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Abstract. This paper presents a comprehensive study of argumentation frameworks with necessities (AFNs), a bipolar extension
of Dung Abstract argumentation frameworks (AFs) where the support relation captures a positive interaction between arguments
having the meaning of necessity: the acceptance of an argument may require the acceptance of other argument(s). The paper
discusses new main acceptability semantics for AFNs and their characterization both by a direct approach and a labelling
approach. It examines the relationship between AFNs and Dung AFs and shows the gain provided by the former in terms of
concision. Finally, the paper shows how to represent an AFN as a normal logic program (LP) and vice versa and in both cases
establishes a one-to-one correspondence between extensions under the main acceptability semantics (except for semi-stable
semantics where the correspondence is not completely full) of an AFN and particular cases of 3-valued stable models of normal
LPs.
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1. Introduction

In the last decades, formal argumentation has become an attractive research field in artificial intelli-
gence (AI) (see e.g. [15,84]). It provides a form of reasoning based on the construction and the evaluation
of arguments in favor or against a given claim. Argumentation-based models are proposed in different
AI domains such as defeasible reasoning [79,87] and multi-agent systems [17,64,82,84]. Moreover, the
argumentation approach has been used to provide solutions to several problems including decision mak-
ing [10,12], negotiation [11,13], opinion analysis [18], practical reasoning [9], critical thinking [63],
ontology alignment [89,92], statistical modeling [86], etc. (see [65] for more practical applications of
formal argumentation).

Roughly speaking, works on argumentation may be divided into two classes. The first one is inter-
ested in the internal structure of arguments. We find in this class approaches that instantiate arguments
from knowledge bases expressed in propositional logic [4–6,17,61], in conditional logic [16], in descrip-
tion logic [94], in rule-based systems [7,68] or in logic programming [30,43]. The interactions between
arguments are expressed by attack relations (defeaters, undercuts, rebuttals, etc.) induced from the ar-
guments’ structure. The second class is that of abstract approaches which consider arguments as atomic
entities and do not care about their internal structure. It focuses rather on the interaction between ar-
guments and aims at drawing plausible conclusions according to some acceptability principle. Most of
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the works in this class are developed around Dung’s abstract model [53] where the unique interaction
between arguments is a negative one captured by an attack relation. Extensive research has been done to
generalize this model (see e.g. [8,19,21,22,38–41,44,46,47,69–72]).

Besides, one interesting research topic, which goes back to Dung’s seminal work [53], is to explore
links between Argumentation Frameworks (AFs) and Logic Programs (LPs) [29,30,73]. One important
research line in this context (see e.g.. [29,30]) consists in representing an LP as a Dung system following
an instantiation process similar to that used in rule-based systems [7,68] and then different 3-valued
semantics of an LP are related to well-known acceptability semantics of the corresponding AF.

Some relatively recent works have addressed frameworks that include, in addition to an attack relation,
positive interactions between arguments represented by a support relation. Dung AFs define an implicit
positive interaction between arguments by means of the notion of defense: an argument defends another
one if it attacks all its attackers. But some positive influences between arguments may not be reduced
to the notion of defense and this motivates the study of new explicit support relations. Notice that in
[77], the need for bipolar approaches has been empirically assessed. For our purpose in this work, let us
illustrate this idea by the following example: (another example following the same principle is given in
[45] inspired from [82] and [39]): Consider the following exchange of arguments during a meeting in a
computer science department to organize exams:

(A): Only the basic notions of automata theory have been presented to students. Thus, the exam of
this unit cannot be taken shortly.

(B): Normally, all the exams are taken during the same week and the exams of all the other teaching
units are expected to be soon.

(C): The teacher of the automata theory unit was absent several times.

Clearly, arguments (A) and (B) attack each other. In contrast, the argument (C) supports (A) since it
brings some information in favor of it. However, perceiving this support as a defense of (A) by (C)
against (B) does not make sense since it is counter-intuitive to consider an attack from (C) to (B).

The work in [38] is an early attempt to explicitly represent a support relation in abstract argumenta-
tion. It uses an unspecified meaning of the support relation without considering additional constraints.
This generality leads in some contexts to counter-intuitive conclusions since the correct interactions be-
tween attacks and supports depend strongly on the exact meaning of the support. According to the exact
meaning given to support, several approaches have been proposed. The evidential support approach [72]
limits acceptance to arguments supported by some evidence provided either directly from the environ-
ment (prima facie arguments) or from other supported arguments (standard arguments). In the deductive
support approach, a supports b if the acceptance of a suffices to accept b. The abstract dialectical frame-
works [22] extend Dung AFs by generalizing the acceptability conditions of an argument according to
the acceptability of other arguments related to it. Finally, the backing relation approach [43,44] captures
the meaning of support used in Toulmin’s model of argumentation (see [45] for a survey on the different
approaches on support in argumentation and Section 6 for a discussion of these approaches and some of
their extensions).

Several extensions and applications of bipolar AFs have been proposed in the literature. We can cite
the use of bipolar AFs for text exploration [28], for detecting bipolar relations from texts [26], for
supporting users [27] and ranking comment sorting policies [93] in inline debate and for social networks
analysis [60].

In this paper we focus on Argumentation Frameworks with Necessities (AFNs) introduced in [70,71]
where the support relation has the meaning of necessity and relates sets of arguments to single arguments.
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On the one hand this paper synthesizes and extends the two conference papers [70,71] (Sections 3
and 4) by introducing new concepts and detailed proofs of results (given in the Appendix). On the other
hand, the paper further investigates the relationship between AFNs and LPs under 3-valued semantics.

We show in particular that the interest of using the particular meaning of necessity is twofold: First, it
allows us to extend in a natural way several results concerning Dung AFs, namely the main acceptability
semantics and their relationships. Hence, to directly draw conclusions from an AFN, it is not necessary
to use an intermediate Dung AF (even if such an option remains available, see Section 4) or to borrow
techniques from other domains such as logic programming. Moreover, the proposed framework is a
proper generalization of Dung AFs in the sense that if no supports are present, the new definitions and
results collapse with the classical ones of Dung AFs. Second, we show that the proposed framework
is strongly related with logic programming under 3-valued semantics. We highlight in particular that
thanks to the necessity relation, an easy and immediate translation of an LP into an AFN and vice
versa is obtained and may be used instead of the usual but relatively complex instantiation process of
arguments from an LP. In summary, the present work brings answers to the following main questions:

• How to generalize the main acceptability semantics of Dung AFs to AFNs by accommodating
directly the necessity relation instead of translating the AFN into a Dung AF or using techniques
from other formalisms?

• How to generalize the labelling characterization to the case of AFNs?
• How to extract a meta-argumentation model having the structure of a Dung AF from any AFN?

What is the impact of using a necessity relation that relates sets of arguments to single arguments
instead of a binary support relation as it is the case in most of existing works?

• How to instantiate an AFN from an LP and how to represent an AFN as an LP? In both cases, how
to exploit the necessity relation to simplify the translation and how are the acceptability semantics
of an AFN related to 3-valued semantics of the corresponding LP?

The rest of the paper is organized as follows. Section 2 recalls basic notions about Dung AFs and main
concepts of LPs under 3-valued semantics. Section 3 presents AFNs. It introduces new notions regarding
the necessity relation, generalizes the main notions of Dung AFs to the new context and presents in detail
the main acceptability semantics of AFNs. Then, a labelling characterization of acceptability semantics
for AFNs is presented. It extends the existing characterization for Dung AFs to take into account jointly
both the attack and the necessity relations. Section 4 discusses the representation of an AFN as a meta
Dung AF so that a one-to-one correspondence is established between acceptability semantics of an AFN
and that of the corresponding meta Dung AF. Section 5 is devoted to a deep analysis of the links between
the acceptability semantics of AFNs and 3-valued semantics of LPs. Finally, in Section 6, we discuss
related work and give some perspectives for possible future work.

2. Preliminaries

2.1. Dung AFs

A Dung AF is an abstract argumentation model based on a set of arguments and the attacks between
them.

Definition 2.1 (Argumentation framework). A Dung AF is a pair H = 〈A,R〉 where A is a set of
arguments and R ⊆ A × A is a binary attack relation.
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Throughout the paper, we use the infix a R b to denote the attack (a, b) ∈ R. Moreover, for E ⊆ A
and a ∈ A, we abuse notation and write a R E (resp. E R a) if there is b ∈ E such that a R b (resp.
b R a). For E, E ′ ⊆ A, we similarly write E R E ′ if there is a ∈ E and b ∈ E ′ s.t. a R b. Finally we
denote by E+ the set of arguments attacked by E , i.e., E+ = {a ∈ A | E R a}.

Intuitively, a R b means that accepting a blocks the acceptance of b. In presence of various inter-
acting arguments, one needs to know what are the sets of arguments that may be accepted collectively,
called extensions. Several principles may be used as a basis to determine the extensions of a framework.
Such principles are called acceptability semantics in the abstract argumentation literature. Acceptability
semantics are defined on the basis of some elementary concepts that we sum up in Definition 2.2.

Definition 2.2 (Conflict-freeness, defense, characteristic function, admissibility). Let H = 〈A,R〉 be
an AF and E ⊆ A. E is conflict-free iff �a, b ∈ E s.t. a R b; E defends an argument a iff ∀b ∈ A,
if b R a, then E R b; the characteristic function FH is defined by: FH : 2A → 2A s.t. for E ⊆ A,
FH(E) = {a ∈ A | E defends a}; E is admissible iff E is conflict-free and ∀a ∈ E , E defends a.

The main acceptability semantics1 of Dung AFs are defined as follows:

Definition 2.3 (Acceptability semantics). Let H = 〈A,R〉 be an AF and E ⊆ A. E is a complete
extension iff it is admissible and contains all the elements it defends (i.e., FH(E) = E); E is the grounded
extension iff it is the ⊆-minimal complete extension; E is a preferred extension iff it is a ⊆-maximal
complete extension; E is a stable extension iff it is conflict-free and attacks all the arguments outside it
(i.e., E+ = A \ E); E is a semi-stable extension iff it is a complete extension s.t. E ∪ E+ is ⊆-maximal.

Figure 1 depicts the relations between acceptability semantics (an arrow from a semantics s to a
semantics s’ means that each s-extension is a s’-extension).

Example 1. Consider the Dung AF H = 〈A,R〉 depicted in Fig. 2.
The admissible sets of H are: ∅, {a}, {b} and {b, d}. All of them are complete extensions except {b}.

The grounded extension of H is ∅. H has two preferred extensions: {a} and {b, d}. Only {b, d} is a stable
extension and hence is also semi-stable.

