S = F(S);
• A set S ⊆ A of arguments is a preferred extension iff it is a maximal complete extension (wrt. set

inclusion);
• A set S ⊆ A of arguments is a grounded extension iff it is the minimal complete extension (wrt. set

inclusion);
• A set S ⊆ A of arguments is a stable extension iff it is conflict-free and for all A ∈ A\S, there

exists a B ∈ S such that BRA;

1The former ASPIC framework satisfies rationality postulates only when preferences are not taken into account.
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Remember that given an AF H = 〈A,R〉, function Exty(H) returns the set of all extensions under
y semantics, where y ∈ {pre,sta,gro,com,adm} and pre (respectively sta, gro, com, adm)
means preferred (respectively stable, ground, complete, admissible) semantics.

In several works, the abstract AF has been extended into preference-based AFs (PAF) by adding a
preference ordering over a set of arguments in order to model the generally accepted idea that arguments
may not be equally preferred [3,17] and that argument preferences should be taken into account while
determining whether an attack is successful or failed [56,59].

Formally, a PAF is a triple H = 〈A,R,�〉 where A is a set of arguments, R ⊆ A × A is an attack
relation and � is a (partial or total) preference ordering over A [1]. Let A, B ∈ A be arguments. A � B

means that argument A is at least as preferred as B. The strict counterpart of � is �. Note that AF
〈A,R〉 is a special case of PAF 〈A,R,�〉 where �= ∅. Thus, we will use the notion of PAF instead of
AF, throughout this paper.

A preference ordering over the set of arguments of an AF is useful for filtering the attack relation,
that is, removing the (preference-dependent) attacks where the attackee is preferred to the attacker.2

Then, for the sake of applying the acceptability semantics to the filtered attack relation, it is necessary
to define the notion of the repaired AF of a PAF. The repaired AF of a PAF 〈A,R,�〉 is 〈A,R′〉 with
R′ = {(a, b)|(a, b) ∈ R and not b � a}. The extensions of 〈A,R,�〉 under a given semantics are Dung
extensions of the repaired version 〈A,R′〉 under the same semantics. Furthermore, 〈A,R〉 is called the
original version of a PAF 〈A,R,�〉.

Although, by means of PAFs, we are able to not only model real-world argumentation, but also make
many decision problems that have been proved to be intractable in Dung-style AFs much easier, such
an approach gives rise to an unintuitive result. According to this approach, if one argument asymmetri-
cally attacks another, but fails, then these two arguments become conflict-free. This is problematic since
whether an attack is successful or failed is irrelevant to determining a conflict. A conflict between argu-
ments is only the matter of their incompatiblity [46]. As a result, some formalisms that takes preferences
or values into account lead to violating rationality postulates stipulated in [27].

To address this shortcoming, three main solutions have been proposed. These proposals aim to guar-
antee conflict-freeness of a PAF extension whether or not an attack is successful. One solution is to add
preferences at semantics level, not attack level [7]. Another suggestion is to inverse the direction of failed
and asymmetric attacks [9]. The ASPIC+ formalism has found the way to avoid losing the conflict-
freeness of an extension in distinguishing between preference-dependent and preference-independent
attacks [45,46,55]. Amgoud & Vesic [7] argue that their approach is more general than ASPIC+. How-
ever, everything has merits and demerits and we have found that, ASPIC+’s way of distinguishing
between preference-dependent and preference-independent attacks has a very useful property which we
will proceed to study in the next section.

2.2. ASPIC+ framework

In ASPIC+ framework, arguments are defined as inference trees formed by applying two kinds of
inference rules: strict rules representing generalizations which do not allow exceptional cases like “A
mammal is an animal” and defeasible rules representing commonly-hold generalizations with excep-
tional cases like “Mammals generally live on land”. This naturally leads to three ways of attacking an

2In ASPIC+, only preference-dependent attacks can be removed (see the next subsection). However, in other formalisms
such as deductive argumentation [9] or assumption-based argumentation with preferences (ABA+) [28], any attack should be
removed from the framework if the attackee is preferred to the attacker and then the reversed attack is added.
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argument: attacking a premise, a conclusion and an inference, which are respectively called undermin-
ing, rebutting and undercutting. In order to characterize the structure of arguments and the nature of the
attack relation, we need to make a minimal assumption on the logical language that certain well-formed
formulae are a contrary or contradictory of certain other well-formed formulae. Now, let us present some
basic definitions of the framework.

Definition 1 (Argumentation system [46]). An argumentation system (AS) is a tuple 〈L, ¯,R,�,n〉
where

• L is a logical language.
• ¯ is a contrariness function from L to 2L, such that:

• if a ∈ b, and b /∈ a, then a is called a contrary of b (usually denoted by a =∼ b), and
• else if a ∈ b, and b ∈ a, a and b are called contradictory (usually denoted by a = ¬b), and
• each a ∈ L has at least one contradictory.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd ) inference rules such that Rs ∩ Rd = ∅.
• � is a partial preorder on Rd . The strict counterpart of � is <.
• n: Rd → L is naming convention for defeasible rules. Informally, n(r) is a well formed formula

in L which says that the defeasible rule r ∈ R is applicable. Note that if a rule is of the form
x1, . . . , xn → n(r), such that r ∈ Rd (or x1, . . . , xn ⇒ n(r)), then it should be read as follows: If
x1, . . . , xn hold, then r is not (generally) applicable.

A set S ⊆ L is said to be consistent iff �a, b ∈S such that a = b, otherwise it is called inconsistent.
Let Rs be a set of strict rules. A set S ⊆ L is said to be indirectly consistent (wrt. Rs) iff the closure of
S under Rs is consistent.

The framework also defines the notion of knowledge base from which arguments can be constructed,
inspired by [37] where they classified premises of an argument or an argumentation scheme into several
categories.

Definition 2 (Knowledge base [46]). A knowledge base of an AS 〈L, ¯,R,�,n〉 is a pair 〈K,�′〉, where
K ⊆ L consists of two disjoint subsets, i.e., K = Kn ∪ Kp and �′ is a partial preorder on Kp

• Kn is a set of (necessarily true) axioms. Intuitively, arguments cannot be attacked on their axiom
premises.

• Kp is a set of ordinary premises. Intuitively, arguments can be attacked on their ordinary premises
and whether this results in defeat must be determined by comparing the attacker and the attacked
premise.

The ASPIC+ framework defines the notion of an argument as an inference tree formed by apply-
ing strict and defeasible rules to premises that are well-formed formulae. Below, the ASPIC+’s def-
inition of an argument can be found. For any argument A, Prem(A) returns all the formulas of K
(called premises) used to build A, Conc(A) returns A’s conclusion, Sub(A) returns all of A’s subargu-
ments, DefRules(A) and StRules(A) respectively return all of defeasible and strict rules in A and
TopRule(A) returns the lastly applied rule in A.

Definition 3 (Arguments [55]). An argument A on the basis of a knowledge base 〈K,�′〉 in an AS
〈L, ¯,R,�,n〉 is
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(1) ϕ if ϕ ∈ K with Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ}, DefRules(A) = ∅,
StRules(A) = ∅, TopRule(A) = undefined.

(2) A1, . . . , An → ψ if A1, . . . , An are arguments such that there exists a strict rule Conc(A1), . . . ,

Conc(An) → ψ in Rs ,
Prem(A) = Prem(A1) ∪ · · · ∪ Prem(An),
Conc(A) = ψ

Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ · · · ∪ DefRules(An),
StRules(A) = StRules(A1) ∪ · · · ∪ StRules(An) ∪ {Conc(A1), . . . ,Conc(An) → ψ},
TopRule(A) = Conc(A1), . . . ,Conc(An) → ψ .

(3) A1, . . . , An ⇒ ψ if A1, . . . , An are arguments such that there exists a defeasible rule
Conc(A1), . . . ,Conc(An) ⇒ ψ in Rd ,
Prem(A) = Prem(A1) ∪ · · · ∪ Prem(An),
Conc(A) = ψ

Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1)∪· · ·∪DefRules(An)∪{Conc(A1), . . . ,Conc(An) ⇒ ψ},
StRules(A) = StRules(A1) ∪ · · · ∪ StRules(An),
TopRule(A) = Conc(A1), . . . ,Conc(An) ⇒ ψ .

In addition, an argument is called strict iff DefRules(A) = ∅; defeasible iff DefRules(A) �= ∅;
firm iff Prem(A) ⊆ Kn ; plausible if Prem(A) � Kn . Notice also that for any argument A,
Premn(A) = Prem(A) ∩ Kn , and Premp(A) = Prem(A) ∩ Kp.

Example 1. Consider a knowledge base KB1 = 〈Kn1 ∪ Kp1,�′
1〉 in an argumentation system AS1 =

〈L, ¯,Rs1 ∪ Rd1,�1,n〉 such that:

• L is a propositional language which consists of a set of propositional atoms {p, q, r, . . . } and the
symbols ¬ and ∼ respectively denoting strong and weak negation (i.e., negation as failure). α is a
strong literal if α is a propositional atom or of the form ¬β where β is a propositional atom. α is a
wff. of L, if α is a strong literal or of the form ∼ β where β is a strong literal.

• α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the form ∼ α (i.e., for any
wff. α, α and ¬α are contradictories and α is a contrary of ∼ α).

• Rs1 = {t → ¬n(p ⇒ s)}
• Rd1 = {p ⇒ s; q ⇒ t; r ⇒ u;u ⇒ ¬t; s ⇒ v; t ⇒ ¬v}
• Kp1 = {q, r, }
• Kn1 = {p}
• �′

1=�1= ∅
We construct 10 arguments from KB1: A1 = p; A2 = q; A3 = r; A4 = A1 ⇒ s; A5 = A2 ⇒ t ;
A6 = A3 ⇒ u; A7 = A4 ⇒ v; A8 = A5 ⇒ ¬v; A9 := A6 ⇒ ¬t ; A10 = A5 ⇒ ¬n (p ⇒ s).

Given two argumentation theories 〈AS1,KB1〉 and 〈AS2,KB2〉, 〈AS1,KB1〉 ⊆ 〈AS2,KB2〉 iff
AS1 ⊆ AS2 and KB1 ⊆ KB2.

As we can see in Definition 3, since arguments are inference trees, three kinds of argument attacks are
possible: undermining, rebutting and undercutting attack.
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Definition 4 (Attack [46]).

• Argument A undercuts argument B (on B ′) iff Conc(A) ∈ n(r) for some B ′ ∈ Sub(B) such that
the top rule of B ′ is defeasible.

• Argument A rebuts argument B (on B ′) iff Conc(A) ∈ ϕ, for some B ′ ∈ Sub(B) of the form
B ′′

1 , . . . , B ′′
n ⇒ ϕ. In such a case, A contrary-rebuts B iff Conc(A) is a contrary of ϕ and

contradictory-rebuts B iff Conc(A) is a contradictory of ϕ.
• Argument A undermines argument B (on ϕ) iff Conc(A) ∈ ϕ for some ϕ ∈ Prem(B)\Kn . In such

a case, argument A contrary-undermines B iff Conc(A) is a contrary of ϕ. In addition, it is said
that A contradictory-undermines B iff Conc(A) is a contradictory of ϕ.

Example 1 (cont.). A10 undercuts A4 and A7. And A7 rebuts A8 on A8, thus they rebut each other
(symmetric rebut). Exactly the same happens between A9 and A5. In addition, A9 rebuts A8 on A5, but
it is not the case that A8 rebuts A9. Therefore, A8 and A9 are in asymmetric contradictory-rebut.

In the above definition, argument attacks are divided into three categories according to what part of the
attackee the attacker attacks on. Moreover, the ASPIC+ framework distinguishes preference-dependent
attacks from preference-independent attacks. If an attack is one of undercutting, contrary-rebutting or
contrary-undermining attack, it is a preference-independent attack, and otherwise it is a preference-
dependent attack. Therefore, it seems likely to us that Kaci et al.’s famous formula “defeat = conflict +
preference”3 [41] holds only for contradictory-rebuts and contradictory-undermines and does not hold
for undercut, contrary-rebut and contrary-undermine.

Example 1 (cont.). As one can notice, A10’s attacks on A4 and A7 are preference-independent, whereas
rebuts between A7 and A8 and between A5 and A9 are preference-dependent. It is remarkable that A9’s
attack on A8 is preference-dependent although it is asymmetric.

The notion of argument defeat can be defined on the basis of the definition of preference-dependent
and preference-independent attack as follows:

Definition 5 (Defeat [46]). Let A and B be arguments. Then A defeats B on B ′ iff

(1) A undercuts, contray-undermines, or contrary rebuts B on B ′, or
(2) A rebuts B on B ′ and A ⊀ B ′, or
(3) A undermines B on ϕ and A ⊀ ϕ.

A strictly defeats B iff A defeats B, but B does not defeat A.

Below, we define the notion of argumentation theory that is the basis for constructing arguments and
determining attack relations among the arguments.

Definition 6 (Argumentation theory [46]). An argumentation theory is a pair 〈AS,KB〉, where AS is
an argumentation system, KB a knowledge base in AS.

Finally, argumentation theories can be linked to PAFs.

3In [41], actually, “attack = conflict + preference” appears, but in this paper, we replace the term “attack” with “defeat”,
because in the original paper, the term “attack” stands for “successful attack”, not “failed attack”.
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Definition 7 (PAF corresponding to an argumentation theory [46]). A PAF corresponding to an argu-
mentation theory T = 〈AS,KB〉 is a triple 〈A,R,�〉 where A is the set of arguments on the basis of
T as defined by Definition 3, R is the binary attack relation on A defined by Definition 4 and � is a
preference ordering on A.

Given an argumentation theory T , remember that Arg(T ) returns the set of all finite arguments built
from T .

An argument ordering is a partial preorder � on arguments (whose strict counterpart is ≺) and is
admissible iff firm and strict arguments are strictly preferred to defeasible or plausible ones and a strict
inference rule cannot make an argument weaker or stronger. In this paper, we do not include an argument
ordering � in the notion of argumentation theory as in [55] because it always follows from the underlying
argumentation system and knowledge base. We rather include the argument ordering in the notion of PAF
corresponding to an argumentation theory as in [46]. Such an inclusion is more appropriate to develop a
model which integrates justifying preferences with reasoning from the justified preferences.

An AF 〈A,R′〉 where A is the set of arguments on the basis of an argumentation theory as defined by
Definition 3 and R′ is the binary defeat relation on A as defined by Definition 5 is the repaired version
of 〈A,R,�〉. Moreover, 〈A,R〉 is called the original AF corresponding to the theory.