Fig. 1. Relations between AF semantics.

1All the presented semantics have been introduced in [53] except the semi-stable semantics which has been introduced in
[31].
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Fig. 2. A Dung AF H = 〈A,R〉.

2.2. Logic programs

LPs represent a main knowledge representation formalism that has been extensively studied in AI.
Indeed a large body of work has been developed around LPs and their semantics. In this paper we focus
on normal LPs. A (propositional) normal LP � is a set of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an with 0 � m � n

ai (0 � ai � n) are atoms. We read such a rule as follows: if a1 . . . am are true and none of the atoms
am+1 . . . an is true then deduce that a0 is true. For a rule r , we use the following notations: Head(r) = a0,
Body+(r) = {a1, . . . , am} and Body−(r) = {am+1, . . . , an}. More generally, we write: Head(�) =
{Head(r)|r ∈ �}, Body+(�) = ⋃

r∈� Body
+(r) and Body−(�) = ⋃

r∈� Body
−(r). The Herbrand

base of an LP � denoted HB� is the set of all atoms present in �. An LP � is said to be basic (or
positive) if Body−(�) = ∅.

We present here a general setting based on 3-valued interpretations and capturing a wide range of
semantics for LPs including the well-known bi-valued stable semantics defined in [58] by the so-called
Gelfond-Lifschitz reduct.

Definition 2.4 (3-valued interpretation). A 3-valued interpretation I is a pair I = 〈T , F 〉 where T , F are
disjoint subsets of HB. T (resp. F ) stands for true (resp. false) atoms. The truth value of the remaining
atoms is undefined. A 3-valued interpretation I can be equivalently defined as a function that associates
to each atom a truth value in {t, f, u} s.t.: a ∈ T iff I (a) = t, a ∈ F iff I (a) = f and a ∈ HB \ (T ∪ F)

iff I (a) = u. In the sequel, we use according to the context, one or the other of these two equivalent
definitions.

We consider the ordering � over the set {f, t, u} s.t. f � u � t and ∀v ∈ {f, t, u}, v � v. The exten-
sion Î of a 3-valued interpretation I is defined as follows: Î (a) = I (a) if a is an atom; Î (not a) = f
(resp. t, u) if I (a) = t (resp. f, u); Î (A1, . . . , An) = min(Î (A1), . . . , Î (An)) where each Ai is ei-
ther an atom or an expression not ai with ai an atom. Finally, for any rule of the form r : a0 ←
a1, . . . , am, not am+1, . . . , not an, we have: Î (r) = t if Î (a1, . . . , am, not am+1, . . . , not an) � Î (a0) and
Î (r) = f otherwise.

Definition 2.5 (Model). A 3-valued interpretation I is a model of an LP � iff ∀r ∈ �, Î (r) = t.

Given an LP �, the operator � takes a 3-valued interpretation I and gives its “immediate conse-
quences” as follows. For every atom a ∈ HB:

• �(I)(a) = t iff there is a rule a ← a1, . . . , am, not am+1, . . . , not an in � s.t. I (ai) = t for all i s.t.
1 � i � m and I (aj ) = f for all j s.t. m + 1 � j � n.
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• �(I)(a) = u iff �(I)(a) 
= t and there is a rule a ← a1, . . . , am, not am+1, . . . , not an in � s.t.
I (ai) 
= f for all i s.t. 1 � i � m and I (aj ) 
= t for all j s.t. m + 1 � j � n.

• �(I)(a) = f otherwise.

It has been shown (see [83]) that a positive LP � has a unique least Herbrand model. It is worth
mentioning that minimality here is w.r.t. the relation � over 3-valued interpretations defined as follows:
〈T , F 〉 � 〈T ′, F ′〉 iff T ⊆ T ′ and F ′ ⊆ F . Thus, intuitively a model I1 is smaller than a model I2 if
I1 contains “less truth than” I2. Moreover, this least model is exactly the least fixpoint of the operator
� defined above2 and can be obtained by successive application of the operator � starting from the
interpretation I0 = 〈∅,HB〉.
Definition 2.6 (Extended G/L reduct). Let � be an LP and I be a 3-valued interpretation. The extended
Gelfond-Lifschitz (G/L for short) reduct of � w.r.t. I is the positive LP denoted �I obtained by replacing
in every rule of �, every expression not a s.t. I (a) = f (resp. I (a) = t, I (a) = u) by the constant t
(resp. f, u). Let J be the unique least model of �I , we define the operator � by �(I) = J .

Like in the approach of [58,59] for bi-valued stable models, the 3-valued fixpoints correspond to the
3-valued stable models called also P-stable models. Various other semantics are defined on the basis of
P-stable semantics.3

Definition 2.7 (Different kinds of models). Let � be an LP and I = 〈T , F 〉 be a 3-valued interpretation
of �. Then:

• I is a P-stable model of � iff �(I) = I .
• I is a well-founded model of � iff I is a P-stable model having the ⊆-minimal set T among all

P-stable models of �.
• I is an M-stable model of � iff I is a P-stable model having the ⊆-maximal set T among all P-stable

models of �.
• I is a stable model of � iff I is a P-stable model s.t. T ∪ F = HB (no atom is undefined).
• I is an L-stable model of � iff I is a P-stable model having the ⊆-maximal set T ∪ F among all

P-stable models of �.

Example 2. Let us consider the LPs �1, �2, �3 and �4 (see Fig. 3):

Fig. 3. Examples of LPs.

2I is a fixed-point of � iff �(I) = I .
3Except for P-stable semantics which defines a P-stable model as a 3-valued interpretation I , in the original definitions of

the other semantics, the corresponding models are defined as the set T of true atoms of a particular P-stable model I = 〈T , F 〉.
For the sake of homogeneity we define in this paper all kinds of models as 3-valued interpretations.



F. Nouioua and S. Boutouhami / AFNs and their relationship with LPs 23

�1 has one P-stable model I = 〈T = {s}, F = {p, q}〉. Indeed the extended G/L reduct of �1 w.r.t.
I is �I

1 = {p ← q; q ← p; s ← t}. Starting from I0 = 〈∅, {p, q, s}〉, we have �(I0) = I , �(I) = I .
Thus, �(I) = I which means that I is a P-stable model of �1. It is easy to check that for all 3-valued
interpretation I ′ 
= I of �1, �(I ′) 
= I ′, i.e., I is the unique P-stable model of �1 which is also its
unique well-founded, M-stable and L-stable model. Since HB�1 = {p, q, s} = T ∪ F , I is the unique
stable model of �1.

Following the same method, one can check that �2 has one P-stable model I = 〈T = {s}, F = ∅〉
which is also its unique well-founded, M-stable and L-stable model. Since HB�2 = {p, q, s} 
= T ∪ F ,
I is not a stable model of �2.

�3 has three P-stable models: I1 = 〈T1 = ∅, F1 = ∅〉, I2 = 〈T2 = {q}, F2 = {p}〉 and I3 = 〈T3 =
{p, y}, F3 = {q, s, x}〉. The well-founded model of �3 is I1. I2 and I3 are the two M-stable models of �3

and only I3 is an L-stable model of �3. Since HB�3 = {p, q, s, y, x, v, w} 
= Ti ∪ Fi (for i ∈ {1, 2, 3}),
�3 has no stable model.

�4 has one P-stable model I = 〈T = ∅, F = ∅〉 which is also its unique well-founded, M-stable and
L-stable model. Since HB�4 = {p, q} 
= T ∪ F , �4 has no stable model.

3. Argumentation frameworks with necessities

This section introduces AFNs, a bipolar generalization of Dung AFs where the support relation has
the meaning of necessity. We show how to extend the basic concepts used in Dung AFs to accommo-
date the new support relation. We show then how to use the new basic concepts to generalize the main
acceptability semantics to AFNs. The proposed approach has the advantage to keep the same proper-
ties and relationships for the acceptability semantics as in the classical Dung approach. Moreover, the
new semantics represent proper generalizations of Dung semantics, i.e., in an AFN where the necessity
relation is empty the new semantics collapse to the classical ones.

3.1. Basic concepts

An AFN extends classical Dung AF with a necessity relation N that relates sets of arguments to single
arguments.

Definition 3.1 (Argumentation framework with necessities). An AFN is a tuple G = 〈A,R,N 〉 where
A is a set of arguments, R ⊆ A×A is a binary attack relation and N ⊆ 2A ×A is a necessity relation.

The attack relation R is interpreted as usual: a R b means that the acceptance of b requires the non
acceptance of a. The new relation N is interpreted analogously but in a positive manner as follows:
E N b means that the acceptance of b requires the acceptance of at least an argument of E. When all
the necessary sets are singletons, N becomes a binary relation like R. The general case captures the fact
that an argument may satisfy a requirement by different possible combinations of arguments, instead of
one possible way .4

4Notice that a similar generalization of the attack relation is also possible by considering relations of the form E R a where
the argument a is attacked by the set of arguments E but not by a subset E′ of E, unless there is another explicit attack relation:
E′ R a. There is no substantial difficulty to generalize the framework to this extended setting.
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In presence of the necessity relation, conflict-freeness is no more the minimal requirement for any
extension. It has to be reinforced by two additional requirements w.r.t. necessity relation. The first re-
quirement is closure under N−1. Intuitively, a set of arguments is closed under N−1 if it satisfies the
necessities of each of its arguments.

Definition 3.2 (closure under N−1). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. E is closed under N−1

iff for each argument a ∈ E , if E N a for some E ⊆ A, then E ∩ E 
= ∅.

A second requirement that must be satisfied in any extension is the absence of self-supported cycles,
i.e., cycles of necessity links .5

Definition 3.3 (N-cycle freeness). Let G = 〈A,R,N 〉 be an AFN, E ⊆ A and a ∈ E . We say that a is
N-Cycle-Free in E iff for all E ⊆ A s.t. E N a, we have either E ∩ E = ∅ or there is b ∈ E ∩ E s.t. b is
N-Cycle-Free in E . E is N-Cycle-Free iff every a ∈ E is N-Cycle-Free in E .

The combination of the two previous requirements gives rise to the notion of coherence:

Definition 3.4 (Coherence). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. E is coherent iff it is closed
under N−1 and N-Cycle-Free.

Intuitively, in a coherent set E , the necessities of each argument are satisfied and no risk of a deadlock
due to necessity cycles is present.

The notion of coherence may be equivalently characterized by using the notion of a powerful argu-
ment. Intuitively, an argument a is powerful in a set of arguments E if it is always possible to find a
sequence of distinct arguments ending by a s.t. the necessities of every argument of the sequence are
satisfied by the arguments that precede it.

Definition 3.5 (Powerful argument). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. An argument a ∈ A
is powerful in E iff a ∈ E and there is a sequence a0, . . . , ak of elements of E s.t. ak = a; there is no
E ⊆ A s.t. E N a0 and for 1 � i � k: for all E ⊆ A, if E N ai , then E ∩ {a0, . . . , ai−1} 
= ∅.

Coherent sets are characterized in terms of powerful arguments as follows:

Proposition 3.6. Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. E is coherent iff each a ∈ E is powerful
in E .

The following proposition gives two equivalent characterizations of non powerful arguments w.r.t. to
a set of arguments:

Proposition 3.7. Let G = 〈A,R,N 〉 be an AFN, E ⊆ A and a ∈ E .
a is not powerful in E iff there is no coherent subset C of E s.t. a ∈ C
iff ∃E ⊆ A s.t. E N a and ∀E ⊆ A s.t. E N a, ∀b ∈ E ∩ E , b is not powerful in E .

Putting together conflict-freeness and coherence results in the notion of strong coherence which rep-
resents the new minimal requirement that any extension has to satisfy:

5Such cycles exist in LPs but not in Dung AFs because they do not contain any support relation.



F. Nouioua and S. Boutouhami / AFNs and their relationship with LPs 25

Fig. 4. Four AFNs: (a) G1, (b) G2, (c) G3, (d) G4.

Definition 3.8 (Strong coherence). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. E is strongly coherent
iff it is coherent and conflict-free.

Example 3. Let us consider the four AFNs Gi = 〈Ai ,Ri ,Ni〉 (1 � i � 4) depicted in Fig. 4 where
continuous (resp. dashed) arrows represent attacks (resp. necessities).

For G1, the only coherent sets are ∅ and {c}. In particular the set {a, b} is closed under N−1 but not
N-Cycle-Free, hence {a, b} is not coherent. The coherent sets of G2 are those sets of arguments that
contain b or c whenever they contain a. The coherent sets of G3 are those sets of arguments that contain
b whenever they contain c and contain g whenever they contain f . The coherent sets of G4 are those sets
of arguments that contain b or a whenever they contain c and contain c or d whenever they contain b

except the set {b, c}. Indeed, the set {b, c} is closed under N−1 but not N-Cycle-Free, whereas the sets
{b}, {c}, {a, b}, {c, d} are N-Cycle-Free but not closed under N−1 and hence they are not coherent. All
the other sets of arguments not including {b, c} are coherent.

For each AFN Gi , the strongly coherent sets are limited to coherent sets that are also conflict-free.

The second ingredient in the generalization of acceptability semantics to AFNs is to redefine the notion
of defense.

Definition 3.9 (Defense in AFNs). Let G = 〈A,R,N 〉 be an AFN, E ⊆ A and a ∈ A. We say that E
defends a iff E ∪ {a} is coherent and for all b ∈ A, if b R a then for every coherent subset C ⊆ A s.t.
b ∈ C, E R C.

It is worth noticing that the obligation of counter-attacking is limited to those arguments that belong
to at least one coherent set of arguments. This means that the attacks coming from incoherent sets of
arguments are not effective and need not be counter-attacked. Based on the new definition of defense,
the characteristic function of an AFN is defined exactly as in Dung AFs:

Definition 3.10 (Characteristic function of AFNs). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A. The
characteristic function of G is defined by FG : 2A → 2A with FG(E) = {a | E defends a}.

Finally, the last ingredient we need in generalizing the acceptability semantics to AFNs is the notion
of arguments deactivated by a given set of arguments, which replaces the set of arguments attacked by a
set of arguments.

Definition 3.11 (Deactivated arguments). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A be a
strongly coherent subset of arguments. The set of arguments deactivated by E is Ed = {a | if C ⊆
A is a coherent subset s.t. a ∈ C then E R C}.
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The set Ed includes, in addition to arguments deactivated because of a direct attack from E against
them, the arguments that are not powerful in A6 as well as the arguments that E “indirectly” attacks by
making impossible to accept arguments from at least one set of arguments that is necessary for them.

3.2. Acceptability semantics for AFNs

Now we are ready to define the different acceptability semantics of AFNs.

Definition 3.12 (Acceptability semantics for AFNs). Let G = 〈A,R,N 〉 be an AFN and E ⊆ A.

• E is an admissible set iff it is strongly coherent and ∀a ∈ E , E defends a.
• E is a complete extension iff it is admissible and ∀a ∈ A, if E defends a then a ∈ E .
• E is the grounded extension iff E is the least fixpoint of FG . It is obtained by the repetitive appli-

cation of FG starting from ∅ until a fixpoint is reached.
• E is a preferred extension iff E is a maximal (w.r.t. set inclusion) admissible set.
• E is a stable extension of G iff it is a strongly coherent subset of A s.t. for all a ∈ A \ E , a is

deactivated by E .
• E is a semi-stable extension iff it is a complete extension and E∪Ed is maximal (w.r.t set inclusion).

Now, the following Theorem shows that the main properties and relationships that hold for Dung
acceptability semantics continue to hold for AFNs, by simply using strong coherence instead of conflict-
freeness and deactivated arguments instead of attacked arguments.

Theorem 3.13. Let G = 〈A,R,N 〉 be an AFN and E ⊆ A be a strongly coherent set.

(1) E is an admissible set iff E ⊆ FG(E) (characterization of admissible sets using the characteristic
function FG).

(2) E is a complete extension iff E = FG(E) (complete extensions are exactly the fixpoints of the
characteristic function FG).

(3) E is the grounded extension of G iff it is the least (w.r.t. set inclusion) complete extension of G.
(4) There is at least one preferred extension for G; every preferred extension is a complete extension

but not vice versa; E is a preferred extension iff it is a maximal (w.r.t. set inclusion) complete
extension.

(5) If E is a stable extension then E is a semi-stable extension but not vice versa; if E is a semi-stable
extension, then E is a preferred extension but not vice versa.

(6) If E is a stable extension, then E is a preferred extension but not vice versa; there may be zero,
one or several stable extensions for G.

Example 3 (Cont). We continue with the AFNs G1, . . . ,G4.
G1 has two admissible sets: ∅ and {c}. Indeed, {c} defends itself since the only attacker of c is b

and there is no coherent set containing b. We have: FG1(∅) = {c}, FG1({c}) = {c}. Thus {c} is the
unique complete extension of G1 which is also its unique grounded, preferred and semi-stable extension.
Moreover, {c} is also the unique stable extension of G1 since the set of arguments deactivated by {c} is
{c}d = {a, b} = A \ {c} (Indeed, a and b are not powerful in A).

6Every argument which is not powerful in A does not belong to any coherent set. This means that such arguments always
verify the condition of Definition 3.11 and hence, are deactivated by any set of arguments E .
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Fig. 5. Relations between AFN semantics.

G2 has two admissible sets: ∅ and {d}. {d} defends itself since d has no attackers. No other strongly
coherent set of G2 is admissible. For instance, {b, d} is not admissible because a attacks b and {a, b} is
a coherent set containing a but not attacked by {b, d}. We have: FG2(∅) = {d}, FG2({d}) = {d}. Thus
{d} is the unique complete extension of G2 which is also its unique grounded, preferred and semi-stable
extension. However {d} is not a stable extension since {d}d = {c} 
= A \ {d}.

The admissible sets of G3 are: ∅, {a}, {b} and {a, d}. Let us take for instance {a, d}: a is attacked by b

and a attacks b (hence a attacks any coherent set containing b) and d is attacked by c but any coherent
set containing c contains b and hence is attacked by a. We have: FG3(∅) = ∅, FG3({a}) = {a, d},
FG3({b}) = {b}, FG3({a, d}) = {a, d}. It follows that G3 has three complete extensions: ∅, {b} and
{a, d}. The grounded extension of G3 is ∅. G3 has two preferred extensions that are {b} and {a, d}. G3

has no stable extension since {b}d = {a} 
= A \ {b} and {a, d}d = {b, c, e} 
= A \ {a, d}. We have:
{b}d ∪ {b} = {a, b} and {a, d}d ∪ {a, d} = {a, b, c, d, e}. Since {b}d ∪ {b} ⊂ {a, d}d ∪ {a, d}, G3 admits
{a, d} as a unique semi-stable extension.

The only admissible set of G4 is ∅. Namely, the strongly coherent set {a} is not admissible because c

attacks a and {a, c} is a coherent set containing c but not attacked by {a}. A similar reasoning is valid for
the non admissibility of {d}. We have: FG4(∅) = ∅. Thus, ∅ is the only complete extension of G4 which
is also its unique grounded, preferred and semi-stable extension. G4 has no stable extension.

The relations between AFN acceptability semantics are depicted in Fig. 5. We can notice that these
relations are the same as those connecting Dung AF acceptability semantics except that AFN semantics
are based on strong coherence instead of conflict-freeness as a minimal requirement for all acceptability
semantics.

3.3. Labelling characterization of AFNs

The labelling approach has been proposed as an elegant characterization of acceptability semantics
of Dung AFs (see e.g. [32,67]). In this approach, each argument receives a label indicating its status:
accepted, rejected or undefined. Extensions under a given semantics are then characterized by labellings
fulfilling particular conditions that depend on the used semantics. In this section, we show how to take
into account the necessity relation in order to adapt this approach to the case of AFNs. Let us start by
recalling the notion of labelling:
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Definition 3.14 (Labelling). Let G = 〈A,R,N 〉 be an AFN. A labelling is a function L : A −→
{in,out,undec}. We put in(L) = {a ∈ A|L(a) = in}, out(L) = {a ∈ A|L(a) = out} and
undec(L) = {a ∈ A|L(a) = undec} and we write a labelling L as a triplet (in(L), out(L), undec(L)).

In a given labelling, the label attributed to an argument may or may not be justified. For example, if
all the attackers of an argument a are labelled out and each set E necessary for a contains at least an
argument labelled in, it would not be justified that a be labelled out. This leads to the notion of legal
labelling:

Definition 3.15 (Legal labelling). Let G = 〈A,R,N 〉 be an AFN, L be a labelling and a be an argument.

• a is legally in iff a is labelled in and the two following conditions hold:

(1) ∀b ∈ A, if bRa then b ∈ out(L) (all attackers of a are labelled out) and
(2) ∀E ⊆ A, if ENa then E ∩ in(L) 
= ∅ (at least one argument from each necessary set for a is

labelled in).