Generally, two ways of deriving argument orderings from orderings on rules or ordinary premises
(last-link and weakest-link principles) have been recognized. Those two principles employ a general
definition of a partial order �s on sets in terms of a partial preorder �e on their elements as follows
[46]:

(1) if S1 = ∅, then S1 �s S2;
(2) if S1 = ∅ and S2 �= ∅, then S1 �s S2;
(3) if s = Eli, then S1 �Eli S2 iff there exists a e1 ∈ S1 such that for all e2 ∈ S2, it holds that

e1 �e e2;
(4) if s = Dem, then S1 �Dem S2 iff there exists a e2 ∈ S2 such that for all e1 ∈ S1, it holds that

e1 �e e2.

The last-link principle prefers an argument A over another argument B if the last defeasible rules
used in B are less preferred (wrt. ≺s) than those in A or, in case both arguments are strict, if the
premises of B are less preferred (wrt. ≺s) than the premises of A. The weakest-link principle con-
siders all uncertain elements in an argument unlike the last-link principle. The weakest-link principle
prefers argument A to B if A is preferred to B with respect to �s on both their premises and defea-
sible rules. Below, the function LastDefRules(A) returns last defeasible rules of argument A as
follows: (1) LastDefRules(A) = ∅ iff DefRules(A) = ∅; (2) If A is of the form A1, . . . , An ⇒ ϕ,
then LastDefRules(A) = {Conc(A1), . . . ,Conc(An) ⇒ ϕ}, otherwise LastDefRules(A) =
LastDefRules(A1) ∪ . . .LastDefRules(An).

Definition 8 (Last-link and weakest-link principles [46]).

• Last-link principle. Let A and B be two arguments. Then A ≺ B iff either:

(1) LastDefRules(A) �s LastDefRules(B) or
(2) LastDefRules(A) and LastDefRules(B) are empty and Prem(A) �s Prem(B).

• Weakest-link principle. Let A and B be two arguments. Then A ≺ B iff:

(1) if both A and B are strict, then Prem(A) �s Prem(B), else;
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(2) if both A and B are firm, then DefRules(A) �s DefRules(B), else;
(3) Prem(A) �s Prem(B) and DefRules(A) �s DefRules(B).

Modgil and Prakken also define the notion of maximal fallible subarguments and strict continuations
of arguments that are useful for proving some propositions (An argument is fallible if it is plausible
or defeasible). The maximal fallible subarguments of an argument are those with the ‘last’ defeasible
inferences in that argument or else (if the argument is strict) they are the argument’s ordinary premises
[46].

Definition 9 (Maximal fallible subargument [46]). The set M(A) of the maximal fallible subarguments
of an argument A is defined such that for any A′ ∈ Sub(A), A′ ∈ M(A) iff:

(1) the top rule of A′ is defeasible or A′ is an ordinary premise, and;
(2) there is no A′′ ∈ Sub(A) such that A′′ �= A and A′ ∈ Sub(A′′), and A′ satisfies the (1).

Definition 10 (Strict continuations of arguments [46]). For any set of arguments {A1, . . . , An}, the
argument A is a strict continuation of {A1, . . . , An} iff:

(1)
⋃n

i=1 Premp(Ai) = Premp(A) (i.e., the ordinary premises in A are exactly those in {A1, . . . ,

An});
(2)

⋃n
i=1 DefRules(Ai) = DefRules(A) (i.e., the defeasible rules in A are exactly those in

{A1, . . . , An});
(3)

⋃n
i=1 StRules(Ai) ⊆ StRules(A) and

⋃n
i=1 Premn(Ai) ⊆ Premn(A) (i.e., the strict rules

and axiom premises of A are a superset of the strict rules and axiom premises in {A1, . . . , An}).
It has been shown in [46] that ASPIC+ satisfies the postulates of Closure under subarguments and

strict rule application unconditionally. However, the postulates of Direct Consistency and Indirect Con-
sistency hold only under the assumption of reasonable argument ordering. An argument ordering is
reasonable if it satisfies properties that one might expect to hold of orderings over arguments composed
from fallible and infallible elements [55]. Formally:

Definition 11 (Reasonable argument ordering [46]). An argument ordering � is reasonable iff:

(1) for all A and B such that A is strict and firm and B is plausible or defeasible, it holds that B ≺ A;
(2) for all A and B such that B is strict and firm, it holds that B ⊀ A.
(3) for all A, A′ and B such that A′ is a strict continuation of {A}, if A ⊀ B, then A′ ⊀ B, and if

B ⊀ A then B ⊀ A′ (i.e. applying strict rules to a single argument’s conclusion and possibly
adding new axiom premises does not weaken, respectively, strengthen, arguments).

(4) Let {C1, . . . , Cn} be a finite subset of A, and for i = 1, . . . , n, let C+\i be some strict continuation
of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then, it is not the case that for all i, C+\i ≺ Ci .

An argumentation theory is said to be (directly) consistent if the set of conclusions of all arguments in
an arbitrary extension of the PAF built over the theory is consistent; an argumentation theory is indirectly
consistent if the closure of the set of conclusions of all arguments in an arbitrary extension of the PAF
built over the theory under strict rule application is consistent [46,55].

Now, it is time to define the notion of the output of a PAF whose input is an argumentation theory.
For any argumentation theory and the PAF corresponding to the theory, let Exty(H) = {E1, . . . , En}
(n � 1). The output of the PAF (or the output of the argumentation theory) is the set of acceptable
conclusions under the given semantics. Credulous and skeptical viewpoints are possible.
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Fig. 1. Preference-dependent and preference-independent attacks.

• Concs(Ei) = {Conc(A)|A ∈ Ei} (i ∈ {1, . . . , n}).
• The set of credulously justified conclusions is COutputy(H) = ⋃

i=1,...,n Concs(Ei).
• The set of skeptically justified conclusions is SOutputy(H) = ⋂

i=1,...,n Concs(Ei).

Remember that Outputy(H) can be either SOutputy(H) or COutputy(H) according to the
adopted viewpoint.

Interestingly, a preferred/stable extension of the PAF built over a standard ASPIC+ argumentation
theory is also a preferred/stable extension of its original version or its subset. This property, which is
very useful for developing a model which is capable of justifying preferences, can be formalized as
follows:

Proposition 1. Let 〈A,R,�〉 be a PAF corresponding to an argumentation theory which has a reason-
able argument ordering. Then, under preferred semantics, it holds that for all E ′ ∈ Extpre(〈A,R,�〉),
there exists an extension E ∈ Extpre(〈A,R〉) such that E ′ ⊆ E . Under stable semantics, it just holds
that Extsta(〈A,R,�〉) ⊆ Extsta(〈A,R〉).
Example 1 (cont.). In Fig. 1, graphical representation of the PAF built over the argumentation theory
〈KB1,AS1〉 is given. Open arrows represent preference-dependent attacks and diamond arrows represent
preference-independent attacks. Note that �′

1=�1= ∅.

Now, let us extend �′
1, �1 with preference information r ⇒ u < q ⇒ t < u ⇒ ¬t < t ⇒ ¬v〈p ⇒

s < s ⇒ v, and q〉r . From the weakest-link principle we can infer that A9 ≺ A10, A9 ≺ A5, A9 ≺ A8,
A8 ≺ A7. Therefore, the result of filtering the attack relation with the argument ordering can be depicted
as follows (see Fig. 2).

The original AF has two preferred/stable extensions: {A1, A2, A3, A5, A6, A8, A10} and {A1, A2, A3,

A4, A6, A7, A9}, while the PAF has a preferred/stable extension {A1, A2, A3, A5, A6, A8, A10}. This fact
illustrates Proposition 1.

The above proposition shows that the preferences in a PAF corresponding to an ASPIC+ argumenta-
tion theory not only filter the attack relation but also filter the set of extensions under preferred/stable
semantics. According to Amgoud & Vesic, preferences play two roles in an AF [8,9]. They may be used
for handling an attack where the attackee is preferred to the attacker or may be used for refining the result
of a PAF. Interestingly, in the ASPIC+ framework, preferences handle failed attacks and simultaneously,
refine the set of extensions of the original AF under preferred/stable semantics.

Note that the refinement role which preferences play in ASPIC+ has more or less different meaning
from that in Amgoud & Vesic’s deductive argumentation. In [9], preferences are used for refining the
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Fig. 2. Filtering extensions through preferences.

Fig. 3. Reduction in an extension.

result of a repaired AF, while the above proposition shows that preferences have the ability of refining
the result of an original framework. Moreover, in Amgoud & Vesic’s formalism, filtered extensions are
exactly of those of a PAF. But, in our formalism, filtered extensions may get smaller, that is, lose some
arguments as the result of filtering (under preferred semantics). Some extensions pass the filter bed of
preferences without any loss of arguments and some fail to pass. We can also see that some extensions
that pass the filter bed lose some arguments, and as a result, get smaller.

Example 2. Let us consider a PAF H2 depicted in Fig. 3 where B4 ≺ B3 (the dashed arrows represent
failed attack). The original AF has two preferred extensions {B2, B4, B5, B7} and {B2, B4, B6, B7}, while
the repaired AF also has two preferred extensions {B5, B7} and {B6, B7}. So, both extensions of the
original AF, which pass the filter bed of B4 ≺ B3, lose two arguments B2 and B4.

One might think that preferences play the role of refining the extensions of an original framework in
any preference-based argument formalism. However, several preferences-based formalisms [1,2,8,9,13,
28,43] fail to make the preference ordering over arguments play the role of refining the extensions of an
original framework. For example, consider an AF formalized in [1] where argument A attacks B and B

is preferred to A. The original framework has one preferred extension {A}, but the repaired framework
that takes preferences into account has one preferred extension {A, B}. Thus, the preference B � A has
failed to refine the result of the original framework.

3. Preferences, preference criteria and justifying preferences

In a PAF, a preference ordering over the set of arguments is used for filtering the attack relation, in
turn, producing a defeat relation and defining plausible conclusions. In most cases, such preferences
over arguments come from the defeasible rule priorities those arguments are based on, as in ASPIC+
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framework. However, why should we apply such orderings? Are all those orderings undeniable facts or
axioms? Probably, most of them are not. Therefore, a rational agent may not only reason from prefer-
ences, but also have to justify those preferences. There are few preference orderings that are taken for
granted. Most preference orderings should be the outcome of justification in order to be applied.

In practice, preference orderings over a set of objects vary from person to person. This audience-
dependency of selecting a preference (value order) was already explored by Bench-Capon in their value-
based AF [13,15]. Furthermore, preferences may vary from context to context even for a single agent.
An agent has several preference orderings over a set of objects in its mind and applies them to reasoning.
Then, which preference ordering to apply depends on the particularity of a given context. Therefore, in
order to persuade others to do something or prove that something is right or good, we should first try to
convince them of the preferences behind an advice or a claim that we propose. The context-dependency
of preference application leads us into the topic of justifying preferences in an AF.

First of all, justifying a preference ordering is justifying the criteria behind it. Any preference ordering
is based on comparative evaluations, which “cannot begin until you come up with one or more classes
or categories to which the objects of comparison can belong.” Then, the class or category will provide
the criterion for the comparative evaluation. Such a criterion “may amount to an ideal definition of the
class” [33, p. 244].

Regarding preference criteria, several points should be made clear. Not only one, but several prefer-
ence criteria are applicable to a set of objects. For example, when we produce a preference ordering over
houses, criteria such as size, distance to working place and location are applicable. And when we pro-
duce a preference ordering over the beauty of some things (aesthetic evaluation), multiple criteria such
as proportion, slight distortion, contrast, harmony, craftsmanship, association and so on can be applied
[33]. More importantly, preference orderings on the same set of objects differ according to the criteria.
The preference ordering over a set of houses according to their size may be different from that according
to the distance to working place. Incidentally, different context recommends different criteria. For this
reason, even a single person’s preferences may vary from context to context.

Second, two preference criteria may be incompatible over a set of objects. The criteria size and dis-
tance to working is said to be incompatible over a set of houses {h1, h2} if h1 is preferred to h2 according
to size, and h2 is preferred to h1 according to distance to working place. The possibility of several
preference orderings (or criteria) being incompatible is one of the main reasons why we should justify
preferences in PAFs. In fact, among several preference criteria applicable to a set of objects, which crite-
rion an agent should select depends on the particularity of a given context. An agent in a dangerous place
should select safeness as its preference criterion, while an agent in a safe place should select comfort as
its criterion4 [60]. Moreover, as noted above, it cannot be said that there is only one criterion behind a
preference ordering.

Third, multiple criteria may cooperatively produce a single preference ordering. That is why the ap-
proach of multi-criteria is dominant in the field of quantitative decision-making. For example, if the size
criterion produces preference ordering h1 � h2 and the price criterion produces h2 � h3, then these
two criteria cooperatively produces a total preference ordering h1 � h2 � h3 over the set of houses

4Note that, for a rational agent, selecting a criterion is justifying the criterion. A selected criterion in a context is one that is
justified with respect to the information available in the context. For instance, suppose, among two criteria size and distance,
an agent prefers size to distance and has decided to live in h1. Then the size is selected because it is justified with respect to the
information available in the context (for example, because of the large family, the size is important), the distance is not selected
because it fails to be justified with respect to the information (for example, as having a car and no traffic jam, the distance from
work is less important than size).
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{h1, h2, h3}.5 However, only compatible criteria can cooperatively produce a preference ordering over a
set of objects, but incompatible ones cannot. Therefore, usually, an agent cannot select two incompatible
criteria in a context.

One way to adapt to multiple preference criteria is to use a meta-preference ordering over a set of
criteria. When evaluating a house, we may prefer size to distance to work. However, where does this
meta-preference come from? The meta-preference and the criteria behind it should also be justified.

Like all human judgments and actions, justifying criteria to generate a preference ordering must be
based on imperfect, especially inconsistent knowledge. Therefore, the selection of a criterion may be
doubted, uncertain or even be in conflict. Actually, we can see that there are debates on whether it
is reasonable to apply a certain criterion to evaluating something. For instance, perfect proportion and
slight distortion have been billed as two of key criteria in aesthetic evaluation, but artists and aestheticians
may dispute on whether they should apply perfect proportion or slight distortion.

In this paper, we are interested in implementing an elaborate mechanism that allows to justify prefer-
ence criteria in a PAF. Moreover, we know that argumentation is an effective approach for dealing with
inconsistent information. Therefore, the conflict among available preference criteria can be resolved
through an argumentation. The mechanism that is capable of justifying preference criteria may be the
AF itself in which the mechanism should be implemented. An AF can be used for justifying preferences
as well as defining plausible conclusions. The core of this section is to introduce the idea that the prefer-
ence ordering embedded in a PAF should also be justified by another PAF with the same arguments and
attack relations.