• a is legally out iff a is labelled out and at least one of the two following conditions holds:

(1) either ∃b ∈ A s.t. bRa and b ∈ in(L) (at least one attacker of a is labelled in) or
(2) ∃E ⊆ A, s.t. ENa and E ⊆ out(L) (all the arguments of a necessary set for a are labelled

out).

• a is legally undec iff a is labelled undec and the following conditions hold:

(1) ∀b ∈ A, if bRa then b /∈ in(L) (no attacker of a is labelled in) and
(2) ∀E ⊆ A, if ENa then E � out(L) (not all the arguments of any necessary set for a are labelled

out) and
(3) either ∃b ∈ A s.t. bRa and b /∈ out(L) or ∃E ⊆ A s.t. ENa and E ∩ in(L) = ∅ (either at least

one attacker of a is not labelled out or at least one necessary set for a does not contain any
argument that is labelled in).

Notice that for N = ∅, we find exactly the original definitions of legal labels given in [67]. In addition
to legality of labels, the presence of necessity relation imposes two further constraints. Any argument
which is not powerful in A does not belong to any extension and must be labelled out and since each
extension E under any semantics must be coherent, the set of in arguments of any labelling character-
izing any acceptability semantics for an AFN must be coherent. Labellings that satisfy these constraints
are called safe labellings.

Definition 3.16 (Safe labelling). We say that a labelling L is safe iff the set in(L) is coherent and for
each a ∈ A: if a is not powerful in A then a ∈ out(L).

Once the notion of labelling is extended to the necessity relation, the different kinds of labellings are
defined as usual except that they must always be safe.

Definition 3.17 (Different kinds of labellings). A labelling L is:

• admissible iff L is safe and without arguments that are illegally in and without arguments that are
illegally out;

• complete iff L is admissible and without arguments that are illegally undec;
• grounded iff L is complete and in(L) is ⊆-minimal;
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• preferred iff L is complete and in(L) is ⊆-maximal;
• stable iff L is complete and undec(L) = ∅ and
• semi-stable iff L is complete and undec(L) is ⊆-minimal.

Notice that since admissible labellings must be safe, all other kinds of labellings (complete, preferred,
grounded, stable and semi-stable) must be safe too because all of them are admissible. Besides, admis-
sible labellings only require that every argument which is labelled in or out must be legal but tolerate
the illegality of arguments that are labelled undec. However, complete labellings require the legality
of all arguments: Every argument which is labeled in (resp. out, undec) must be legally in (resp. out,
undec). Hence, Since all other kinds of labellings (grounded, preferred, stable and semi-stable) are also
complete, they require the legality of all their arguments.

For Dung AFs (i.e. an AFN where N = ∅), any set of arguments is safe. In this case, we obtain
exactly the classical definitions for legally in, out and undec arguments and for the different kinds of
labellings. The relationship between labellings and acceptability semantics for AFNs is given as follows.

Theorem 3.18. Let G = 〈A,R,N 〉 be an AFN, E ⊆ A and L be a labelling of G.

• If E is an admissible set of G then the labelling L = (E, Ed,A\ (E ∪Ed)) is an admissible labelling
of G. Inversely, if L is an admissible labelling of G then E = in(L) is an admissible set of G and
out(L) ⊆ Ed .

• If E is a complete (resp. the grounded, a preferred, a stable, a semi-stable) extension of G then the
labelling L = (E, Ed,A \ (E ∪ Ed)) is a complete (resp. the grounded, a preferred, a stable, a
semi-stable extension) labelling of G. Inversely, if L is a complete (resp. the grounded, a preferred,
a stable, a semi-stable extension) labelling of G then E = in(L) is a complete (resp. the grounded,
a preferred, a stable, a semi-stable) extension of G and out(L) = Ed .

Example 3 (Cont). Let us consider again our four AFNs: G1 . . .G4.
Consider the labellings: L1 = ({c}, {b}, {a}), L2 = (∅, ∅, {a, b, c}), L3 = (∅, {a, b}, {c}), and L4 =

({c}, {a, b}, ∅) for G1. In L1 c is legally in because L1(b) = out but b is illegally out. Moreover, L1 is
not safe because a is not powerful in A but a /∈ out(L1). Thus, L1 is not admissible. L2 is not safe for
the same reason and thus, is not admissible. In L3, a and b are legally out but c is illegally undec. L3

is admissible but not complete. In L4 c is legally in and a and b are legally out. Moreover, L4 is safe
and thus it is admissible and complete (no argument is illegally undec). In summary, L3 and L4 are the
admissible labellings of G1 and L4 is its unique complete labelling which is also its unique grounded
and preferred labelling. Moreover, since undec(L4) = ∅, L4 is also the unique stable and semi-stable
labelling of G1.
L1 = (∅, ∅, {a, b, c, d}) and L2 = ({d}, {c}, {a, b}) are the admissible labellings of G2. L2 is the only

complete labelling of G2 (d is illegally undec in L1) which is also its unique grounded, preferred and
semi-stable labelling. However, since undec(L2) 
= ∅, L4 is not stable.
L1 = (∅, ∅, {a, b, c, d, e, f, g}), L2 = ({a}, {b, c}, {d, e, f, g}), L3 = ({b}, {a}, {c, d, e, f, g}) and

L4 = ({a, d}, {b, c, e}, {f, g}) are the admissible labellings of G3. Among them, only L2 is not complete
(d is illegally undec in L2). The grounded labelling is L1, the preferred labellings are L3 and L4. No
complete labelling has an empty set of undec arguments, thus no labelling is stable. The only semi-stable
stable labelling (which minimizes undec) is L4.
G4 admits L = (∅, ∅, {a, b, c, d}) as the unique admissible, complete, grounded, preferred and semi-

stable labelling. G4 has no stable labelling.
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For each of the previous AFNs, L is an s-labelling (s ∈ {admissible, complete, grounded, preferred,

stable, semi-stable}) if and only if in(L) is an s-extension.

4. AFNs and Dung AFs

A Dung AF is simply a particular case of AFN where the necessity relation is empty.

Theorem 4.1. Let H = 〈A,R〉 be a Dung AF. We define the AFN GH by GH = 〈A,R, ∅〉. Let E ⊆ A.
E is an admissible set (resp. complete, grounded, preferred, stable, semi-stable extension) of H iff E is
an admissible set (resp. complete, grounded preferred, stable, semi-stable extension) of GH.

Let us now consider the opposite issue, i.e., representing an AFN as an AF.
Given an AFN G = 〈A,R,N 〉, a first question we are interested in is to know if it is always possible

to find a Dung AF with exactly the same arguments and which contains all the information encoded
in G. It has been shown in [71] that the answer is positive when the necessity relation is binary (for
AFNs where if ENa then E is a singleton). The idea is to add the implicit attacks that result from the
interaction between attacks and necessities as follows: if a attacks b and b is necessary for c then a

attacks indirectly c and if a requires b and b attacks c then a attacks indirectly c.
We show here that the answer is negative in the general case and one may need a greater number of

arguments to encode all the information of an AFN in an AF. To show this, let us take the AFN G2 of
Example 3 and let us suppose that F = 〈A,R′〉 is an AF encoding the same information as G2. It is
clear that (a, b), (d, c) are in R′. The AF 〈A, {(a, b), (d, c)}〉 does not have the same extensions for all
the considered semantics. Apart from these two attacks, any other possible attack from an argument x

to an argument y (x, y ∈ A) is not present directly or indirectly in G2. In particular we cannot say that
d attacks a because a may be obtained either by having c or b and d attacks only c. The solution is to
represent separately the two different ways to obtain a (by providing b and by providing c) as two meta
arguments, say A1 and A2. Only the second meta argument, involving a and c, is attacked by d. More
generally, the notion of a meta-argument is defined as follows:

Definition 4.2 (Meta-argument). Let G = 〈A,R,N 〉 be an AFN and a ∈ A. A meta-argument associ-
ated to a is a minimal (w.r.t. set inclusion) coherent set C ⊆ A containing a (no subset of C containing
a is coherent).

The meta Dung AF representing an AFN is then defined as follows:

Definition 4.3 (Meta AF representing an AFN). Let G = 〈A,R,N 〉 be an AFN. The Dung AF repre-
senting G is HG = 〈A′,R′〉 where: A′ is the set of all meta-arguments associated to all arguments in A
and for C1, C2 ∈ A′, C1 R′ C2 iff there is a ∈ C1 and there is b ∈ C2 s.t. aRb.

It is worth noticing that by construction of meta-arguments, any argument which is not powerful in A
is ruled-out.

Proposition 4.4. Let G = 〈A,R,N 〉 be an AFN, HG = 〈A′,R′〉 be its corresponding meta AF and
a ∈ A. If a is not powerful in A, then �C ∈ A′ s.t. a ∈ C.



F. Nouioua and S. Boutouhami / AFNs and their relationship with LPs 31

Fig. 6. The Dung AFs associated to the four AFNs G1, G2, G3 and G4.

Example 3 (Cont). Each AFN Gi = 〈Ai ,Ri ,Ni〉 is translated into HGi
= 〈A′

i ,R′
i〉 for i ∈ {1, 2, 3, 4}.

For HG1 , the arguments a and b are not powerful in A and hence they do not give rise to any meta-
argument. The argument c gives rise to the unique meta-argument c′ = {c}. Accordingly, A′

1 = {c′} and
R′

1 = ∅ (see Fig. 6-(a)).
For HG2 , the argument a gives rise to two meta-arguments: a′

1 = {a, b} and a′
2 = {a, c}. b (resp. c, d)

gives rise to the unique meta-argument b′ = {b} (resp. c′ = {c}, d ′ = {d}). Thus, A′
2 = {a′

1, a
′
2, b

′, c′, d ′}.
R′

2 is depicted in Fig. 6-(b).
For HG3 , the argument c (resp. f ) gives rise to the meta-arguments: c′ = {b, c} (resp. f ′ = {f, g}).

The argument a (resp. b, d, e, g) gives rise to the unique meta-argument a′ = {a} (resp. b′ = {b},
d ′ = {d}, e′ = {e}, g′ = {g}). Thus A′

3 = {a′, b′, c′, d ′, e′, f ′, g′}. R′
3 is depicted in Fig. 6-(c).

For HG4 , the argument b (resp. c) gives rise to the meta-argument: b′ = {b, d} (resp. c′ = {a, c}).
The argument a (resp. d) gives rise to the meta-argument a′ = {a} (resp. d ′ = {d}). Note that {b, c} is
not a meta-argument since it is not coherent (it is not N-Cycle-Free). Thus, A′

4 = {a′, b′, c′, d ′}. R′
4 is

depicted in Fig. 6-(d).

The following result shows that there is a full correspondence between the extensions of an AFN G
and those of the corresponding meta Dung AF HG under all the considered semantics.

Theorem 4.5. Let G = 〈A,R,N 〉 be an AFN, HG = 〈A′,R′〉 be its corresponding Dung AF.

• If E ⊆ A is an admissible set (resp. a complete, the grounded, a preferred, a stable, a semi-stable
extension) of G then �E = {Ca | a ∈ E, Ca is a meta-argument associated to a and Ca ⊆ E} is an
admissible set (resp. a complete, the grounded, a preferred, a stable, a semi-stable extension) of
HG .
Inversely, if � is an admissible set (resp. a complete, the grounded, a preferred, a stable, a semi-
stable extension) of HG , then E� = ⋃

C∈� C is an admissible set (resp. a complete, the grounded, a
preferred, a stable, a semi-stable extension) of G.

Example 3 (Cont). It is easy to check that for any of the considered acceptability semantics, the exten-
sions of each Gi (1 � Gi � 4) correspond exactly (in the sense of theorem 4.5) to the extensions of HGi

under the same semantics.

It is worth noticing that by using the translation described above there are AFNs whose corresponding
AFs contain a number of arguments that is exponential with respect to the number of arguments in
the initial AFN. To illustrate this, let us take the example of the AFN G = 〈A,R,N 〉 where A =
{a} ∪ A1 ∪ . . .An, each Ai contains p arguments (p > 1) and AiNa (for 1 � i � n). Let H be the
corresponding AF. The number of arguments in G is 1 + p × n. Each set {a, b1, . . . bn} s.t. bi ∈ Ai for
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1 � i � n is a minimal coherent set containing a, i.e., is a meta argument in H. The number of meta
arguments corresponding to a is pn and each argument x of A \ {a} gives rise to one meta argument
({x}). The total number of the meta arguments is then pn + p × n.

This means that even if the information present in an AFN may always be encoded by a Dung AF, the
use of an AFN in general, may allow a representation that is significantly more concise than that obtained
by moving to the corresponding AF using the translation described in this section. The question of
whether there exists alternative translations from AFNs to AFs that provide more concise representations
reminds open and will be addressed in future work.

5. AFNs and logic programs

Most of the works done in the domain of connecting LPs to abstract argumentation use Dung AFs as
an abstract argumentation formalism (see [30,33,53,55,56]).

This section addresses the issue of connecting AFNs and LPs under 3-valued semantics. We consider
both the representation of an LP as an AFN and vice versa. In both cases, we establish the correspon-
dences between acceptability semantics of AFNs and different kinds of partial stable models of LPs.

5.1. From a logic program to an AFN

We present in this section a straightforward representation of any LP as an AFN where each rule of
the LP is represented as an argument in the AFN. Accordingly, the proposed instantiation is no more
based on a complex process that constructs arguments from the knowledge base by combining sets of
rules (see e.g. [7,30,33]). This shows in particular the usefulness of AFN as an abstract reasoning tool to
be used for knowledge bases expressed by LPs.

Before discussing the representation of LPs as AFNs, let us first consider some technical requirements
that will make easier the subsequent development. We present a kind of pre-processing that is performed
on any LP � to produce another LP �′ which has exactly the same models as � under any semantics
but is more suitable to be represented as an AFN. This pre-processing is based on the remark that: (1) if
a rule in an LP has in its positive body an atom that never appears as a head of any rule, then this rule
may never be applied and may be removed from the LP; (2) if a rule in an LP has in its negative body
an atom that never appear as a head of any rule, then this rule may be simplified by removing this part
of its negative body. The pre-processing step consists in repeatedly applying (1) and (2) until reaching
a fixpoint, i.e., until in the resulting LP �′, any atom in the body of any rule appears as a head in at
least one rule, i.e., the Herbrand base of �′ is HB�′ = Head(�′). Notice that because each step of the
pre-processing process can only remove rules and/or negative atoms, it is sure to have a fixpoint.

Theorem 5.1. Let � be an LP and �′ be the LP which is the fixpoint obtained from � by repeatedly
removing every rule r s.t. Body+(r) � Head(�) and every expression not a s.t. a /∈ Head(�). Then,
a 3-valued interpretation I = 〈T , F 〉 is a P-stable model of � if and only if I ′ = 〈T , F ′〉 is a P-stable
model of �′ where F ′ = F ∩ HB�′ .

Î As a result of the previous theorem, the same result continues to hold for all the other models that
we consider in this paper.
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Corollary 5.2. Let � be an LP and �′ be the LP obtained from � by the method described in The-
orem 5.1. Then, a 3-valued interpretation I is a well-founded (resp. M-stable, stable, L-stable) model
of � if and only if I ′ = 〈T , F ′〉 is a well-founded (resp. M-stable, stable, L-stable) model of �′ where
F ′ = F ∩ HB�′ .

Now, without loss of generality, we consider in the rest of the paper only LPs that have already
been pre-processed. That is, any LP � used in what follows is s.t.:

⋃
r∈� Body

+(r) ⊆ Head(�) and⋃
r∈� Body

−(r) ⊆ Head(�). Let us call this class of LPs AFN-logic programs (AFN-LPs). This is the
class of LPs that are directly translatable into AFNs by our proposed approach. Notice that every LP can
be transformed into an AFN-Program preserving its semantics (see Theorem 5.1).

Two kinds of interactions are possible between the rules of an LP. To see that, let � be an LP and r

be a rule of �, then r is blocked if one of the atoms of its negative body is inferred. So, r is attacked
by any rule whose head is present in Body−(r). On the other hand, if a is an atom of Body+(r), then r

cannot be applied unless at least one rule of � whose head is a is applied. This corresponds exactly to
the meaning of the necessity relation in an AFN. Accordingly, the translation of an LP into an AFN does
not need any complex construction of arguments since the rules themselves can serve as arguments.7

Definition 5.3 (The AFN representing an LP). Let � = {r1, . . . , rn} be an LP. The AFN representing �

is defined by G� = 〈�,R�,N�〉 where:

• if E ⊆ � is a subset of rules having the same head (denoted Head(E)) and r ∈ � is a rule s.t.
Head(E) ∈ Body+(r), then we put E N� r;

• if r, r ′ ∈ � are two rules s.t. Head(r) ∈ Body−(r ′) then we put r R� r ′.

Before giving the results that relate the models of an LP and the extensions of the corresponding AFN,
we need two further definitions allowing one to extract a labelling from a 3-valued interpretation and
vice versa.

Definition 5.4 (From a labelling of G� to a 3-valued interpretation of �). Let � = {r1, . . . , rn} be an LP
and G� = 〈�,R�,N�〉 its corresponding AFN. Let L = 〈IN, OUT, UND〉 be a labelling of G�. The
3-valued interpretation associated to L is denoted Int(L) and defined as follows. For every a ∈ HB�:

• if there is a rule r ∈ � s.t. a = Head(r) and L(r) = in then a is interpreted as true, i.e.,
Int(L)(a) = t.

• if a is not interpreted as true and there is a rule r ∈ � s.t. a = Head(r) and L(r) = undec then a

is interpreted as undefined i.e., Int(L)(a) = u.
• Otherwise, i.e., if for every rule r ∈ � s.t. a = Head(r) we have L(r) = out then a is interpreted

as false, i.e., Int(L)(a) = f.

Definition 5.5 (From a 3-valued interpretation of � to a labelling of G�). Let � = {r1, . . . , rn} be an
LP and G� = 〈�,R�,N�〉 its corresponding AFN. Let I = 〈T , F 〉 be a 3-valued interpretation of �.
The labelling associated to I is denoted Label(I ) and defined as follows. For every r ∈ �:

• if Body+(r) ⊆ T and Body−(r) ⊆ F then r is labelled in in Label(I ).
• if Body+(r) ∩ F 
= ∅ or Body−(r) ∩ T 
= ∅ then r is labelled out in Label(I ).
• Otherwise, r is labelled undec in Label(I ).

7This explains why we focused on this particular setting where the roles of attacks and supports are not symmetric.
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Now we are ready to establish the relationships between 3-valued semantics of an LP and acceptability
semantics of the corresponding AFN.

Theorem 5.6. Let � be an LP and G� be the AFN representing �.

• If L is a complete (resp. the grounded, a preferred, a stable) labelling of G� then Int(L) is a
P-stable (resp. the well-founded, an M-stable, a stable) model of �. Inversely, if I is a P-stable
(resp. the well-founded, an M-stable, a stable) model of � then Label(I ) is a complete (resp. the
grounded, a preferred, a stable) labelling of G�.

• It is possible to find a semi-stable labelling L of G� s.t. Int(L) is not an L-stable model of �.
Inversely, it is possible to find an L-stable model I of � s.t. Label(I ) is not a semi-stable labelling
of G�.

In summary, except for the case of L-stable models and semi-stable semantics, there is a bijection
between semantics of an LP and that of the corresponding AFN. It is worth mentioning that this same
exception for semi-stable semantics has been encountered in [30] when translating LPs into Dung AFs.
Similarly to [30], we can show that L-stable models of an LP are obtained from the complete labellings,
not by minimizing first the set of undefined arguments and then take the conclusions of arguments
labelled in, but by directly minimizing the set of conclusions of the undefined arguments.

Theorem 5.7. Let � be an LP and G� be the AFN representing �.
If L = (IN, OUT, UND) is a complete labelling of G� that minimizes (w.r.t. set inclusion) the set

{Head(r)|r ∈ UND} then Int(L) is an L-stable model of �. Inversely, if I = 〈T , F 〉 is an L-stable
model of � then Label(I ) is a complete labelling of G� that minimizes (w.r.t. set inclusion) the set
{Head(r)|r ∈ UND}.
Example 2 (Cont). Consider again the LPs �1, �2, �3 and �4 given in Example 2. Using Definition 5.3,
it is easy to check that the AFN G�1 (resp. G�2 , G�3 , G�4) representing the LP �1 (resp. �2, �3, �4)
corresponds exactly to the AFN G1 (resp. G2, G3, G4) depicted in Fig. 4-(a) (resp. Fig. 4-(b), Fig. 4-(c),
Fig. 4-(d)).

Recall that �1 has one P-stable model I = 〈{s}, {p, q}〉 which is also its unique well-founded, M-
stable, stable and L-stable model and G1 has one complete labelling L = ({c}, {a, b}, ∅) which is also
its unique grounded, preferred, stable and semi-stable labelling. We can check that I = Int(L) and
L = Label(I ).