We find that especially legal reasoning, where a lawyer may have to justify the priority of a certain
norm to its conflicting norms, resonates with our idea of using AF for justifying preferences. As men-
tioned in [38], a conflict between legal norms from different sources or promulgated at different times
may arise in legal reasoning. However, most lawyers neither have power to change any of the conflicting
norms, nor have control to change established evidence in a case. The only way to resolve the conflict
is to introduce a preference ordering over the legal norms. In the legal literature, three major principles
which are used to set a preference ordering over conflicting norms are identified. Those are Lex Superior
which prefers a norm whose legislative source is higher in the legislative source hierarchy, Lex Posterior
which prefers a norm promulgated more recently and Lex Specialis which prefers a more specific norm.
Thus, Lex Superior, Lex Posterior and Lex Specialis can be regarded as three main criteria, by which
a preference ordering over legal norms can be generated. However, the application of one of these cri-
teria should also be justified. If you would like to resolve a conflict between legal norms by applying
Lex Superior, then you must justify why we should apply only Lex Superior, not Lex Posterior nor Lex
Specialis. That is because if we apply another criterion, the opposite judicial decision may be drawn.

Along the everyday life, it seems that a human has a number of criteria in his mind and attaches a
condition to every criterion, under which the application of the criterion is justified. That is, a human
justifies a preference criterion by proving the satisfaction of the condition attached to the criterion. For
example, a person not only knows that both perfect proportion and slight distortion can be the criteria
against which we assess the beauty of something like clothes, but also knows that he should promote
either of them based on looking into what is all the rage this season. A lawyer also knows that Lex
Superior, Lex Posterior and Lex Specilis are the criteria from which a preference ordering over legal
norms may be produced. He applies some of those criteria for resolving conflicts among legal norms

5Criterion may not define total preference ordering over a set of objects. The size criterion and the price criterion in this
example define a partial order over {h1, h2, h3}.
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and knows under which condition application of one of those criteria can be justified. On the basis
on such an intuition, diverse user’s preference handling models have been proposed [24,25,29]. Our
formalism will conform to this intuition of a preference-based reasoning that every preference ordering
comes from criteria and the adoption of criteria should be justified with regard to a certain context.

4. Justifying preferences and reasoning from the justified preferences in ASPIC+
In this section, we give a definition of a preference criterion on the basis of [60]’s notion of guard and

modify the notion of ASPIC+ argumentation theory in order to model the way in which preferences are
justified by an AF.

4.1. Justifying preferences

Criteria behind a preference ordering is so essential that justifying the preference ordering boils down
to justifying the criteria. Teze et al.’s notion of guard is useful for modeling the way in which a criterion
is justified with regard to a certain context since a context can always be modeled by terms of a set of
literals which are true in the context [60]. Our model needs to select an appropriate preference criteria
depending on certain conditions, thus, the notion of guard, which offers a special way of associating
these conditions to a preference criterion, plays an important role. A guard could be viewed as a way of
guiding the choice of a criterion [60]. We define a guard as a set of literals that should be justified by a
given AF to apply the associated criterion. Therefore, we can define a preference criterion as follows:

Definition 12 (Preference Criterion). A preference criterion is a pair c = 〈Gc,Sc〉, where Gc ⊆ L
(called guard) is a set of literals such that each literal must be justified by an AF in order to allow the
criterion to be applied and Sc stores all the preference information6 attached to the criterion.

Example 1 (cont.). To apply preferences to our example, we take four criteria c1 = 〈{p, q, r, s}, {(q ⇒
t > r ⇒ u), (t ⇒ ¬v > r ⇒ u)}〉, c2 = 〈{q, ¬s}, {(s ⇒ v > t ⇒ ¬v), (r ⇒ u > t ⇒ ¬v)}〉,
c3 = 〈∅, {(p ⇒ s > q ⇒ t)}〉 and c4 = 〈{p, q, r, s}, {(q > r)}〉.

In the above example, criterion c1 together with c3 can produce a preference ordering p ⇒ s > q ⇒
t > r ⇒ u and this shows that there may be more than two criteria behind an ordering.

Let c = 〈Gc,Sc〉 be a preference criterion, then Guard(c) returns Gc and Stored(c) returns Sc.
As mentioned above, in this paper, we justify a criterion by adopting the argumentation-based approach.
Justified criterion implies that a PAF built over an available argumentation theory justifies all literals
involved in the guard. In other words, if the PAF identifies all literals involved in the guard of a criterion
as acceptable under a given semantics, then the criterion is also identified as justified one.

Definition 13 (Justifying a Criterion). Let c = 〈Gc,Sc〉 be a preference criterion and H = 〈A,R,�〉 a
PAF. The criterion c is justified by H under a given semantics y iff Guard(c) ⊆ Outputy(H).

While justifying preference criteria by a PAF corresponding to APSIC+ argumentation theory, we
usually adopt preferred or stable semantics because under such semantics, our model has some desirable
properties (see Section 4.3)

6The term “preference information” means that Sc is a partial order over the ordinary premises or defeasible rules of a
knowledge base.
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A criterion should usually be justified from the skeptical viewpoint, since, as we will show in what
follows, such viewpoint does not allow inconsistent criteria to be justified simultaneously. We also say
that a criterion is justified by an extension under a given semantics. Let c = 〈Gc,Sc〉 be a prefer-
ence criterion, H = 〈A,R,�〉 a PAF and E one of the extensions of H under a given semantics. If
Guard(c) ⊆ Concs(E), we say that the criterion c is justified by the extension E .

Remark. A criterion whose guard is ∅ is justified by any PAF under any semantics.

We call a criterion whose guard is ∅ an absolute criterion in the sense that this criterion can be applied
without justification. In a certain domain of reasoning, we can think of an absolute criterion such as
specificity of defeasible rules.

Example 1 (cont.). The criteria c1, c3 and c4 are skeptically justified by the PAF, while c2 is not justified
under the preferred/stable semantics.

A pair of criteria may or may not be compatible. The incompatiblity of criteria can be defined as
follows:

Definition 14 (Incompatible criteria). Let c1 = 〈Gc1,Sc1〉 and c2 = 〈Gc2,Sc2〉 be preference criteria.
We say that c1 and c2 are incompatible iff there exists a preference (p > q) ∈ Stored(c1) such that
(p < q) ∈ Stored(c2).7

A set of preference criteria is inconsistent if and only if it includes at least two incompatible criteria.
Otherwise, it is consistent. Note also that a set of preference criteria C1 is said to be inconsistent with
another criteria set C2 if and only if C1 ∪ C2 is inconsistent.

We cannot apply two incompatible preference criteria in the same context. Thus, the guards of in-
compatible criteria should also be incompatible, namely, should not be justified, with respect to the
argumentation theory available in the context. Otherwise, a PAF built over an argumentation theory may
justify two incompatible criteria simultaneously. In such a way, we can resolve conflicts among prefer-
ence orderings, since any set of incompatible criteria cannot belong to a single extension. The notion of
valid criteria set reflects this idea.

Definition 15 (Valid criteria set). Let C be a set of preference criteria and T an argumentation theory
that satisfies indirect consistency. Then, C is valid wrt. T iff for all c1 and c2 in C that are incompatible
it holds that Kn ∪ Guard(c1) ∪ Guard(c2), is indirectly inconsistent under the strict rules of T (here,
Kn is the set of axioms of T ).

Proposition 2. Let T be an argumentation theory which is indirectly consistent, C a set of valid prefer-
ence criteria wrt. T , and H = 〈A,R,�〉 a PAF built over T . For all c1, c2 in C, that are incompatible,
it is impossible for both of c1 and c2 to be justified by an extension of H under a given semantics (ad-
missible, ground, complete, preferred and stable) and thus be skeptically justified by H.

The requirement reflected in Definition 15 may seem too strong since the difficulty of reasoning pref-
erences is prominent in the fact that rational agents cannot avoid dealing with inconsistent preference
criteria that are justifiable in the very same context. For example, in moral or aesthetical reasoning, a

7Here, p > q and p < q represents opposite rule priorities or premise orderings.
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rational agent may face dilemmas in which there are no clear-cut solutions to eliminate incompatible
preference alternatives. Then, we can adopt credulous standpoint for modeling such dilemmas.

The following corollary directly comes from the above proposition.

Corollary. A preference criterion that is incompatible with a criterion whose guard is ∅ cannot be
justified by any AF.

Example 1 (cont.). One can easily see that c1 and c2 are incompatible and the guards of this two criteria
themselves contains inconsistent literals (s ∈ Guard(c1) and ¬s ∈ Guard(c2)), so both cannot be
simultaneously justified. That is, the criteria set {c1, c2, c3, c4} is a valid criteria set.

4.2. Reasoning from justified preferences

The selection of a criterion may be doubted or even be in conflict, and, in turn, be in need of justifica-
tion. Since argumentation is an effective approach dealing with imperfect information, the selection of a
certain criterion can also be justified by an argumentation.

Traditionally, a PAF filters the attack relation through its preferences. The result of this step of ar-
gumentation is called repaired framework. Nevertheless, most of the existing PAFs including ASPIC+
have only one repairing step because they provide a mechanism only for reasoning from preferences,
i.e. the preferences are only the input of the framework. Our proposal is to have two (or more than two)
repairing steps because an intelligent agent should not only reason from preferences, but also justify the
preferences before reasoning from them. One repairing step is for justifying preferences, the other is
for reasoning from those preferences. We consider both justifying preferences and reasoning from the
justified preferences in an integrated way, as it accords with human-style argumentation. For the sake of
justifying preferences with regard to a certain context, we first need to revise the notion of argumentation
theory should be revised in terms of preference criteria.

Definition 16 (Argumentation theory with preference criteria). Argumentation theory with preference
criteria (ATPC) is a pair 〈AS,KB〉 where

• AS = 〈L, ¯,R, C,n〉 is an argumentation system, where L, ,̄ R = Rs ∪Rd and n are respectively
logical language, contrariness function, a set of inference rules and a naming function defined by
Definition 1 and C is a set of preference criteria which store defeasible rule (in Rd ) priority infor-
mation,

• KB = 〈K, C ′〉 a knowledge base in AS, where K = Kn ∪Kp is defined by Definition 2 and C ′ is a
set of preference criteria which store information about orderings on Kp.

Below, we elaborate our proposal where justifying preferences and reasoning from the justified pref-
erences are integrated. An AF with justified preferences can be seen as having those two steps. Notice
that there are two repairing steps.

(1) Building the primary PAF over an ATPC, with preferences whose criteria guard is ∅8 and deter-
mining justified preferences.

(2) Building the advanced PAF, with justified preferences and concluding or defining the justified
conclusions.

8As a criterion whose guard is the empty set is justified by any AF, we can take it as input for determining justified preference
criteria.
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In the routine above, the primary PAF is used for determining justified preferences and the advanced
PAF is used for reasoning from those justified preferences. The justified preferences are the output of the
primary PAF and simultaneously the input of the advanced framework. Furthermore, the step (2) could
be an iterative step in this procedure, that is, the preferences justified by the advanced PAF can also be
adopted for building further PAFs. It bears a resemblance to a complex argument structure where the
conclusion of a subargument becomes a premise of another subargument. The notion of the primary and
advanced PAFs can be defined as follows:

Definition 17 (Primary and advanced PAF corresponding to an ATPC).

• Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid criteria
sets. The primary PAF built over T is Hpri = 〈A,R,�pri〉, where A = Arg(T ), R is a binary
attack relation on A defined by Definition 4 and �pri is the preference ordering over A produced
from the set of criteria Cpri = {c|c ∈ C ∪ C ′,Guard(c) = ∅}.

• Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid criteria
sets and Hpri = 〈A,R,�pri〉 be the primary PAF built over T . The advanced PAF built over
T is Hadv = 〈A,R,�adv〉 where A = Arg(T ), R is a binary attack relation on A defined by
Definition 4 and �adv is the preference ordering over A produced from the set of criteria Cadv =
{c|c ∈ C ∪ C ′, c is skeptically justified by Hpri}.

In determining justified preference criteria, the skeptical standpoint should usually be adopted because
incompatible criteria cannot be skeptically justified by any PAF under valid criteria set as shown in
Proposition 2. When reasoning from justified preferences, the original AF should be repaired twice
by primary preferences whose guard is ∅ and advanced preferences whose criteria are justified by the
primary framework. Note that primary preferences are justified by any AF.

Remark. Let Cpri be the set of criteria adopted by a primary PAF corresponding to an argumentation
theory and Cadv the set of criteria adopted by its advanced version. Then, Cpri ⊆ Cadv, thus �pri⊆�adv.
Let H′

pri = 〈A,R′
pri〉 be the repaired version of Hpri and H′

adv = 〈A,R′
adv〉 the repaired version of Hadv,

it holds that R′
pri ⊇ Radv’

To generalize, in our formalism, the primary PAF is the result of the first filtering with preference
criteria whose guards are empty set, while the advanced PAF is the result of the second filtering with
preference criteria whose guards belong to the output of the former primary PAF. However, what can we
do if the conflict between extensions still remains unresolved even after the second filtering, that is, if
the advanced PAF has two or more conflicting (preferred/stable) extensions? In such a case, if possible,
we can do further third, fourth, . . . , and the nth filtering and thus make a sequence of PAFs, where every
PAF shares the same set of arguments and the attack relation, but differs only in their preferences. The
concept of ‘result of the nth filtering (or the nth PAF)’ can be defined inductively as follows:

Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC.

• The result of the first filtering is the primary PAF corresponding to T .
• Let 〈A,R,�n−1〉 (n = 2, 3, . . . ) be the result of the n − 1th filtering, then the result of the nth

filtering is PAF 〈A,R,�n〉 where �n is a preference ordering over A defined by the set of criteria
Cn = {c|c ∈ C ∪ C ′, c is skeptically justified by 〈A,R,�n−1〉}

We call the preference criteria whose guards are empty set the first preference criteria. The preference
criteria that are justified by the result of the nth filtering are called the n + 1th preference criteria in the
sense that the n + 1th PAF is to be based on the criteria.
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Fig. 4. The nth filtering.

4.3. Properties of the sequence of PAFs

We suggest using a PAF for the sake of justifying preferences, by which the attack relation is filtered,
in turn, the output of the PAF is also changed. In the above sequence of PAFs, the output of a PAF
determines which preferences to select and the selected preferences affect the output of the next PAF
(see Fig. 4). The first preference criteria determine the output of the primary PAF and the primary PAF
determines preferences that are to be adopted by the advanced PAF. In the same way, the nth preference
criteria determine the output of the result of the nth filtering, which, in turn, determines the n + 1th
preference criteria. Here, it is fundamental to ensure the consistency between the nth and the n + 1th
preference criteria. The nth preference criteria are an input of the nth PAF, whose output also includes
the n + 1th preference criteria. Therefore, it is unintuitive to allow inconsistency between the nth and
n+ 1th preference criteria, in the same way as it is regarded as irrational to allow inconsistency between
the premises and conclusions of a single argument.