�2 has one P-stable model I = 〈{s}, ∅〉 which is also its unique well-founded, M-stable and L-
stable model but �2 has no stable model. G2 has one complete labelling L = ({d}, {c}, {a, b}) which
is also its unique grounded, preferred and semi-stable labelling but G2 has no stable labelling. We have:
I = Int(L) and L = Label(I ).

�3 has three P-stable models I1 = 〈∅, ∅〉, I2 = 〈{q}, {p}〉, I3 = 〈{p, t}, {q, s, u}〉. Its well-founded
model is I1, its preferred models are I2 and I3, its unique L-stable model is I3 and it has no stable model.
G3 has three complete labellings: L1 = (∅, ∅, {a, b, c, d, e, f, g}), L2 = ({b}, {a}, {c, d, e, f, g}) and
L3 = ({a, d}, {b, c, e}, {f, g}). Its grounded labelling is L1, its preferred labellings are L2 and L3, its
unique semi-stable labelling is L3 and it has no stable labelling. We can check that Ii = Int(Li) for
i ∈ {1, 2, 3}.

�4 has one P-stable model I = 〈∅, ∅〉 which is also its unique well-founded, M-stable and L-stable
model but �4 has no stable model. G4 has one complete labelling L = (∅, ∅, {a, b, c, d}) which is
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also its unique grounded, preferred and semi-stable labelling but G4 has no stable labelling. We have:
I = Int(L) and L = Label(I ).

Notice that as stated in Theorem 5.6, in general, there is no full correspondence between L-stable
models of an LP and semi- stable labellings of its representing AFN (see counter-examples in the proof
of Theorem 5.6 given in the Appendix).

5.2. From an AFN to a logic program

Let us consider now the opposite issue, i.e, the representation of an AFN as an LP. The idea is that
each argument a gives rise in the LP to an atom and a rule (ra) that expresses its acceptability conditions.
Intuitively, whenever an argument b attacks a, the expression not b appears in the body of ra . Similarly,
whenever a set of arguments E is necessary for a, we introduce a new atom e which appears in the
positive body of ra and a rule for every argument x ∈ E telling that e is obtained from x. This translation
is formally given as follows:

Definition 5.8 (The LP representing an AFN). Let G = 〈A,R,N 〉 be an AFN. The LP �G representing
G is constructed as follows:

• Each argument of A is considered as an atom in �G . Moreover, let E1, . . . , Ep be all the subsets of
A s.t. for every Ei there is some argument a ∈ A with Ei N a. We associate to each Ei an atom
(denoted ei) in �G . Thus, the Herbrand base of �G is HB�G = A ∪ A′ where A′ = {e1, . . . , ep}.

• For every argument a ∈ A, let b1, . . . , bm be its attackers and let E1, . . . , Ek be all the subsets
of A s.t. Ei N a for 0 � i � k. The argument a gives rise in �G to the rule: ra : a ←
e1, . . . , ek, not b1, . . . , not bm.

• For every atom ei associated to a set Ei we add |Ei | rules as follows: for every x ∈ Ei , the rule:
ei ← x is added to �G .

To extract a 3-valued interpretation from a labelling and vice versa, let us define the functions Int′
and Label′.

Definition 5.9 (From a labelling of G to a 3-valued interpretation of �G). Let G = 〈A,R,N 〉 be an AFN
and �G its corresponding LP. Let L = 〈IN, OUT, UND〉 be a labelling of G. The 3-valued interpretation
associated to L is denoted Int′(L) and defined as follows:

• For every a ∈ A, if L(a) = in (resp. L(a) = out, L(a) = undec) then Int′(L)(a) = t (resp.
Int′(L)(a) = f, Int′(L)(a) = u).

• For every e ∈ A′:

∗ if there is a rule r : e ← a in �G s.t. L(a) = in then e is interpreted as true, i.e., Int′(L)(e) = t.
∗ if e is not interpreted as true and there is a rule r : e ← a in �G s.t. L(a) = undec then e is

interpreted as undefined i.e., Int′(L)(e) = u.
∗ Otherwise, i.e., if for every rule r : e ← a in �G , it holds that L(a) = out then e is interpreted

as false, i.e., Int′(L)(e) = f.

Definition 5.10 (From a 3-valued interpretation of �G to a labelling of G). Let G = 〈A,R,N 〉 be an
AFN and �G its corresponding LP. Let I = 〈T , F 〉 be a 3-valued interpretation of �G . The labelling
associated to I is defined by: Label′(I ) = (T ∩ A, F ∩ A,A \ (T ∪ F)).
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Now, the following result shows full correspondences between the acceptability semantics of an AFN
and the semantics of the corresponding LP.

Theorem 5.11. Let G = 〈A,R,N 〉 be an AFN and �G be the LP representing G. If L is a complete
(the grounded, a preferred, a stable, a semi-stable) labelling of G then IL = Int′(L) is a P-stable (the
well-founded, an M-stable, a stable, an L-stable) model of �G . Inversely, if I = 〈T , F 〉 is a P-stable (the
well-founded, an M-stable, a stable, an L-stable) model of �G then LI = Label′(I ) is a complete (the
grounded, a preferred, a stable, a semi-stable) labelling of G.

Example 3 (Cont). Let us take again our four AFNs G1, . . . ,G4. The LP �′
1 (resp. �′

2, �′
3, �′

4) is
obtained from G1 (resp. G2, G3, G4) by Definition 5.8. (see Fig. 7).

�′
1 has one P-stable model I = 〈{c}, {a, b, e1, e2}〉 which is also its unique well-founded, M-stable,

stable and L-stable model. G1 has one complete labelling L = ({c}, {a, b}, ∅) which is also its unique
grounded, preferred, stable and semi-stable labelling. It is easy to check that I = Int′(L) and L =
Label′(I ).

�′
2 has one P-stable model I = 〈{d}, {c}〉 which is also its unique well-founded, M-stable and L-

stable model but �′
2 has no stable model. G2 has one complete labelling L = ({d}, {c}, {a, b}) which

is also its unique grounded, preferred and semi-stable labelling but G2 has no stable labelling. We have:
I = Int′(L) and L = Label′(I ).

�′
3 has three P-stable models I1 = 〈∅, ∅〉, I2 = 〈{b, e1}, {a}〉 and I3 = 〈{a, d}, {b, c, e, e1}〉. Its well-

founded model is I1, its preferred models are I2 and I3, its unique L-stable model is I3 and it has no stable
model. G3 has three complete labellings: L1 = (∅, ∅, {a, b, c, d, e, f, g}), L2 = ({b}, {a}, {c, d, e, f, g})
and L3 = ({a, d}, {b, c, e}, {f, g}). Its grounded labelling is L1, its preferred labellings are L2

and L3, its unique L-stable labelling is L3 and it has no stable labelling. It is easy to check that
I1 = Int′(L1) and L1 = Label′(I1); I2 = Int′(L2) and L2 = Label′(I2); I3 = Int′(L3) and
L3 = Label′(I3).

�′
4 has one P-stable model I = 〈∅, ∅〉 which is also its unique well-founded, M-stable and L-stable

model but �′
4 has no stable model. G4 has one complete labelling L = (∅, ∅, {a, b, c, d}) which is

also its unique grounded, preferred and semi-stable labelling but G4 has no stable labelling. We have:
I = Int′(L) and L = Label′(I ).

Fig. 7. LPs obtained from our four AFNs.
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6. Related work and perspectives

An early work of bipolarity in abstract argumentation is that about bipolar argumentation frameworks
(BAFs) [38,40]. In this work, the meaning of support is left unspecified to keep a high abstraction
level. However, the drawback of this proposal is the possibility to find counter-intuitive results in some
situations.

The work presented in [19] started from a criticism of BAFs on two points, namely, the loss of admis-
sibility in the extensions obtained from the meta-model using coalitions [40]. The proposed approach
develops the so-called deductive support and introduces mediated attacks instead of indirect attacks.
The authors show that the admissibility of extensions is then restored. As remarked in [71] then later in
[41,45], it turns out that the deductive support is nothing but the inverse of the necessity relation in the
case where the latter is binary (relating couples of single arguments). Thus, if we limit ourselves to a
binary support relation, instead of imposing the use of only one type of support relation, one can start
from a system where the two types are freely expressed and then reduce in a preliminary stage all the re-
lations to one type. Note that in this case, all the results of our paper hold for a deductive support relation
D by simply using closure under D instead of closure under N−1. The subsequent development in [19]
focuses on the definition of a meta-argumentation model to handle supports and introduce defeasible
supports. In our work we propose a similar approach of meta-argumentation for AFNs. Furthermore,
we address the question of generalizing the existing Dung acceptability semantics in presence of the
necessity relation. Another difference is that our framework uses a more general setting where single
arguments may be supported by sets of arguments. Finally our approach takes benefit of the necessity
relation in establishing relationships between AFNs and LPs.

Another approach that shares some features with ours is the evidence based argumentation, first in-
troduced in [72]. This approach considers that only arguments that have some evidential support can
attack other arguments. The evidential support of an argument comes either directly from the environ-
ment (prima facie arguments) or from a chain of supports that originates in such prima facie arguments
(standard arguments). A similar idea is present in our work. Indeed, to ensure admissibility of a set, we
must guarantee just the response to attacks coming from arguments that are N-Cycle-Free, i.e., those that
have no need for a support or that are ultimately supported by arguments that have no need for a support.
Thus, AFNs may be seen as a possible concretization of the notion of evidence where all arguments
are by default supported unless they are taken in a set which is not N-Cycle-Free. The reader may refer
to [41,45,78] for a more detailed comparison between the necessity, the deductive and the evidential
supports in the context where only binary support relations are used.

Several recent works generalized Dung AFs to represent recursive attacks (attacks targeting attacks)
[14,34,37]. Likewise, bipolar frameworks that represent recursive attacks and support (see e.g. [35,36,
42,46,62]) have also be extensively studied. Notice that [46,62] uses necessity support relation while
[36,42] use evidential support.

The work developed in [20,22,75] introduced abstract dialectical frameworks (ADF), a powerful gen-
eralization of Dung’s AFs that formalizes the idea of proof standards, widely studied in legal reasoning
domain. This idea is captured in ADFs by linking each argument to a set of arguments (its parents)
and introducing the notion of acceptance conditions that determine whether an argument is accepted or
not according to the acceptance status of its parents. However, a sub-class of ADFs called bipolar ADFs
(BADFs) is identified, where the relation between an argument and a parent plays always one role: either
an attack or a support. A main difference between our work and ADFs lies in the method used to gen-
eralize stable and admissible semantics. ADFs adapt techniques from logic programming, namely G/L
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reduct, to avoid necessity cycles. In our work, thanks to the notions of coherence and strong coherence
used instead of conflict-freeness, we keep our definitions similar to that in Dung’s original AFs. Another
point is that in the method we use to encode an LP as a AFN, each rule is represented by an argument
which gives an homogeneous view of the meaning of an argument. In [22], a similar homogenous repre-
sentation using atoms as arguments is proposed but as pointed out in the paper, it leads in general to an
ADF which may not be bipolar. To obtain a BADF, one must introduce new arguments designating rules.
The resulting representation is then heterogeneous in the sense that arguments may refer to rules or to
atoms. Finally, the opposite question, i.e., the representation of ADFs as LPs is not explicitly considered.
However, subsequent work has been done to study ADFs in several other directions. We can cite [20]
in which the semantics of ADFs are inspired by approximation fixpoint theory, [76] which proposes a
probabilistic version of ADFs, [54] which shows how to represent an ADF with only attack relations
and [48] which investigates sub-classes of ADFs.

A main notion in argumentation approaches with structured arguments, is that of sub-argument [17,
57,66,81,87]. A sub-argument provides an intermediary conclusion to its super-argument. From this
viewpoint, sub-arguments may be seen as supporting their super-arguments. The work proposed in [66]
introduces the AFs with sub-arguments (AFS). An AFS extends a Dung AF with two binary relations
on arguments: a sub-argument relation and a preference relation. To capture the requirements of the
sub-argument relation, the authors introduce the so-called conflict inheritance constraint on the attack
relation. It says that if a attacks b then any super-argument of a attacks any super-argument of b. In [45],
the authors show that the kind of support provided by sub-arguments has the meaning of necessity. They
point out that a rational constraint which relates arguments and sub-arguments is the compositionality
principle (see [82]). It says that an argument cannot be accepted unless all its sub-arguments are accepted,
i.e., (i) if an argument is accepted then all its sub-arguments are accepted and (ii) if an argument is not
accepted then all its super-arguments are not accepted. It turns out that this captures exactly the meaning
of (a binary) necessity relation in an AFN: if we have a N b then if b is accepted then necessarily a is
accepted and if a is not accepted then b is not accepted. In the same spirit, the work of [80] points out
the strong correspondence between the necessity relation in AFNs and the sub-argument relation in the
ASPIC+ system.

The work in [44] introduces the backing-undercutting argumentation framework (BUAF) which ex-
tends Dung AFs by incorporating a special binary support relation (backing relation) and a partial order
representing a preference relation among arguments. The support relation is intended to represent the
backing link considered in Toulmin’s model of an argument (see [88,90] for more details about Toul-
min’s model).8 Three kinds of attack relations are distinguished: the rebutting, the undercutting and the
undermining attacks. Only the undercutting attack can interact with the backing relation since both of
them involve the warrant. As in many other approaches to bipolarity in argumentation, the objective in
this approach is to produce new indirect attacks that result from the interaction of direct attacks and
supports. In this approach, the final negative interactions are called defeats. They take into account the
input attack, the backing as well as the preference relations. Let us briefly present the three kinds of
defeats present in this approach. The first one is the primary defeat: a primarily defeats c in one of the
three following situation: if a rebuts or undermines c and c is not strictly preferred to a; if a undercuts

8Roughly speaking, Toulmin’s scheme of an argument is constituted of five elements. A data (D) which is the ground which
we produce as a support. A claim (C) which is a conclusion based on the data. A warrant (W) which is a rule-like statement
that justifies the conclusion of (C) from (D). A qualifier (Q) which reflects a degree of force that data confers on the claim in
virtue of the warrant. A backing (B) which explains why the warrant holds and thus brings a support for it. Finally, a rebuttal
(R) which represents particular contexts where the claim is challenged.
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c and c has no backing argument or if a undercuts c, c has a backing argument b but b is not strictly
preferred to a. The second kind of defeat is the implicit defeat: a implicitly defeats b in two possible
situations: if b is a backing for c, a undercuts c and b is not strictly preferred to a; or if a is a backing
for c, b undercuts c and neither b is strictly preferred to a nor a is strictly preferred to b. The last kind
of defeat is the indirect defeat which covers the other kinds of defeats (primary and implicit defeats) and
the new defeats that result recursively by chaining backing arguments. Once all the indirect defeats are
computed, Dung acceptability semantics are used to evaluate arguments. It has been shown in [45] that
some aspects of the backing relation correspond to some aspects of the necessity relation but there is no
full correspondence between the two relations.

Constrained AFs [47] extend Dung AFs with propositional constraints on arguments. We notice that
AFNs cannot be reduced to constrained AFs where E N b is replaced by the implication b ⇒ ∨

a∈E . To
show this, recall that a stable extension of a constrained AF is a stable extension of the corresponding
AF that verifies the additional constraints. This does not hold for AFNs. For instance, the AFN 〈A =
{a, b, c}, R = {a, b}, N = {(b, c)}〉 has one stable extension: {a}, but the constrained AF 〈A, R, C =
c ⇒ b〉 has no stable extension (the only stable extension of 〈A, R〉 is {a, c} which does not verify the
constraint C).

Linking abstract argumentation to logic programming is an interesting research topic. It goes back to
the seminal work of Dung [53]. Some works in this domain have considered the issue of using logic
programming, especially answer set programming, to compute the extensions of AFs under different
semantics (see e.g. [55,56,85]). The objective of these works differs from ours.

In [1], the authors focuses on the equivalence between Abstract Dialectical Frameworks and logic pro-
grams under 3-valued semantics. More precisely this work focuses on a fragment of ADFs, called At-
tacking dialectical frameworks (ADF+s) and provides a translation from normal LPs to ADF+ such that
partial stable, well-founded, regular and stable models of normal LPs are in a one to one correspondence
with complete, grounded, preferred and stable extensions of the corresponding ADF+s, respectively.

Another work that is closer to ours is that presented in [29,30]. This work establishes the links between
3-valued LPs and Dung AFs. An LP is represented by a Dung AF where an argument is obtained by
chaining a subset of rules of the LP (as in rule-based argumentation systems [7,68]). An argument
involves a set of rules, a conclusion (the head of the last used rule), a set of vulnerabilities (the atoms
appearing in the negative bodies of the rules involved in the argument) and a set of sub-arguments.
Then, an attack relation is defined from an argument a to an argument b if the conclusion of a belongs
to the set of vulnerabilities of b. The process results in a Dung AF. The authors show then a one-
to-one correspondence between the well-founded (resp. P-stable, M-stable, stable) models of the LP
and the grounded (resp. complete, preferred, stable) extensions of the corresponding AF. Only L-stable
semantics of LPs and semi-stable semantics are not in full correspondence. Then, it has been shown that
when representing an AF as an LP, the picture is complete, i.e., all the correspondences hold including
that semi-stable extensions and L-stable model. Notice that [29] generalizes the approach to cope with
ideal and eager semantics. Our work may be seen as a generalization of this approach to bipolar setting
using the necessity support. More precisely, in representing an LP as an abstract AFN, our work takes
benefit from the positive interaction (necessity links) between the rules of an LP to propose a new
simpler instantiation method where each rule is represented by an argument. The use of an additional
necessity support relation in the argumentation models avoids the construction of complex arguments.
In the opposite direction our work allows one to represent as an LP a wider range of argumentation
frameworks since Dung AFs are a strict subset of AFNs.
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In the same spirit, the work by Alfano et al. [2,3] presents how to translate different kinds of exten-
sions of dung AFs (called AF-based frameworks) into logic programs and shows how the acceptability
semantics of such AF-based frameworks are related to particular cases of partial stable models of the
corresponding LPs. The considered AF-based frameworks include: Original Dung AFs [53]; bipolar AFs
(BAF), namely AFs with necessity support (AFN) [71] and AFs with deductive support (AFD) [19,91];
recursive AFs (Rec-AF) namely, AFs with recursive attack (AFRA) [14] and recursive AFs (RAF) [37]
and recursive bipolar AFs (Rec-BAF) namely, attack-support AFs (ASAF) [62], recursive AFs with ne-
cessities (RAFN) [35], AFs with recursive attack and deductive support (AFRAD) [3] and recursive AFs
with deductive support (RAFD) [3]. Our work differs from that by Alfano et al. [2,3] in two main re-
spects: First, the work in [2,3] considers only the restricted version of AFNs where the necessary support
relation is binary and acyclic while our proposal considers a more general framework where the support
relation may relate a set of arguments to a single one and no restriction is made about its cyclicality. The
second issue is that the work in [2,3] considers only the representation of AF-based frameworks as LPs
and does not study the opposite direction (representing an LP as an AF-based framework). In our work,
we consider the translation in the two directions. This shows among other things that among the different
existing AF-based frameworks, AFN is suitable to represent any normal LP in a direct and simple way.

For a more comprehensive comparative study of the above approaches of support in argumentation as
well as some other approaches having some links with the topic,9 the reader is referred to [45]. It is worth
noticing that most of the current bipolar argumentation approaches use binary support relations and turn
eventually the bipolar framework to a Dung AF in order to evaluate arguments. Our work goes a step
further: it uses a generalized necessity relation that involves sets of arguments as supports, allows one to
evaluate arguments directly in the new setting, generalizes the labelling characterization and algorithms
to the new context and relates AFNs to LPs.

As stated above, some works (e.g.. [41]) have started to look for similarities and differences between
the different approaches of support in abstract argumentation. An interesting future work would be to
propose a unified framework able to take into account different kinds of supports and to define a general
approach for acceptability semantics to such a framework in the simple and high-order case (recursive
attacks and supports). As pointed out in [80], in argumentation approaches with structured arguments,
the sub-argument relation is a possible instantiation of the necessity relation. This idea opens the way to
a future work on a more general question about how to instantiate different kinds of supports present in
the literature and then to propose general postulates that describe their expected behavior as it is done
for the attack relation (see e.g.. [61]).

As regards the links with logic programming, we believe that the strong relationship established be-
tween AFNs and LPs is a key tool that will enable us to bring advanced results in logic programming into
abstract argumentation theory and vice versa. For instance, we are interested on works about equilibrium
logics that gave logical foundation to stable models [74] and later partial equilibrium logics that gener-
alize the idea to capture well-founded models [23–25]. We believe that variants of partial equilibrium
logics may capture other 3-valued models of LPs and we want to exploit the strong links between AFNs
and 3-valued semantics to give a logical foundation for Dung AFs, AFNs and possibly other approaches
of bipolar argumentation in terms of partial equilibrium logics. In the same spirit, the work in [52] cap-
tures the notion of stable model with the notion of minimally specific model of generalized possibilistic
logic [51] which is an extension of possibilistic logic (see e.g. [49,50]) that enables one to reason on

9namely, [90] considers a reconstruction of Toulmin’s ideas using DEFLOG and [43] studies an extension of DELP, where
Toulmin’s form of support between backings and warrants are considered.
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epistemic states instead of merely constrain them. Again, the strong links between AFNs and LPs may
be exploited to capture acceptability semantics of Dung AFs and AFNs in the generalized possibilistic
logic framework.