From Proposition 2, we can see that inconsistent preference criteria set cannot be justified by a PAF, if
the argumentation theory over which the PAF is built has valid criteria set. Since a preference criterion
that is incompatible with a criterion whose guard is empty set cannot be justified by any PAF, the second
preference criteria cannot include a criterion incompatible with one of the first criteria. However, if
n > 1, Proposition 2 may not ensure the consistency between the nth and n + 1th preference criteria,
since they are justified by different PAFs (the n−1th and nth PAF). For a simple example, let us consider
the advanced PAF Hadv = 〈A,R,�adv〉 built over an ATPC. The advanced PAF is based on the second
preference criteria that are justified by the primary PAF Hpri = 〈A,R,�pri〉. From the viewpoint of
dynamics of AFs, the advanced PAF is an attack abstraction of the primary version because �pri⊆�adv

[19,20].9 However, an attack abstraction preserves the set of accepted arguments only under some strict
assumptions (with respect to the status of the attacker and attackee of the removed attack relation and the
given semantics). Hence, unless the argumentation formalism is carefully defined, it may lead to very
unintuitive result where the advanced PAF justifies some preference criteria that are inconsistent with
the second criteria (that are justified by the primary PAF). The same may also happen in the further steps
of such a sequence of PAFs.

Fortunately, ASPIC+ bears a desirable property that other structured argumentation formalisms do
not have (Proposition 1). As aforementioned, we modify ASPIC+ argumentation theory with the notion
of preference criteria, so as to build a sequence of PAFs, by which we can not only justify preferences
but also reasoning from the justified preferences. Then, thanks to the desirable property of ASPIC+, we
can ensure consistency between preferences from which we reason and those that we justify.

The following proposition, which reveals the relation between the extensions of a primary PAF and
those of its advanced version, is useful for showing that the sequence of PAFs built over an ATPC does
not allow inconsistency between input and output preferences of a PAF in it.

9Let H = 〈A,R〉 and H′ = 〈A′,R′〉 be two AFs. Then, H′ is an attack abstraction of H iff A = A′ and R′ ⊆ R.
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Proposition 3. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid
criteria sets and Hpri = 〈A,R,�pri〉 and Hadv = 〈A,R,�adv〉 respectively the primary and advanced
PAF corresponding to T which have reasonable argument orderings. Then, under preferred semantics,
for all E ′ ∈ Extpre(Hadv), there exists an extension E ∈ Extpre(Hpri) such that E ′ ⊆ E . Under stable
semantics, it holds that Extsta(Hpri) ⊇ Extsta(Hadv).

Example 1 (cont.). Let us consider an ATPC 〈AS1,KB1〉 with AS1 = 〈L, ¯,R, C1,n〉 and KB1 =
〈K, C ′

1〉, where C1 = {c1, c2, c3}, C ′
1 = {c4} and the other elements of the theory can be found in Section 2.

The criterion whose guard is ∅ is c3 which stores preference information {(p ⇒ s > q ⇒ t)}. Then,
from the weakest-link principle, the argument A7 is preferred to A8 and A10, and A4 is preferred to A10.
Therefore, the primary PAF 〈A1,R1,�1〉, where �1= {(A7 � A8), (A7 � A10), (A4 � A10)}, is built.
The result of repairing H1 = 〈A1,R1〉 with �1 is as follows (see Fig. 5).

The attack 〈A8, A7〉 is removed from the framework because it is a preference-dependent attack and
A7 � A8. However, as we can notice in the diagram, the attacks 〈A10, A7〉 and 〈A10, A4〉 are not removed
from the framework despite A7 � A10, A4 � A10 because they are preference-independent undercuts.
Preferences over arguments in undercut have no effect on the attack. Now, if we reckon extensions
of 〈A1,R1,�1〉, it still has two preferred extensions: E1 = {A1, A2, A3, A6, A10, A8, A5} and E2 =
{A1, A2, A3, A6, A4, A7, A9}. Since Guard(c1) = Guard(c4) ⊂ Concs(E1 ∩ E2) and Guard(c2) �
Concs(E1∪E2), c1 and c4 are the criteria skeptically justified by the primary PAF. Thus, we should build
an advanced framework based on c1, c3 and c4. Since c1 stores {(q ⇒ t > r ⇒ u), (t ⇒ ¬v > r ⇒ u)}
and c4 stores {(q > r)} the advanced version of 〈A1,R1,�1〉 is 〈A1,R1,�2〉, where �2= {(A2 �
A3), (A5 � A6), (A7 � A8), (A7 � A10), (A4 � A10), (A8 � A9), (A10 � A9), (A5 � A9}. Then, the
original AF 〈A1,R1〉 is repaired once again by �2 and the following framework is produced (see Fig. 6).

Fig. 5. A PAF filtered through primary preferences.

Fig. 6. An AF filtered through advanced preferences.
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The PAF 〈A1,R1,�2〉 has only one preferred extension: E1 = {A1, A2, A3, A6, A10, A8, A5}. Unlike
other argumentation formalisms, the preference ordering �2 and the criteria {c1, c3, c4} behind it are
justified with respect to an argumentation theory.

The following proposition shows that any inconsistency cannot be found between advanced preference
criteria and those justified by the advanced PAF built over an ATPC.

Proposition 4. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid
criteria sets and Hpri = 〈A,R,�pri〉 and Hadv = 〈A,R,�adv〉 respectively the primary and advanced
PAF corresponding to T which have reasonable argument orderings. In addition, let Cadv and C3 be
respectively be sets of preference criteria that produce �adv and that is justified by Hadv. Then there
exists no c ∈ Cadv and c′ ∈ C3 such that c and c′ are incompatible.

Some other argumentation formalisms, namely, deductive argumentation [9] and assumption-based
argumentation with preferences (ABA+ for short) [28], which take preferences take into account, inverse
the direction of a failed attack in order to guarantee conflict-freeness of extensions with respect to the
attack relation. For this reason, in such formalisms, the extension of a PAF is not that of the original
AF under stable semantics (or a subset of an extension of the original AF under preferred semantics).
As mentioned in Section 2, Amgoud and Vesic also made preferences refine extensions [9]. However, in
their formalism, the extensions refined are those of the repaired framework, and thus the extensions of
the PAF may deviate from those of the original AF. In a word, Proposition 1 does not hold in deductive
argumentation or ABA+. It may give rise to inconsistency between the outputs of the PAF and the
original AF. Therefore, if we built such a sequence of PAFs based on deductive argumentation or ABA+,
then we would not guarantee consistency between the preferences that we reason from and those that we
justify.

Now, it is time to generalize Proposition 3.

Proposition 5. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. Then, if �n+1⊇�n, then under preferred semantics, for all E ′ ∈ Extpre(Hn+1),
there exists an extension E ∈ Extpre(Hn) such that E ′ ⊆ E . Under stable semantics, it holds that
Extsta(Hn) ⊇ Extsta(Hn+1).

The above proposition, differently from Proposition 3, is conditioned on the antecedent �n+1⊇�n

(under preferred semantics). Sometimes, it may hold that �n⊇�n+1 under preferred semantics. This
may make the sequence of PAFs with justified preferences fall into an endless loop.

Example 2 (cont.). Now, let us revise Example 2 with some modifications in order to illustrate it.
Suppose that the argument preference B4 ≺ B3 comes from the criteria whose guards belong to the
conclusions of B2 and B4. Assuming that the argumentation theory has no absolute criteria, the primary
PAF has two preferred extensions {B2, B4, B5, B7} and {B2, B4, B6, B7}. Then, the preference criteria
from which B4 ≺ B3 comes are justified by the primary PAF because {B2, B4} is the intersection of
those two preferred extensions. As a result, the preference ordering B4 ≺ B3 is activated and thus the
advanced PAF is constructed as follows (see Fig. 7).

The advanced PAF also has two preferred extensions {B5, B7} and {B6, B7}. Arguments B2 and B4 are
not justified by the advanced PAF and the preference criteria is now deactivated. Then, the next (third)
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Fig. 7. How can a sequence of PAFs fall into an endless loop?

PAF coincides with the primary PAF. Once again, the next (fourth) PAF coincides with the advanced
PAF. Consequently, the sequence of PAFs falls into undesirable loop. In such a case, it is more prudent
to stop at the advanced PAF.

The above example shows that if the framework filtered through a preference may not justify the
preference over which it is built, it may lead us to unprofitable and endless loop.

However, under stable semantics (or even under preferred semantics if the PAFs built over an ATPC
do not contain any odd length cycles of attack),10 such undesirable outcomes are impossible. Under
stable semantics, it holds that Extsta(Hn) ⊇ Extsta(Hn+1) from Proposition 5. Let Extsta(Hn) =
{E1, . . . , En} and Extsta(Hn+1) = {E ′

1, . . . , E ′
m} (m � n). One can notice that

⋂n
i=1 Ei ⊆ ⋂m

i=1 E ′
i .

Because skeptical viewpoint is usually adopted when we justify preferences, any preference criteria jus-
tified by the nth PAF is also justified by the n + 1th PAF. Therefore, a monotonic increase in justified
preference information brings about another monotonic increase in sceptical view and monotonic de-
crease in credulous view. If it were to hold that Extsta(Hn) � Extsta(Hn+1) (such an assumption is
possible under preferred semantics), then it would be possible to have

⋂n
i=1 Ei �

⋂m
i=1 E ′

i , thus there
may exist a criterion c whose guard belongs to

⋂n
i=1 Ei\⋂m

i=1 E ′
i . Then, we can recognize that the cri-

terion c is justified by the nth PAF, but fails to be justified by the n + 1th PAF. It is a very unintuitive
anomaly since c is one of the underlying criteria, over which, the n + 1th PAF is built, but the n + 1th
PAF which is based on c does not justify c.

The following proposition (generalization of Proposition 4) shows that the standard ASPIC+ prohibits
inconsistency between the input and output preference criteria of a PAF in a sequence of PAFs.

Proposition 6. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. In addition, let Cn and Cn+1 be respectively sets of preference criteria that produce
�n and �n+1. Then there exists no c ∈ Cn and c′ ∈ Cn+1 such that c and c′ are incompatible.

In the above proposition, Cn is taken as an input of Hn, while Cn+1 is an output of Hn and as one can
see, no inconsistency is observed. Note that Proposition 6 does not bear the antecedent �n+1⊇�n.

An important issue that arises here is when we should stop the filtering in a sequence of PAFs? The
proposition below will be the answer to this question.

Proposition 7. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with
valid criteria sets, Hn−1, Hn and Hn+1 (n = 2, 3, . . . ) respectively results of the n−1th, nth and n+1th

10It is shown that the stable and the preferred semantics coincide when the AF does not contain any odd length cycles of
attacks [31].
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filtering with reasonable argument orderings. Then, it holds that if Exty(Hn−1) = Exty(Hn), then
Exty(Hn) = Exty(Hn+1) under preferred or stable semantics (that is, y ∈ {pre,sta}).

The above proposition teaches us that if the result of a present filtering is the same as the previous
filtering, then the next filtering must also be the same, thus, there is no need of further filtering. Therefore,
under such circumstances, it will be more helpful to enrich the underlying argumentation theory with
more preference criteria rather than repeating the unprofitable filtering, since the added criteria may
contribute to resolving conflicts among the extensions.

5. Discussions

It is reasonable to justify preferences before reasoning from them in everyday argumentation. Thus,
we propose using the ASPIC+ framework to integrate justifying preferences with reasoning from those
preferences. Our proposal includes a somewhat meta-perspective on arguments within AFs themselves,
which is novel in the literature. In this section, we investigate the formalism more closely.

An argumentation, as a mechanism for reasoning from inconsistent information, can be used not only
for defining plausible conclusions, but also for selecting appropriate preference criteria. If a preference
criterion is justified by the argumentation built over the information available in a context, the criterion
is selected as an appropriate one to the context. Then, the selected criteria are used for repairing the
previous argumentation and finally defining conclusions.

Using argumentation for justifying preferences conforms the way in which we ordinarily reason and
argue. The reason why argumentation becomes a powerful paradigm of AI is that it is capable of not
only modeling non-monotonic reasoning, but also providing rational explanations identified plausible
conclusions. For example, argumentation-based decision support systems can explain why the recom-
mended choices are desirable [6,26,68]. Nonetheless, preferences may underlie such decisions or belief.
In everyday discussions and debates, people may have to justify the desirability of a course of action
or the acceptability of a judgment by appealing to preferences such as value orders or rule priorities.
However, if a preference that underlies one’s argument is not self-evident to everyone, it should also
be justified like other statements. Our proposal makes it possible to employ multiple preference criteria
and justify some of them as appropriate for a context by adopting an argumentation-based approach.
The notion of valid criteria set is used to resolve conflicts between incompatible preferences, since an
arbitrary pair of incompatible criteria in such a set cannot belong to a single extension. Consider the
following decision-making example that was described in [34].

Example 3. A robotic agent performs a cleaning task (Fig. 8). The robot should decide which boxes to
carry first to the specified place called store (grey area in the figure). There are four boxes (box1, box2,
box3, box4) in the environment, which are of different sizes and in different locations.

Because of the difference in their size (box3 is the biggest and box4 is the smallest), the agent cannot
carry any two of box1, box2, box3 at the same time, but can carry box1 and box4 or box2 and box4 at
the same time. The agent cannot carry box3 and box4 together. Several preference criteria for selecting
boxes may be applicable, for example, the robot may prefer boxes nearer to it or prefer boxes nearer to
the store. However, the robot applies these criteria only when some conditions are satisfied. When the
robot is near to the store, then it will prefer boxes nearer to the store. Once the robot load itself with box4
(recall that it can carry box1 or box2 with box4 at the same time), it will prefer the box nearer to box4 (to
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Fig. 8. The robotic environment: scenario 1.

save energy). Here, we will use first-order predicate language. Now, consider an ATPC T3 = 〈AS3,KB3〉
with AS3 = 〈L, ¯,Rs3 ∪ Rd3, C3,n〉 and KB3 = 〈Kn3 ∪ Kp3, C ′

3〉 where:

Rs3 = {
Select(box1) → ¬Seclect(box2), Select(box2) → ¬Select(box1),

Select(box2) → ¬Select(box3), Select(box3) → ¬Select(box2),

Select(box3) → ¬Select(box1), Select(box1) → ¬Select(box3),

Select(box3) → ¬Select(box4), Select(box4) → ¬Select(box3)
}
,

Rd3 = ∅, C3 = ∅,

Kp3 = {
Select(box1), Select(box2), Select(box3), Select(box4), NearStore(Robot)

}
,

Kn3 = ∅, C ′
3 = {c1, c2},

c1 = 〈{
NearStore(Robot)

}
,
{
Select(box4) > Select(box3)

}〉
,

c2 = 〈{
Select(box4)

}
,
{
Select(box1) > Select(box2)

}〉
.

We could construct 13 arguments:

A = Select(box1), B = Select(box2),

C = Select(box3), D = Select(box4),

A1 = A → ¬Seclect(box2), B1 = B → ¬Select(box3),

C1 = C → ¬Select(box1), D1 = D → ¬Select(box3),

A2 = A → ¬Select(box3), B2 = B → ¬Select(box1),

C2 = C → ¬Select(box2), C3 = C → ¬Select(box4),

E = NearStore(Robot).

Then, the primary PAF (Fig. 9) has three preferred/stable extensions: {A, A1, A2, D, D1, E}, {B, B1, B2,

D, D1, E}, {C, C1, C2, C3, E}. In the primary PAF, only E is skeptically accepted, and thus c1 is justi-
fied. As a result, the advanced PAF (Fig. 10) has two preferred/stable extensions: {A, A1, A2, D, D1, E},
{B, B1, B2, D, D1, E}. Then, c2 is skeptically justified by the advanced PAF.
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Fig. 9. Primary PAF.

Fig. 10. Advanced PAF.

Fig. 11. Third PAF.

The third PAF based on c1 and c2 (thus also based on premise ordering Select(box1) > Select(box2))
has only one preferred/stable extension: {A, A1, A2, D, D1, E}. Therefore, the recommended decision
is to carry box1 and box4 at the same time (Fig. 11).

In this example, we built a sequence of three PAFs based on an ATPC. As we can see, the multi-
ple extensions are subsequently filtered through justified preferences. As it shows, the proposed model
makes it possible to provide justifications for the preferences that underlie established belief or selected
decisions.
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Fig. 12. The robotic environment: scenario 2.

Nevertheless, the credulous standpoint allows incompatible criteria to be simultaneously justified in
our formalism. In such a case, another preference criterion which stores meta-preference information
may be useful. For example, given two incompatible preference criteria c1 and c2, we can think of
another criteria 〈{a1, . . . , an}, {c1 > c2}〉, where {a1, . . . , an} is a set of literals which should be identified
as acceptable by a given AF to apply the meta-preference c1 > c2. Now, we can extend an ATPC with
meta-preference criteria.

Definition 16 (Extended argumentation theory with preference criteria). An extended argumentation
theory with preference criteria (EATPC) is a tuple 〈AS,KB, Cmeta〉, where 〈AS,KB〉 is an ATPC with
AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 and Cmeta is a set of meta-preference criteria which store
information about ordering on C and C ′.

Example 4. We present another scenario featuring a cleaning robot reasoning about its environment. In
this scenario, there are four boxes too, but we should also take their weights into account as well as sizes
and locations. We have the ordering in weight: box2, box3, box1, box4 (that is, box2 is the biggest and
box4 is the smallest, see Fig. 12).

Because of their size, the robot cannot carry the pair of box1 and box2 or the pair of box2 and box3
at the same time. Moreover, the robot cannot carry box3 and box4 together because they are too heavy
(in Fig. 12, the dark grey color represents that the box is heavy). The robotic agent’s context-sensitive
preference criteria are as follows: if the robot selects box1, then it will prefer box3 to box2 or box4 and
if it selects box3, then it will select box1 rather than box2 or box4 (because both box1 and box3 are
nearer the store); if the robot chooses box2, then it will select box4 next rather than box1 or box3 and if it
chooses box4, it will also prefer box4 to box1 or box3 (because both box2 and box4 are farther from the
store). The robot also has mete-preference criteria that is also context-sensitive: if the robot is near the
store, then it will prefer c1 and c2; if the robot is far from the store, then it will prefer c3 and c4. Consider
an EATPC T4 = 〈AS4,KB4, Cmeta4〉 with AS4 = 〈L, ¯,Rs4 ∪ Rd4, C4,n〉 and KB4 = 〈Kn4 ∪ Kp4, C ′

4〉
where:

Rs4 = {
Select(box1) → ¬Select(box2), Select(box2) → ¬Select(box1),

Select(box2) → ¬Select(box3), Select(box3) → ¬Select(box2),

Select(box3) → ¬Select(box4), Select(box4) → ¬Select(box3)
}
,

Rd3 = ∅, C4 = ∅,

Kp3 = {
Select(box1), Select(box2), Select(box3), Select(box4), FarfromStore(Robot)

}
,
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Kn4 = ∅, C ′
4 = {c1, c2, c3, c4}, Cmeta4 = {c5, c6},

c1 = 〈{
Select(box1)

}
,
{
Select(box3) > Select(box2), Select(box3) > Select(box4)

}〉
,

c2 = 〈{
Seclect(box3)

}
,
{
Select(box1) > Select(box2), Select(box1) > Select(box4)

}〉
,

c3 = 〈{
Select(box2)

}
,
{
Select(box4) > Select(box1), Select(box4) > Select(box3)

}〉
,

c4 = 〈{
Select(box4)

}
,
{
Select(box2) > Select(box1), Select(box2) > Select(box3)

}〉
,

c5 = 〈{
NearStore(Robot)

}
, {c1 > c3, c2 > c4}

〉
and

c6 = 〈{
FarformStore(Robot)

}
, {c1 < c3, c2 < c4}

〉
.

We construct 11 arguments:

A = Select(box1), B = Select(box2),

C = Select(box3), D = Select(box4),

A1 = A → ¬Select(box2), B1 = B → ¬Select(box3),

C1 = C → ¬Select(box4), B2 = B → ¬Select(box1),

C2 = C → ¬Select(box2), D1 = D → ¬Select(box3),

E = FarfromStore(Robot).

The primary PAF (Fig. 13) has two preferred/stable extensions: {A, A1, C, C1, C2, E} and {B, B1, B2,

D, D1, E}. Thus, the meta-preference criterion c5 is justified. Then, we can adopt credulous standpoint
with the justified meta-preferences. As one can notice, c1, c2, c3, c4 are credulously justified by the
primary PAF. That is, from the credulous viewpoint, all of c1, c2, c3, c4 are applicable. But from the
justified meta-preference criterion c6, we should adopt Select(box1) < Select(box2) and Select(box3) <

Select(box4) since both c3 and c4 are preferred. The subsequent PAF is built as Fig. 14. The PAF with
the justified meta-preferences has the single preferred/stable extension: {A, A1, C, C1, C2, E}. What the
sequence of PAFs built over T4 recommends is to carry box2 and box4 first.

As the above example shows, when the credulous standpoint allows inconsistent preference criteria,
we may make use of meta-preferences, but they should also be justified. Several argumentation-based
decision-making systems trade on a single meta-preference criterion. For example, the decision-making

Fig. 13. PAF without meta-preference.
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Fig. 14. PAF with meta-preferences.

Fig. 15. Self-preferring and self-discarding extensions.

system based on dynamic argumentation system includes a meta-preference (a strict total order over the
preferences) as a component of their so-called abstract decision framework [35].

Furthermore, our formalism enables an extension to have a support for preferring itself. In Dung-
style AFs, although the principle of argument acceptability and the concept of an admissible set of
arguments seem straightforward enough, it turns out that intricate formal puzzles loom-it can happen
that an argument is both admissibly provable and refutable [61]. This formal puzzle is due to an AF
having two or more conflicting preferred/stable extensions. The symmetric attack often makes it the case
that an AF has more than two conflicting preferred/stable extensions, thus, violate rationality postulates
when the credulous viewpoint is adopted. In the literature, to resolve such conflicts among extensions,
a preference ordering over a set of arguments has been introduced. However, there was no justification
for given preferences. Preferences over a set of arguments are neither undeniable facts nor axioms that
are taken for granted. In our proposal, the AF built over a theory is used not only for defining plausible
conclusions, but also for justifying appropriate preferences as in Example 1. As we have mentioned in
Section 4.2, some of the preference criteria are selected and justified by the primary PAF. Then, the
advanced PAF is built based on the justified criteria and used for drawing plausible conclusions. In the
traditional PAFs, the preferences are used for calculating extensions, but the extensions are not used for
justifying the preferences. In a word, the relation between a preference and an extension has been mono-
directional. However, in our proposal the relation between a preference ordering and an extension may
be bi-directional, that is, the preferences are used for calculating extensions, and simultaneously, the
extensions can be used for justifying the underlying preferences. When two preferred/stable extensions
are in conflict, one of them may provide a support for preferring itself to the opposite one. Let us consider
the following example.

Example 5. Let us consider an AF H5 depicted in Fig. 15. The theory over which the AF is built has no
criterion whose guard is ∅, thus the primary PAF coincides with H5.

H5 has two conflicting preferred/stable extensions: {A, C} and {B, C}. Then let us assume that there
is a criterion c with Guard(c) ⊆ Concs(C), such that c stores preference information from which
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the ordering (A � B) comes. In this case, it is obvious that the criterion c is skeptically justified,
so we should choose {A, C} and reject {B, C} in the advanced version of the framework. Now, if we
note that Guard(c) ⊆ Concs({A, C}), it can be said that the extension {A, C} provides a support for
preferring itself to its rival extension {B, C}. Also, since Guard(c) ⊆ Concs({B, C}), we note that
{B, C} provides a support for preferring its rival extension to itself. Therefore, {B, C} can be called a
self-discarding extension, while {A, C} can be called a self-preferring extension.

In the above example, the extension of the advanced PAF is calculated on the basis of the preference
(A � B), but provides a support for the preference ordering. This is neither circular reasoning nor
begging the question because an extension of an AF can consist of more than one argument and draw
multiple conclusions. A self-preferring extension provides a support for preferring itself to its rivals,
while a self-discarding extension provides a support for preferring its rival to itself. Formally:

Definition 17 (Self-preferring and self-discarding preferred/stable extensions). Let T = 〈AS,KB〉 be
an ATPC, Hpri = 〈A,R,�pri〉 the primary PAF corresponding to T and {E1, . . . , En} a set of conflicting
preferred/stable extensions of Hpri.

• Ei is self-preferring iff there exists a set of criteria Csp such that for all c ∈ Csp, it holds that
Guard(c) ⊆ Concs(Ei) and the PAF with the preferences defined from Csp has only one pre-
ferred/stable extension Ei .

• Ei is self-discarding iff there exists a set of criteria Csd such that for all c ∈ Csd , it holds that
Guard(c) ⊆ Concs(Ei) and Ei is not a preferred/stable extension of the PAF with the preferences
defined from Csd .11

In Example 1, the extension E1 is self-preferring, while E2 is self-discarding. The above defini-
tion suggests that we can classify extensions into three categories after introducing preferences: self-
preferring extensions, self-discarding extensions and the extensions that are neither self-preferring nor
self-discarding. Based on this classification of extensions, we can also set a preference ordering over a
set of extensions, namely, a powerset of arguments.12 A self-preferring extension should be preferred
to an extension which is neither self-preferring nor self-discarding. An extension which is neither self-
preferring nor self-discarding is preferred to a self-discarding extension. It is also self-evident that a
self-preferring extension is preferred to a self-discarding one and that is why we choose {A, C} in Ex-
ample 2. In particular, conflicting extensions of an AF without preferences are at the same preference
level because they all belong to the same category: extensions which are neither self-preferring nor
self-discarding.

When we justify preferences in an AF, we usually adopt the skeptical viewpoint (Example 1 and 3),
since it ensures that incompatible criteria are not justified simultaneously. However, what should we do
if the skeptically justified criteria do not have adequate preference information for resolving the conflict
between extensions? Meta-preference criteria may be useful. Then, what if we have no meta-preference
criteria? In such a case, an alternative approach may be to look at the extensions of an AF and to consider
that each extension give rise to different justified preferences, which in turn give rise to different PAFs.
Then, instead of a sequence of PAFs, a (two-level) tree structure of PAFs comes into being, where every
leaf represents different possibilities.

11This definition can also be extended for the resulting PAF of the nth filtering.
12The extensions over which we set a preference ordering are those of an original framework. In other words, let H =

〈A,R,�〉 be a PAF, then we can set a preference ordering over the extensions of 〈A,R〉, not 〈A,R,�〉 as in [9].
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Let T = 〈AS,KB〉 be an ATPC, Hpri = 〈A,R,�pri〉 the primary PAF corresponding to T and
{E1, . . . , En} be a set of conflicting preferred/stable extensions of Hpri. If no preference criteria are justi-
fied by Hpri, then a (two-level) PAF tree corresponding to T would be defined as follows:

• the root node holds Hpri;
• for every leaf L, L is the PAF 〈A,R,�L〉, where �L is the preference ordering on A produced

from the set of criteria that are justified by Ei (1 � i � n).

In the above definition, it can be easily noticed that an extension of a leaf PAF coincides with or belongs
to an extension of the primary PAF (root PAF) from Proposition 1 under preferred/stable semantics.
Hence, every set of preference criteria justified by an extension of a leaf PAF is also justified by an ex-
tension of the root PAF. As a result, it seems needless to further branch the tree structure with preferences
justified by an extension of a leaf PAF.

Sometimes, the preferences justified by an extension of a leaf PAF may be enough for resolving the
conflict. Or sometimes, the leaf PAFs may share one or more extensions. If the leaf PAFs share only one
extension, the extension may be chosen by the user. Consider the following examples.

Example 6. Let us consider a scenario where an agent should decide whether to buy a laptop computer
or not. It is clear that he should buy a computer of which CPU speed is high, RAM capacity is large and
battery is good. However, the computer that he is thinking of buying does not seem to have all of these
three properties. The salesperson who is a computer expert says that the CPU speed of the computer
is incredibly high, while a window-shopper, who represents himself as another computer expert, says
that CPU speed of the computer is not high. Then, the agent thinks that the window-shopper is not
trustworthy and pretends to be an expert. The agent also believes that the RAM capacity is large and
the battery is not good. He does not have any total preference ordering over the three attributes (CPU
speed, RAM capacity, battery), but he knows that the high CPU speed should be backed up by large
RAM capacity. Therefore, in the context where the actual CPU speed is high, the agent prefers RAM
capacity to battery, while in the context where the CPU speed is not high, the agent prefers battery to
RAM capacity.

Then, let T6 = 〈AS6,KB6〉 be an ATPC with AS6 = 〈L, ¯,R6, C6,n〉 and KB6 = 〈K6, C ′
6〉 where:

Kn6 = {
Expert1_says

(
high_CPU_speed(com1)

)
, Expert2_says

(¬high_CPU _speed(com1)
)};

Kp6 = {
Untrustworthy(expert2), large_RAM_capacity(com1), ¬good_battery(com1)

};
Rs6 = {r1}; Rd6 = {r2, r3, r4, r5, r6, r7}; C6 = {c1, c2} and

r1 : Untrustworthy(expert2) → ¬n(r3);
r2 : Expert1_says

(
high _CPU_speed(com1)

) ⇒ high_CPU_speed(com1);
r3 : Expert2_says

(¬high _CPU_speed(com1)
) ⇒ ¬high_CPU_speed(com1);

r4 : high_CPU_speed(com1) ⇒ buy(com1);
r5 : ¬high_CPU_speed(com1) ⇒ ¬buy(com1);
r6 : large_RAM_capacity(com1) ⇒ buy(com1);
r7 : ¬good_battery(com1) ⇒ ¬buy(com1);
r8 : ¬large_RAM_capacity(com1) ⇒ ¬buy(com1);
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r9 : good_battery(com1) ⇒ buy(com1);
c1 = 〈{

high_CPU _speed(com1)
}
,
{
(r6 � r7), (r8 � r9), (r4 � r7), (r5 � r9)

}〉;
c2 = 〈{¬high_CPU _speed(com1)

}
,
{
(r7 � r6), (r9 � r8), (r7 � r4), (r9 � r5)

}〉
.

The following arguments can be built over the theory.

A = Expert1_says
(
high_CPU _speed(com1)

);
B = Expert2_says

(¬high_CPU _speed(com1)
);

C = Untrustworthy(expert2);
D = large_RAM_capacity(com1);
E = ¬good_battery(com1);
A1 = A ⇒ high_CPU _speed(com1);
B1 = B ⇒ ¬high_CPU _speed(com1);
C1 = C → ¬n(r3);
D1 = D ⇒ buy(com1);
E1 = E ⇒ ¬buy(com1);
A2 = A1 ⇒ buy(com1);
B2 = B1 ⇒ ¬buy(com1).

The theory has no criterion whose guard is ∅. Fig. 16 depicts the primary PAF H6 built over T6 (diamond
arrows represent undercut).

Note that the AF above has two conflicting preferred/stable extensions: E1 = {A, B, C, D, E, C1, A1,

A2, D1} and E2 = {A, B, C, D, E, C1, E1}. The former extension recommends buying the laptop, while
the latter recommends not buying it. Since Guard(c1) � Concs(E1) ∩ Concs(E2), Guard(c2) �
Concs(E1) ∩ Concs(E2), neither c1 nor c2 is skeptically justified by the primary framework. Then,
the conflict between E1 and E2 remains unresolved. Then, what should we do if the skeptical standpoint
does not justify enough preference criteria for resolving a conflict? Then, we can construct a two-level
tree structure of PAFs, where the root holds H6 and the leaves hold PAFs with preferences justified by

Fig. 16. Making decision without preference criteria.
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Fig. 17. Making decision with justified preference criteria by an extension.

Fig. 18. What if the primary PAF skeptically justifies no preference criteria?

E1 and E2. From the fact that Guard(c1) ⊆ Concs(E1) (since we have Conc(A1) = Guard(c1)),
E1 justifies the preference criterion c1, while E2 does not justify any criteria. Now, the primary PAF
should be repaired by means of the preference information which the criterion c1 stores and the leaf
PAF H′

6 is built as Fig. 17 depicts. As one can notice, E ≺ A2 and D1 � E, thus the attacks 〈E, A2〉
and 〈E, D1〉 should be removed from the framework. The leaf PAF has only one preferred extension
E1, thus E2 is rejected and the conflict is resolved. The other leaf is the same as H6 because E2 justifies
no preference criteria. Then, the extension that is common to two leaves is E1. Therefore, it seems
to be more desirable to choose E1, which recommends buying the laptop. In fact, as we can see, E1

provides a support for preferring itself to its opposite extension E2, thus E1 is a self-preferring extension.
As mentioned above, a self-preferring extension (E1) is preferred to an extension that is neither self-
preferring nor self-discarding (E2).

The examples show that our proposal sometimes produces interesting results where an extension pro-
vides a support for preferring itself and rejecting its rival extensions.

Example 7. Consider an ATPC, over which the primary PAF H7 is built as in Fig. 18 (the theory contains
no preference criteria whose guards are ∅).

The primary PAF has four preferred/stable extensions: {A, E, F }, {B, D, F }, {C, D, E} and
{D, E, F }. Now, assume that we have three preference criteria c1, c2 and c3 with Guard(c1) ⊆
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Fig. 19. A tree structure of PAFs.

Concs(A), Guard(c2) ⊆ Concs(B) and Guard(c3) ⊆ Concs(C), such that c1, c2 and c3 store
preference information from which the orderings (E � B, F � C), (D � A, F � C) and (D � A,
E � B) come, respectively. The PAFs H71, H72, H73, depicted in Fig. 18, are those with these argument
orderings. The primary PAF skeptically justifies no preference criteria. Therefore, we can construct a
tree structure of PAFs as Fig. 19.

In Fig. 19, the primary PAF H7 is set once again as a leaf PAF, because the extension {D, E, F } does
not justify any preference criteria, and thus the PAF that the extension gives rise to is the primary PAF
itself. Then, the extension common to four leaf PAFs is {D, E, F }. Here, notice that the extensions of
H71, H72 and H73 are of the extensions H7. Therefore, it is needless to further branch the tree structure.

As shown through the examples, if a sequence of PAFs is impossible due to lack of skeptically justified
preference criteria, we can enumerate possible alternative conclusions by means of a tree structure of
PAFs.

6. Related works

Preference is a common topic in the field of artificial intelligence (for more details, see [51]). Prefer-
ences can also be embedded into an AF that can serve as a core engine for reasoning under imperfect and
inconsistent information in intelligent systems. In a PAF, a preference ordering over the set of arguments
is embedded to filter the attack relation between arguments. However, some early PAFs [1,2,13,15,43]
do not guarantee conflict-freeness of extensions. Since if one argument asymmetrically attacks another
and the attackee is preferred to the attacker, then this attack is counted as failed one, and thus should be
removed from the AF. This gives rise to a very unintuitive result where two conflicting arguments are in
the same extension if the attack is failed. Therefore, several works [7,9,46] have been done to guarantee
conflict-freeness in a PAF and make PAFs satisfy rationality postulates presented in [27].

One proposal is to define the notion of conflict-freeness in terms of attack (including failed attacks)
rather than defeat (excluding failed attacks) in ASPIC+ framework. Modgil & Prakken argued that since
attacks indicate the mutual incompatibility of the information contained in the attacking and attacked ar-
guments, then intuitively one should continue to define conflict-free sets in terms of those that do not
contain mutually attacking arguments [46]. Defining conflict-freeness of an extension in terms of attack,
not defeat, make the framework satisfy rationality postulates, but violate Dung’s fundamental lemma.
Thus, they defined a ‘reasonable’ argument ordering to make their framework satisfy Dung’s fundamen-
tal lemma. Another proposal which was made by [7] is to introduce preferences into the semantics level,
not attack level. Instead of changing original attacks, they take into account preferences when determin-
ing the acceptability of arguments, i.e. at the semantics level. They define a semantics as a dominance
relation on the powerset of the set A of arguments [7]. Then, they pin down three postulates that such
a relation should satisfy and generalize Dung’s semantics. In another paper, Amgoud & Vesic also sug-
gested inverting the direction of failed attacks to guarantee the conflict-freeness of extensions in a PAF
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[9]. However, if it is possible to invert the direction of an asymmetric attack, then should the attack
be counted as a symmetric one from the beginning? Since the ASPIC+ framework gurantees conflict-
freeness of extensions (Proposition 16 of [46]), the sequence of PAFs built over an ATPC bears desirable
properties that are shown in Section 4.3.

Amgoud & Vesic [8,9] also identified two roles that preferences may play in an AF: (1) handling failed
(critical) attacks and (2) refining the result of a PAF. To make the preferences in their system play the
second role, they defined two preference relations (called democratic and elicit) over the powerset of
arguments. These relations are used to return the best among the extensions of the repaired AF. In this
paper, we classify extensions into three categories: self-preferring extensions, self-discarding extensions
and extensions that are neither self-preferring nor self-discarding. We can also set a preference ordering
over these three categories. Our classification and ordering can be compared to Amgoud & Vesic’s
preference relation over a powerset of arguments. Furthermore, Proposition 3 shows that our formalism
makes preferences play two roles simultaneously.

The need to justify preferences before introducing them to reasoning has recently been emphasized
in [38]. According to them, we do not have control over legal norms and their modification, but we
can rather argue that one norm instead of another should be applied to a specific case. Governatori et
al. also gave an example where a conflict between norms occurs and different criteria prefer different
norms [38]. In legal reasoning, a lawyer should not only make an appeal to some of three criteria (Lex
Superior, Lex Posterior and Lex Specialis which are appeared in Section 4.1), but also justify the criteria
if a conflict between those criteria occurs as in their example.

For the sake of justifying preferences before reasoning from them, Booth et al. employ the model of
so-called property-based preferences, where a preference ordering over arguments is derived from pref-
erences over properties of the arguments. [23] Therefore, it can be regarded that, in [23], preferences are
justified by the information on properties of arguments and change as the result of moving to different
motivational states, which also bring about some change in argument properties. In ASPIC+, argument
orderings are derived from the preferences over defeasible rules and ordinary premises, which are com-
ponents of arguments. In our approach, those preferences over defeasible rules and ordinary premises
are also justified by AFs. Furthermore, while Booth et al. deal with the justification of preferences
in abstract argumentation [36], we integrate justifying preferences with reasoning from preferences in
structured argumentation.

A proposal to use AFs for preference elicitation has appeared in [58]. Sedki explores the correlation
between a given PQCL theory and a value-based AF and discusses using value-based AF for preference
elicitation. Recently, Oguego et al. has proposed to use argumentation to manage user preferences [48].
They explore a generalized framework that can be used to handle conflicts among user preferences in
ambient intelligence.

Preference learning has been a substantial topic in the field of artificial intelligence [50,51]. Learning
or eliciting preferences means to acquire preference information in either direct or indirect way, from
preference statements, critiques to examples, observation of user’s clicking behavior, etc. [51] However,
learning preferences is different from justifying (or reasoning about) preferences. An agent rarely has a
preference that holds under any condition. The agent rather has a preference that holds under a certain
condition (for example, Yong Chol prefers red wine to white wine, given that the second course is fish).
Therefore, learning preference not only means acquiring preference information (preference for red wine
to white wine), but also stipulating the condition (given that the second course is fish) under which such
preference information is justified. Nevertheless, a justified preference means that the condition attached
to the preference has been satisfied. That is, justifying preference means proving that such condition
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attached to a preference has already been satisfied. Therefore, learning preferences is prerequisite to
justifying preferences.

Modgil has acknowledged the non-prespecificity of the preference ordering of an AF [43]. As a re-
sult, he has proposed an extended argumentation framework (EAF) that enables even reasoning about
preferences. He adopted recursive attack as the means of producing a preference ordering over two con-
flicting arguments. He extended Dung’s AF by adding a recursive attack relation which ranges from
an argument to an attack between two arguments. His framework is powerful especially in resolving
conflicts between incompatible preferences because it regards two arguments as being in a symmetric
attack if they respectively attack an attack and the reversal of the attack. Later, the EAF has been ex-
tended to structured extended argumentation framework (SEAF), which satisfies rationality postulates
for bounded hierarchical EAFs [44].

SEAFs allow a special kind of rule whose head is a rule (or ordinary premise) priority, and thus make
it possible to construct arguments expressing preferences over other arguments. As a result, we can
reason about preferences with SEAFs. On the other hand, SEAFs determine the recursive attack relation
based on the rule priorities, which are conclusions of arguments. Therefore, we can also reason from
preferences with SEAFs.

Here, four main points are worth remarking to compare our model with SEAFs. First, as already
remarked, failed attacks are recursively attacked in SEAFs. This leads to finding a special set of defeats
called a reinstatement set to determine whether an argument is acceptable or not with respect to a certain
set of arguments. A reinstatement set for a defeat ensures that the defeat succeeded in surviving the
recursive attack on it (for the definition of reinstatement set, see [43]). In our formalism, failed attacks
are removed from a framework as in some others such as deductive argumentation and ABA+.

The second difference concerns the fact that our formalism adopts the notion of preference criteria,
while SEAFs use the special kind of rule in order to model the way in which we justify or reason about
preferences. In fact, every preference criterion can be converted into one or more rules whose heads
are rule (or ordinary premise) priorities.13 For example, the preference criterion 〈{p, q}, {r1 > r2, r3 >

r4}〉 can be converted into two rules: p, q ⇒ r1 > r2 and p, q ⇒ r3 > r4. Apart from this formal
correspondence, it should be remarked that our model is different from SEAFs in how to deal with
inconsistent preferences.

Intuitively, it should be avoided that inconsistent preferences are justified together and thus applied to
an AF. If an argumentation formalism allows rules whose heads are rule priorities, it should also include
the special kind of strict rules regarding rule priorities. For example, Modgil and Prakken’s extended
argumentation theory contains strict rules axiomatising partial orders such as y > x, z > y → z > x

(here, x, y, z are meta-variables ranging over rule names) [44]. Instead of containing such spcial kind
of strict rules, we define the notion of a valid criteria set, which ensures that no pair of incompatible
preference criteria are justified simultaneously. As noted in Section 4, the notion of valid criteria set is
based on the intuition that every preference criterion bears a certain condition under which its application
is justified and, as a result, incompatible criteria should also bear inconsistent guards. In other words,
preference criteria are incompatible because their guards are inconsistent. Consider, for example, that
a rule priority r1 > r2 (here r1 refers to “what the source A said is true.”, while r2 refers to “what the
source B said is true.”) can reference a statement a (which refers to “A is more trustworthy than B”)

13Since every preference criterion can be converted into the special rules, justifying preferences and reasoning about prefer-
ences, we think, can be seen as having the same meaning if they are broadly understood. They all mean giving support or reason
for applying the preferences or explaining why the preferences should be adopted. In this paper, we use the term “justifying”
instead of “reasoning about” simply for differentiating our model from SEAFs.
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made by a source S1, while r2 > r1 can reference a statement b (which refers to “B is more trustworthy
than A”) made by another source S2. Hence, the condition under which the application of r1 > r2 and
r2 > r1 are justified can be represented by two statements a and b, respectively. Here, intuitively, there
must be, at least, a strict rule a → ¬b.

In our formalism, since preference criteria are employed, the conflicts among arguments due to pref-
erences are usually concealed. In Example 5, it looks like that, intuitively, there is a conflict between
B and C because C demotes B, but this is not a part of this AF. Nevertheless, SEAFs makes such a
kind of conflicts come to the fore by means of recursive attack (if we had built EAF, we could produce
a recursive attack from C to 〈B, A〉 in Example 5). Even though conflicts due to preferences (e.g. that
between B and C) do not come to the fore in PAFs built over an ATPC, a set of arguments containing
such kind of conflicts cannot be an extension of the advanced PAF under Dung’s standard semantics. In
Example 5, the set of arguments {B, C} is not the preferred/stable extension of the advanced version and
it is self-discarding. Therefore, we can say that our model successfully deals with the problem related
with such hidden conflicts.

Third, SEAFs should allow collective attacks (or joint attacks as coined by the others [36,47]), while
our model does not. As noted earlier, an argument ordering is derived from the preferences over defea-
sible rules or ordinary premises in both SEAFs and our framework. Then, single argument may contain
more than one defeasible rules or ordinary premises. Therefore, a defeasible rule (or ordinary premise)
priority that is the conclusion of a SEAF argument may not be enough for determining that an argument
is preferred to another. Therefore, it becomes possible for two or more arguments to collectively (and
recursively) attack an attack in order to undermine the success of the latter as defeats [44].

Fourth, we can contrast our model with Modgil and Prakken’s SEAFs, in which all reasoning about
preferences is catered for in a single EAF. In contrast, an ATPC is used for building a sequence of PAFs,
where a PAF plays the role of the reasoning mechanism for justifying preferences that the next PAF is
to rest on.

In fact, it has shown that some EAFs can be converted into hierarchical AFs 〈An,Rn〉, . . . , 〈A1,R1〉
where each 〈Ai , Ri〉 outputs justified claims that yield preferences applied to attacks amongst arguments
in 〈Ai−1,Ri−1〉 (i > 2). [42,43] This seems to be very similar to the sequence of PAFs built over an
ATPC. However, in the sequence of PAFs, all PAFs share the same set of arguments and attack relation.
In such a sequence, the only thing that makes a PAF different from another is its argument ordering. In
contrast, individual AFs involved in a hierarchical AF have different set of arguments and thus attack
relations.

Here, it is remarkable that our approach can be closely related with dynamics of AFs [21,22]. Let
〈A,R,�1〉, . . . , 〈A,R,�n〉 be the sequence of PAFs built over an ATPC and 〈A,R′

1〉, . . . , 〈A,R′
n〉

the repaired AFs of 〈A,R,�1〉, . . . , 〈A,R,�n〉, respectively. Then, it can be easily noticed that every
repaired version of the PAFs involved in the sequence is an attack abstraction14 from the original frame-
work 〈A,R〉. In addition, the repaired framework of the ith PAF is an attack abstraction from that of
the i − 1th PAF (1 < i � n) under stable semantics (and even under preferred semantics if the repaired
framework of the ith PAF does not contain any odd-length cycles of attacks).

It is central issue in dynamics of AFs to stipulate some principles, by which we can expect the outcome
of a changed AF. Such principles are usually of the form “If an argument (or an attack) is removed (or
added), such that a given property P1 is satisfied, then the outcome of the argumentation framework
satisfies P ′

2’ [30]. Here, P1 expresses some constraint on the addition or removal of arguments or attacks

14Given two AFs 〈A,R〉 and 〈A′, R′〉, 〈A′, R′〉 is an attack abstraction from 〈A,R〉 iff A = A′ and R′ ⊆ R [12].
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of an AF, while P2 usually expresses the relation between the original and changed AFs. As shown
in Section 4.3, in the sequence of PAFs, where only the defeat relations subsequently change, each
of skeptically accepted arguments by a PAF is also skeptically accepted by the subsequent PAFs. It is
also impossible for every credulously rejected arguments by a PAF to be credulously accepted by the
subsequent PAFs. Therefore, we can find two sets of arguments whose status does not change throughout
the sequence of PAFs: skeptically accepted and credulously rejected arguments by the primary PAF
(under stable semantics and under preferred semantics when the primary PAF does not contain any
odd-length cycles of attacks). Such interesting results cannot be recognized in hierarchical AFs.

One of the important problems of AF dynamics is a semantical defect of an agent’s AF which prevents
her from drawing any plausible conclusion in the sense that no argument is accepted, or prevents her from
drawing enough conclusions in the sense that the accepted arguments are not enough for giving answers
she wants [12].15 Such undesirable situations should be avoided. Therefore, the agent should change
the AF so as to cure the defect. If an agent counters a semantical defect, she wants to know what are
minimal diagnoses of the given knowledge base, i.e. which parts are causing the semantical defect. For
instance, a certain minimal diagnosis may consist of arguments which are somehow out of date or not as
significant in comparison to the others and thus should be discarded [12]. An efficient minimal diagnosis
may also consist of attacks where the attackee is preferred to the attacker because of some reason (e.g.
preference criteria in our approach). Consequently, an agent may tend to remove these attacks. An agent
can find such diagnosis by introducing some preference criteria and constructing a sequence of PAFs. In
the sequence of PAFs 〈A,R,�1〉, . . . , 〈A,R,�n〉 built over an ATPC, where the original AF 〈A,R〉
suffers from a semantical defect, if 〈A,R,�n〉 has a single extension under a given semantics, then,
the attacks removed by �n can be regarded as an attack-based diagnosis. Furthermore, the repaired
framework of 〈A,R,�n〉 becomes an attack-based repair of 〈A,R〉 (for formal definitions of diagnosis
and repair, see Definition 3.2 of [12]). Here, we should note that preference criteria whose guards are
∅ play a crucial role for finding diagnosis of a semantical defect where no argument is accepted. If the
primary PAF based on such preferences still has multiple extensions, we may also build subsequent
PAFs with justified preferences.

EAFs and SEAFs have also been carefully studied under the grounded semantics. It is shown that the
grounded extension of a special kind of EAF called bounded hierarchical EAF is the least fixed point of
its characteristic function.16 In the sequence of PAFs, the grounded semantics can also play an important
role, not just because, the repaired framework of a PAF, as a standard Dung AF, has the least fixed point
of its characteristic function as its grounded extension, but also because every PAF has a single grounded
extension that monotonically changes. Formally:

15In [40], Baumannn and Ulbricht define a semantical defect of an AF as a situation where it is impossible to draw any
plausible conclusion because no argument is accepted. In this paper, I have broadened the meaning of semantical defect. A
semantical defect of an agent’s AF may also include a situation where it is impossible to draw enough conclusions for giving
needed answers even though the AF includes arguments which gives such answers. This kind of situations usually comes into
being when an AF has multiple extensions and thus skeptically accepted arguments are not enough for giving the answers
an agent wants. For instance, in Example 3, only E is skeptically accepted, which concludes that the robot is near the store.
However, this is not an answer that the agent wants. The robotic agent should decide which boxes to carry first.

16Generally, given an AF H with a set of arguments A, the characteristic function FH is defined as follows:

FH : 2A �→ 2A,

FH(S) = {A|A is acceptable wrt. S in H}.
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Proposition 8. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. If En and En+1 are respectively grounded extensions of Hn and Hn+1, it holds that
En ⊆ En+1.

The above proposition shows that the sequence of PAFs built over an ATPC brings about a monotonic
increase in grounded extension as the justified preferences change. As a result, in the sequence, an
accepted argument by a PAF under grounded semantics cannot be rejected by the subsequent PAFs.

Bench-Capon et al. has also recognized the non-prespecificity of a value order and proposed a novel
solution to the problem of producing value orders [15]. According to them, ‘we cannot assume that the
parties to a debate will come with a clear ranking of values: rather these rankings appear to emerge
during the course of the debate.’ They defined a dialogue process for evaluating the status of arguments
in a value-based AF. The dialogue process can be used to construct positions by which the orderings
of values will be determined. They adopted the dialogue framework that was developed to prove the
acceptability of arguments in AFs [15, Section 6].

The audience-dependency of preferences (or value orders) in an AF was addressed in value-based
AFs [13,15]. Perrussel et al. also defined multiple PAF to model the intuition that different agents have
different preferences [49]. However, even a single agent may promote different preferences in different
contexts. An agent will select a preference criterion only if he notices that the condition, under which the
criterion is justified, is satisfied in a specific context. Our formalism reflects this intuition by borrowing
the notion of guard from [60]. Teze et al. proposed a recommender system which uses justified prefer-
ence criteria [60]. They introduced the notion of conditional-preference expressions (somewhat like the
notion of a conditional preference network [29]) that represents IF. . . THEN. . . ELSE IF. . . structure of
criteria selection. In their system, a single criterion is justified in a context. Furthermore, other structured
argumentation formalisms that trade on the mathematical notion of conditional preference network like
have recently been studied and applied [26,32]. However, in our formalism, we do not adopt the no-
tion of conditional-preference expression, because we thought that multiple compatible criteria may be
available behind a preference ordering in a context. Furthermore, their recommender systems justify a
criterion by means of strict derivations. This implies that a selection of a criterion is based on perfect
information and, therefore, it could never be doubted. However, in practice, a selection of a criterion
is rarely taken for granted, rather it is based on imperfect information, and thus may be questioned or
even be in conflict with some other available piece of information. From this viewpoint, we adopt the
argumentation-approach for the sake of justifying preferences. In our formalism, a PAF is used for not
only drawing plausible conclusions, but also justifying preferences.

7. Conclusions

Many successful preference-based and value-based AFs prove the usefulness of preferences or value
orders taken as an input of the AF. Nonetheless, preferences in an argumentation or value orders in a
practical reasoning are not ‘universal presuppositions’, thus, they should also be an output of an argu-
mentation or reasoning [15]. This leads us to building a model where both justifying preferences and
determining acceptable conclusions by taking the preferences into account are possible. In this paper,
we have argued that a PAF built over an argumentation theory should adopt preferences that have been
justified by another framework with the same arguments and attack relations. Hence, we propose to build
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a sequence of PAFs over an argumentation theory, where a PAF justifies preferences that the next PAF
is to be based on.

On the other hand, justifying preferences is reduced to justifying criteria behind them with available
information in a context. Accordingly, we modify the notion of APSIC+ argumentation theory with
preference criteria and as a result, an ATPC is defined

It is very interesting that in a standard ASPIC+ framework, preferences may not only be used for
filtering the attack relation, but also for filtering the extensions of the original AF (Proposition 1). It also
makes it possible for us to build such a sequence of PAFs over an ATPC.

The sequence of PAFs built over an argumentation theory with preference criteria (ATPC) involves
two or more individual PAFs: primary PAF, advanced PAF, third PAF and so on. The primary PAF is
for justifying preferences and the advanced PAF is for concluding or determining acceptable statements.
The primary PAF takes into account only the preference criteria whose guards are empty set, while the
advanced PAF takes into account the preference criteria justified by the primary PAF. Our formalism has
also been thoroughly discussed through some examples. Especially, Example 6 shows that our proposal
accords well with practical wisdom when some attributes of an object that is under consideration depend
on each other. Let us consider Example 6 again.

Example 6 (cont.). Let us replace the theory T6 = 〈AS6,KB6〉 with T7 = 〈AS7,KB7〉 where
AS7 = 〈L, ¯,R7, C7〉 and KB7 = 〈K7, C ′

7〉 such that Kn7 = {Expert1_says(high_CPU_speed(com1)),

Expert2_says(¬high_CPU_speed(com1))}, Kp7 = {Untrustworthy(Expert2), ¬large_RAM_capacity
(com1), good_battery(com1)}, Rs7 = Rs6, Rd7 = Rd6, C7 = C6 and C ′

7 = C ′
6. Then, the PAF cor-

responding to T7 will recommend not buying com1.

When we decide which object or course of action to choose, their attributes should be considered. The
selection of an object or a course of action derives from an ordered set of their attributes. For example,
if a house is close to work but not large and an agent prefers size to distance to work, then the agent
will not choose the house, although it is close to work. In contrast, if the agent prefers distance to work
to size, then he will choose the house, although, it is not large. Deriving preferences over objects from
ordered sets of their attributes was deeply studied in [40]. However, sometimes, some attributes of an
object or course of an action may be dependent each other. Here, dependence of attributes means that one
attribute is helpless without the presence of the other attribute. For example, the highness of a computer
CPU is dependent on the largeness of its RAM. The high CPU of a computer should be backed up by
a large RAM, that is, if the RAM capacity of a computer is not large, its CPU whose speed is high
is helpless.17 In such a case, it is hard to set a unified ranking over the attributes. One cannot easily
say that he prefers CPU speed to battery capacity of a computer since if the computer does not have
large RAM, the CPU whose speed is high is helpless. Then, our formalism will be useful for dealing
with such problems. If some of the desired attributes (high CPU speed, large RAM capacity) depend on
each other and at least one of them is not equipped, it is wise to prefer an independent attribute (battery
capacity) to the dependent attributes. The results of Example 6 show that our model accords well with
this wisdom. Furthermore, our formalism that integrates justifying preferences with reasoning from the
justified preferences brings about interesting results where extensions may be self-preferring or self-
discarding. Thus, we can classify extensions into three categories and set an ordering over extensions
based on this classification.

17Here, the term “helpless” does not mean that the CPU is useless, but means that the high CPU speed is useless (i.e. even
low CPU speed is OK). That is, when the RAM capacity is not large enough, it will be rather better off using a cheaper CPU
whose speed is low, instead of high and expensive CPU.
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Appendix. Proof of propositions

Proposition 1. Let 〈A,R,�〉 be a PAF corresponding to an argumentation theory which has a reason-
able argument ordering. Then, under preferred semantics, it holds that for all E ′ ∈ Extpre(〈A,R,�〉),
there exists an extension E ∈ Extpre(〈A,R〉) such that E ′ ⊆ E . Under stable semantics, it just holds
that Extsta(〈A,R,�〉) ⊆ Extsta(〈A,R〉).
Proof.

– Under preferred semantics

Let 〈A,R′〉 be the repaired AF of 〈A,R,�〉. From Proposition 16 of [46], E ′ is also conflict-free
wrt. R. Now, we are to prove that E ′ defends all of its elements wrt. R. Let A and B be respectively
arguments that belong to E ′ and A\E ′ such that B attacks A on A′ (wrt. R). Then, the following three
cases are possible:

First, if 〈B, A〉 ∈ R′, then there exists a C ∈ E ′, such that 〈C, B〉 ∈ R′ since E ′ defends all of its
elements wrt. R′. Because it holds that R′ ⊆ R, there exists a C ∈ E ′, such that 〈C, B〉 ∈ R. Thus, E ′
defends all of its elements wrt. R.

Second, if 〈B, A〉 /∈ R′ because B ≺ A, and 〈B, A〉 is an asymmetric preference-dependent attack,
then from Lemma 36 of [46], A′ defeats B (when the top rule of B is defeasible) or there exists a strict
continuation A+ of A such that A+ defeats B (when the top rule of B is strict). Furthermore, because
〈A,R,�〉 satisfies the postulate of closure under subarguments and strict rules, it holds that B ′ ∈ E ′ and
A+ ∈ E ′. Then since it holds that R′ ⊆ RE ′ defends all of its elements wrt. R in this case.

Third, if 〈B, A〉 /∈ R′ because B ≺ A, and 〈B, A〉 is a symmetric preference-dependent attack, then
E ′ also defends all of its elements since 〈A, B〉 ∈ R.

Now suppose that E ′ is not maximal admissible set, that is, there exists a A ∈ A\E ′ such that E ′ ∪ {A}
is admissible wrt. R. Since E ′ is a preferred extension wrt. R′, E ′ ∪ {A} is not admissible wrt. R′.
E ′ ∪ {A} is also conflict-free wrt. R′ because the conflict-freeness is preserved from Proposition 16 of
[46]. Therefore, E ′ ∪ {A} fails to defend its element A (it defends all elements that belongs to E ′ because
of the preferred nature of E ′ wrt. R′) wrt. R′. This implies that there exists a B ∈ A\E ′ such that
(B, A) ∈ R′, and for all C ∈ E ′ ∪ {A} it holds that (C, B) /∈ R′. From the admissibility of E ′ ∪ {A} wrt.
R, if (B, A) ∈ R′ ⊆ R, then there exists a C ∈ E ′ ∪ {A} such that C attacks B on B ′ wrt. R. That is,
〈C, B〉 ∈ R, but 〈C, B〉 /∈ R′.

Now, two choices are possible. First, assume that C �= A. This implies that 〈C, B〉 is a preference-
dependent attack. If 〈C, B〉 is a symmetric attack (Fig. 20), then it holds that 〈B, C〉 ∈ R′. Because of
admissibility of E ′ wrt. R′, there exists a D ∈ E ′ such that 〈D, B〉 ∈ R′. Contradiction with the fact
that E ′ ∪ {A} fail to defend its element A wrt R′. If 〈C, B〉 is an asymmetric attack (Fig. 21), then from
then from Lemma 36 of [46], B ′ defeats C (when the top rule of C is defeasible) or there exists a strict
continuation B+ of B such that B+ defeats C (when the top rule of B is strict). E ′ wrt. R′, there exists a
D ∈ E ′ such that 〈D, B ′〉 ∈ R′ or 〈D, B+〉 ∈ R′. If 〈D, B ′〉 ∈ R′, then D also defeats B on B ′. And if
〈D, B+〉 ∈ R′, there exists a strict continuation of D+ of D such that D+ defeats B (under reasonable
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Fig. 20. When 〈C, B〉 is symmetric.

Fig. 21. When 〈C, B〉 is asymmetric.

Fig. 22. When C = A.

argument ordering). Also, it holds that D+ ∈ E ′. Both cases lead us to the contradiction with the fact
that E ′ ∪ {A} fail to defend its element A wrt. R′. Thus, E ′ ∪ {A} is not admissible wrt R, that is, E ′ is
also a preferred extension wrt. R.

Next, if C = A, then we know that there exists a failed attack from A to B (Fig. 22). Then, if we
define A as an argument which is acceptable wrt. E ′ ∪ {A} in 〈A,R〉, then it is self-evident that E ′ ∪ {A}
is also admissible. Otherwise, E ′ ∪ {A} is not admissible, therefore, E ′ becomes a preferred extension of
〈A,R〉. As a result, a conflict-free set E = E ′ ∪{A|A is acceptable wrt. E ′ ∪{A} in 〈A,R〉} is a preferred
extension of 〈A,R〉. Hence, E ′ ⊂ E ∈ Extpre(〈A,R〉).

In the above figures, solid arrows represent attacks that belongs to R′, and the dashed arrow represents
the attack that belongs to R, but fails to belong to R′. Note that every attack that belongs to R′ also
belongs to R. In addition, if ∅ ∈ Extpre(〈A,R,�〉), then the proposition self-evidently holds, since
the empty set is a subset of any set.

– Under stable semantics

If the repaired framework has no stable extension (Extsta(〈A,R,�〉) = ∅), then the proposition
holds, since an empty set is a subset of any set.

If Extsta(〈A,R,�〉) �= ∅, we should prove that for all E ′ ∈ Extsta(〈A,R,�〉), it also holds that
E ′ ∈ Extsta(〈A,R〉). Since the conflict-freeness is guaranteed by Proposition 16 of [46], E ′ is also
conflict-free wrt. R. From the definition of stable semantics, E ′ attacks all arguments that do not belong
to E ′, that is, for all B ∈ A\E ′, there exists a C ∈ E ′ such that (C, B) ∈ R′. Since R′ ⊆ R, it holds
that for all B ∈ A\E ′, there exists a C ∈ E ′ such that (C, B) ∈ R. It implies that E ′ also attacks all the
arguments that is not belong to E ′ wrt. R. Furthermore, �C ∈ A\E ′ such that E ′ ∪ {C} is conflict-free
(wrt. R or R′). Therefore, E ′ is the maximal set that is conflict-free and attacks all the arguments that do
not belong to E ′ wrt R, i.e. E ′ is a stable extension wrt. R. �
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Proposition 2. Let T be an argumentation theory which is indirectly consistent, C a set of valid prefer-
ence criteria wrt. T , and H = 〈A,R,�〉 a PAF built over T . For all c1, c2 in C, that are incompatible,
it is impossible for both of c1 and c2 to be justified by an extension of H under a given semantics thus be
skeptically justified by H.

Proof. From Definition 15, for all c1 and c2 in C that are incompatible it holds that Kn ∪ Guard(c1) ∪
Guard(c2), is indirectly inconsistent under the strict rules of T (here, Kn is the set of axioms of T ).

Suppose that both of c1 and c2 are justified by an extension of H under a given semantics. This
means that Guard(c1) ∪ Guard(c2) ⊆ Concs(E). Furthermore, if we take into account that strict ar-
guments cannot be attacked in any manner, then it holds that Kn ⊆ Concs(E). Therefore, it holds that
Kn ∪ Guard(c1) ∪ Guard(c2) ⊆ Concs(E). However, from the indirect consistency of T , Concs(E)

is also indirectly consistent. Contradiction with the fact that Kn ∪ Guard(c1) ∪ Guard(c2), is indi-
rectly inconsistent under the strict rules of T . Therefore, for any extension E under a given semantics
(admissible, ground, complete, preferred, stable), Guard(c1) ∪ Guard(c2) � Concs(E). Eventually,
it is impossible for both c1 and c2 to be justified by any extension of the PAF corresponding to T . This
also implies that both c1 and c2 cannot be skeptically justified under a given semantics. �

Proposition 3. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid
criteria sets and Hpri = 〈A,R,�pri〉 and Hadv = 〈A,R,�adv〉 respectively the primary and advanced
PAF corresponding to T which have reasonable argument orderings. Then, under preferred semantics,
for all E ′ ∈ Extpre(Hadv), there exists an extension E ∈ Extpre(Hpri) such that E ′ ⊆ E . Under stable
semantics, it holds that Extsta(Hpri) ⊇ Extsta(Hadv).

Proof. Let H′
pri = 〈A,R′

pri〉 be the repaired AF of Hpri and 〈A,R′
adv〉 that of Hadv. Here, R′

pri is the
result of filtering R through �pri and R′

adv is the result of filtering R through �adv. Then, we also know
that �pri⊆�adv, because �pri comes from preference criteria that can be applied without any justification.
Therefore, it can be seen that Hadv = 〈A,R′

pri,�adv \ �pri〉. Then, from Proposition 1, under preferred
semantics, it holds that for all E ′ ∈ Extpre(Hadv), there exists E ∈ Extpre(Hadv) such that E ′ ⊆ E .
Under stable semantics, it holds that Extsta(Hpri) ⊇ Extsta(Hadv). �

Proposition 4. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with valid
criteria sets and Hpri = 〈A,R,�pri〉 and Hadv = 〈A,R,�adv〉 respectively the primary and advanced
PAF corresponding to T which have reasonable argument orderings. In addition, let Cadv and C3 be
respectively be sets of preference criteria that produce �adv and that is justified by Hadv. Then there
exists no c ∈ Cadv and c′ ∈ C3 such that c and c′ are incompatible.

Proof. For all c in C3, c′s guard belongs to the intersection of all extensions of Hadv. In the same way,
the guard of any criterion of Cadv also belongs to the intersection of all extensions of Hpri. Then, under
stable semantics, since it holds that Extsta(Hpri) ⊇ Extsta(Hadv) from Proposition 3, the intersection
of extensions of Hadv is a superset of that of Hpri. Hence, it holds that Cadv ⊆ C3. From Proposition 2,
there exists no c ∈ Cadv and c′ ∈ C3 such that c and c′ are incompatible. On the other hand, under
preferred semantics, since skeptical standpoint is adopted, for all E ′ ∈ Extpre(Hadv), all criteria in
C3 are justified by E ′. From Proposition 3, there exists E ∈ Extpre(Hadv) such that E ′ ⊆ E . We here
note that all criteria in Cadv are justified by E . The proposition holds since every couple of incompatible
criteria cannot justified by a single extension (Proposition 2). �
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Proposition 5. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. Then, if �n+1⊇�n, then under preferred semantics, for all E ′ ∈ Extpre(Hn+1),
there exists an extension E ∈ Extpre(Hn) such that E ′ ⊆ E . Under stable semantics, it holds that
Extsta(Hn) ⊇ Extsta(Hn+1).

Proof. Let 〈A,R′
n〉 be the repaired AF of Hn. Then, we can rewrite Hn+1 as 〈A,R′

n,�n+1 \ �n〉. From
Proposition 1, it holds that for all E ′ ∈ Extpre(Hn+1), there exists E ∈ Extpre(Hn) such that E ′ ⊆ E .
It also holds that Extsta(Hn) ⊇ Extsta(Hn+1). �

Proposition 6. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. In addition, let Cn and Cn+1 be respectively sets of preference criteria that produce
�n and �n+1. Then there exists no c ∈ Cn and c′ ∈ Cn+1 such that c and c′ are incompatible.

Proof. Let Hn−1 = 〈A,R,�n−1〉 be the resulting PAF of the n − 1th filtering. If �n⊇�n−1, then from
Proposition 5, for all E ′ ∈ Extpre(Hn), it holds that there exists an extension E ∈ Extpre(Hn−1)

such that E ′ ⊆ E . It also holds that Extsta(Hn−1) ⊇ Extsta(Hn). Since Cn and Cn+1 are respectively
justified by Hn−1 and Hn, there exists no c ∈ Cn and c′ ∈ Cn+1 such that c and c′ are incompatible
(see the proof procedure of Proposition 4). In contrast, if �n−1⊇�n, we can rewrite Hn−1 and Hn as
〈A,R′

n,�n−1 \ �n〉 and 〈A,R′
n〉 respectively (here 〈A,R′

n〉 is the repaired version of 〈A,R,�n〉.
From Proposition 3, for all E ′ ∈ Extpre(Hn−1), it holds that there exists an extension E ∈ Extpre(Hn)

such that E ′ ⊆ E under preferred semantics. It also holds that Extsta(Hn) ⊇ Extsta(Hn−1). Since
Cn+1 and Cn are respectively justified by Hn and Hn−1, there exists no c ∈ Cn and c′ ∈ Cn+1 such that c

and c′ are incompatible (see the proof procedure of Proposition 4 once again). �

Proposition 7. Let T = 〈AS,KB〉 with AS = 〈L, ¯,R, C,n〉 and KB = 〈K, C ′〉 be an ATPC with
valid criteria sets, Hn−1, Hn and Hn+1 (n = 2, 3, . . . ) respectively results of the n−1th, nth and n+1th
filtering with reasonable argument orderings. Then, it also holds that if Exty(Hn−1) = Exty(Hn), then
Exty(Hn) = Exty(Hn+1) under preferred or stable semantics (that is, y ∈ {pre,sta}).

Proof. Let �n−1, �n and �n+1 be respectively argument orderings of Hn−1, Hn and Hn+1 and Cn−1,
Cn and Cn+1 sets of preference criteria which produce �n−1, �n and �n+1, respectively. It means
that

⋃
ci∈Cn Guard(ci) ⊆ SOutputy(Hn−1) and

⋃
ci∈Cn+1 Guard(ci) ⊆ SOutputy(Hn). Then,

since Cn and Cn+1 are derived from a single preference criteria set C ∪ C ′ and SOutputy(Hn−1) =
SOutputy(Hn), Cn = Cn+1. Therefore, it holds that �n=�n+1 and Hn and Hn+1 are identical. As a
result, Exty(Hn) = Exty(Hn+1). �

Proposition 8. Let T = 〈AS,KB〉 be an ATPC with valid criteria sets, Hn = 〈A,R,�n〉 and Hn+1 =
〈A,R,�n+1〉 respectively the resulting PAFs of the nth and n + 1th filtering which have reasonable
argument orderings. If En and En+1 are respectively grounded extensions of Hn and Hn+1, it holds that
En ⊆ En+1.

Proof. In order to prove the proposition, the following lemma should be proved. �
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Lemma 1. Let 〈A,R,�〉 be a PAF corresponding to an argumentation theory which has a rea-
sonable argument ordering. Then, under complete semantics, it holds that Extcom(〈A,R,�〉) ⊆
Extcom(〈A,R〉).
Proof. We should prove that for all E ′ ∈ Extcom(〈A,R,�〉), it also holds that E ′ ∈ Extcom(〈A,R〉).
Let 〈A,R′〉 be the repaired AF of 〈A,R,�〉. As the proof of Proposition 1 shows, E ′ is also admissible
(conflict-free and defends all of its elements) in 〈A,R〉. Now, let us assume that E ′ does not contain an
argument A which is acceptable wrt. E ′ in 〈A,R〉. From Proposition 16 of [46], E ′ ∪ {A} is also conflict-
free in 〈A,R′〉. Since E ′ is a complete extension of 〈A,R′〉, A is not acceptable wrt. E ′ in 〈A,R′〉. It
means that there exists an argument B ∈ A\E ′ such that B attacks A, but any argument in E ′ does not
attack B in 〈A,R′〉. Because R′ ⊆ R, B also attacks A in 〈A,R〉 and thus there is an argument C ∈ E ′
such that C attacks B in 〈A,R〉. Therefore, we have C ≺ B. If 〈C, B〉 is a symmetric attack, it holds that
B attacks C in 〈A,R′〉. Then, we have a D ∈ E ′ such that D attacks B in 〈A,R′〉 (because E ′ defends all
of its elements). Contradiction with the fact that A is not acceptable wrt. E ′ in 〈A,R′〉. Next, if 〈C, B〉
is an asymmetric attack, then assume that C attacks B on B ′. Then from then from Lemma 36 of [46],
B ′ attacks C (when the top rule of C is defeasible) or there exists a strict continuation B+ of B such
that B+ attacks C (when the top rule of B is strict) in 〈A,R′〉. Therefore, we have a D ∈ E ′ such that
D attacks B ′ or B+ in 〈A,R′〉. It means that D attacks B (on B ′) or there exists a strict continuation of
D, which attacks B in 〈A,R′〉. Contradiction! Therefore, E ′ contains any argument which is acceptable
wrt. it in 〈A,R〉.

Let us prove by mathematical induction that �n⊆�n+1 under grounded semantics. This self-evidently
holds for �1 and �2 since �1 comes from preference criteria whose guards are ∅. Assume that �k−1⊆�k

under grounded semantics. Then, from Lemma 1 and the fact that the grounded extension of an AF is
the least complete extension, we have Ek−1 ⊆ Ek (k > 1). Hence, it holds that �k⊆�k+1. Now, we have
�n⊆�n+1 under grounded semantics (1 � n). Now, let 〈A,R′

n〉 be the repaired AF of Hn. Then, we can
rewrite Hn+1 as 〈A,R′

n,�n+1 \ �n〉. Then, the proposition directly follows from Lemma 1 and the fact
that the grounded extension is the least complete extension. �
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