Appendix. Proofs

Proof of Proposition 3.6. ⇒) Let E ⊆ A be a coherent set. To prove that every argument a ∈ E is
powerful in E let us construct a sequence of sets of arguments E1, . . . , Em s.t.: (1) E1, . . . Em is a partition
of E ; (2) ∀a ∈ E1, �E ⊆ A s.t. E N a (arguments of E1 does not require any other argument) and (3) for
i > 1, then ∀a ∈ Ei , ∀E ⊆ A s.t. E N a, E ∩ ⋃

1�j<i Ei 
= ∅ (the necessities on any argument of Ei

are satisfied by the preceding sets E1, . . . Ei−1). Indeed if such a sequence is constructed, then for every
argument a ∈ E , let a ∈ Ei . It is then clear that a sequence of arguments (not necessarily a minimal
one) leading to a may be obtained by simply flattening the sequence E1, . . . Ei−1 (replacing each Ei by
the subsequence of its arguments taken in an arbitrary order) and adding a at the end. Now the sequence
of sets of arguments E1, . . . Em is constructed us follows. E1 = {a ∈ E | �E ⊆ A s.t. E N a}. We have
E1 
= ∅ for if E1 = ∅ then ∀a ∈ E , ∃E ⊆ A s.t. E N a. Since E is closed under N−1, E ∩ E 
= ∅. But
this means that E is not coherent, contradiction.

Now, let E2 = {a ∈ E \ E1 | �E ⊆ A s.t. E ∩ E1 = ∅ and E N a}. We have E2 
= ∅ for if E2 = ∅
then ∀a ∈ E \ E1, ∃E ⊆ A s.t. E N a and E ∩ E1 = ∅. Since E is closed under N−1, E ∩ E 
= ∅, hence
E ∩ (E \ E1) 
= ∅ (because E ∩ E1 = ∅), i.e., E is not coherent, contradiction.

We continue this process of constructing the sets Ei . Since the number of arguments is finite, this
process stops necessarily at some set Em whose arguments are not necessary to any other argument.
Then, by construction, the sequence E1, . . . Em satisfies the conditions (1)–(3) mentioned above.

⇐) Let E ⊆ A s.t. ∀a ∈ E , a is powerful in E , i.e., ∀a ∈ E , there is a sequence of arguments a0, . . . , ak

of E s.t. ak = a; there is no E ⊆ A s.t. E N a0 and for 1 � i � k: for all E ⊆ A, if E N ai , then
E ∩ {a0, . . . , ai−1} 
= ∅.

It is straightforward from this definition that ∀a ∈ E , if E N a for some E ⊆ A, then E ∩ E 
= ∅, i.e.,
that E is closed under N−1. From the definition (first item), it is clear that ∃a ∈ E s.t. ∀E ⊆ A, E 
 N a.
This condition implies that: ∃a ∈ E s.t. ∀E ⊆ A, E 
 N a or E ∩ E 
= ∅. It is easy to check that this last
condition is equivalent to that for N-Cycle-Freeness (see Definition 3.3). �

Proof of Proposition 3.7. • a is not powerful in E iff there is no coherent subset C of E s.t. a ∈ C.
⇒) Let E ⊆ A and let a ∈ E be a non powerful argument of E . Suppose that there is C ⊆ E s.t. C
is coherent and a ∈ C. From proposition 3.6, it follows that a is powerful in C. But in this case a

remains powerful in any superset of C (it suffices to take in E the same sequence ending by a taken
in C). Contradiction.
⇐) Let E ⊆ A and a ∈ E s.t. there is no coherent subset C of E containing a. Suppose that a is
powerful in E . Then from Definition 3.5, there is a sequence a0, . . . , ak ∈ E s.t. ak = a; there is no
E ⊆ A s.t. E N a0 and for 1 � i � k: for all E ⊆ A, if E N ai , then E ∩ {a0, . . . , ai−1} 
= ∅. It is
then easy to check that the set {a0, . . . , ak} is coherent. Contradiction.

• a is not powerful in E iff ∃E ⊆ A s.t. E N a and ∀E ⊆ A s.t. E N a, ∀b ∈ E ∩ E , b is not
powerful in E .
⇒) Let E ⊆ A and a an argument which is not powerful in E . If we suppose that �E ⊂ A s.t.
E N a, then clearly {a} is a coherent set containing a, contradiction. If we suppose that ∃E ⊆ A
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s.t. E N a and ∃b ∈ E ∩ E s.t. b is powerful in E . Then, there is C ⊆ E s.t. C is coherent and b ∈ C.
It follows that C ∪ {a} is a coherent set too. But thus contradicts the fact that a is not powerful in E .
⇐) Let E ⊆ A and a an argument s.t.: ∃E ⊆ A s.t. E N a and ∀E ⊆ A s.t. E N a, ∀b ∈ E ∩ E ,
b is not powerful in E . Suppose that a is powerful in E . Thus, there is C ⊆ E s.t. C is coherent and
a ∈ C. From the definition of coherence, for every E ⊆ A s.t. E N a, E ∩ C 
= ∅, i.e., there exists
b ∈ E ∩ E s.t. b ∈ C. This means that there is a coherent subset of E containing b (C), i.e., b is
powerful in E . Contradiction. �

Proof of Theorem 3.13. Let G = 〈A,R,N 〉 be an AFN and E ⊆ A be a strongly coherent set.

(1) E is an admissible set iff E ⊆ FG(E):
⇒) Suppose that E is an admissible set. Thus, if a ∈ E then E defends a, i.e. a ∈ FG(E).
⇐) Suppose that E ⊆ FG(E). ∀a ∈ E we have a ∈ FG(E), i.e., a is defended by E . Thus E is
strongly coherent and defends all its elements, so it is admissible.

(2) E is a complete extension iff E = FG(E):
⇒) Suppose that E is a complete extension. Then, E is admissible and from proposition point 1. of
the current theorem, we have E ⊆ FG(E). Now, let a ∈ FG(E). Then, a is defended by E but since
E is a complete extension, a ∈ E . Thus FG(E) ⊆ E , so FG(E) = E .
⇐) Suppose that E = FG(E). Then E ⊆ FG(E) and E is admissible (from point 1. of the current
theorem). Now, let a be an argument defended by E , then a ∈ FG(E). Since FG(E) ⊆ E , a ∈ E .
Thus E is admissible and contains any argument it defends, hence E is a complete extension.

(3) E is the grounded extension of G iff it is the least (w.r.t. set inclusion) complete extension of G:
Follows from the definition of a grounded extension (Definition 3.12) and the second point of the
current.

(4) There is at least one preferred extension for G; every preferred extension is a complete extension
but not vice versa; E is a preferred extension iff it is a maximal (w.r.t. set inclusion) complete
extension:
The existence of at least one preferred extension follows from the fact that there is always at least
one admissible set for any AFN. Indeed, obviously ∅ is always admissible.
Let E be a preferred extension and suppose that E is not complete. Then, there is a ∈ A s.t.
E defends a and a /∈ E . But, in this case E ∪ {a} is admissible which contradicts the fact that
E is a maximal admissible set. Hence, every preferred extension is a complete extension. Let us
take a counter-example showing that a complete extension may not be preferred. Let G = 〈A =
{a, b, c},R = {(a, b), (b, a), (b, c), (c, c)},N = ∅〉. G has three complete extensions: ∅, {a} and
{b}. {a} and {b} are also preferred but ∅ is not.
The fact that E is a preferred extension iff it is a maximal (w.r.t. ⊆) complete extension follows
immediately from point 2 of the current theorem.

(5) If E is a stable extension then E is a semi-stable extension but not vice versa; if E is a semi-stable
extension, then E is a preferred extension but not vice versa:
Let E ⊆ A be a stable extension. Then from the definition of stable extensions we have Ed = A\E .
Thus, E ∪ Ed = A which is the maximal possible set of arguments. Hence, E is a semi-stable
extension.
To show that the inverse is false, take G = 〈A = {a, b, c},R = {(c, c)},N = {a, b}〉. {a, b} is a
semi-stable extension of G but not a stable extension.
Before proving that each semi-stable extension is preferred, let us first prove the following lemma.
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Lemma 1. If E and E ′ are two complete extensions s.t. E ⊂ E ′ then Ed ⊂ E ′ d .

Proof of Lemma 1. Let E and E ′ be two complete extensions s.t. E ⊂ E ′. Thus, any argument
deactivated by E is clearly deactivated by E ′, hence E ⊆ E ′. Now, suppose for the sake of contra-
diction that Ed = E ′ d . Let a ∈ E ′ \E . For every b R a, b ∈ E ′ d because E ′ defends all its elements.
It follows that b ∈ Ed , i.e. that E also defends a. But a /∈ E and this contradicts the fact that E is a
complete extension. Then, it follows that Ed ⊂ E ′ d . �

Now, let E ⊆ A be a semi-stable extension. Suppose for the sake of contradiction that E is not a
preferred extension. Thus, there is E ′ ⊆ A s.t. E ⊂ E ′ and E ′ is a complete extension. From the
above lemma, it holds that Ed ⊂ E ′ d . It follows that E ∪ Ed ⊂ E ′ ∪ E ′ d . Contradiction with the fact
that E is a semi-stable extension.
To show that the inverse does not hold, let us take a counter-example. Let us consider the AFN
G = 〈A = {a, b, c, d},R = {(a, b), (a, c), (b, a), (c, c), (d, d)},N = ∅〉. This system admits {a}
and {b} as preferred extensions. However, only {a} is a semi-stable extension. Indeed {a}d = {b, c}
and {b}d = {a}. We have that: {b} ∪ {b}d ⊂ {a} ∪ {a}d .

(6) If E is a stable extension, then E is a preferred extension but not vice versa; there may be zero, one
or several stable extensions for G:
If E is a stable extension, then from (5) E is a semi-stable extension and from (5) again it is also a
preferred extension.
To show that the inverse is not true, let us take the AFN G = 〈A = {a, b, c},R =
{(a, b), (b, a), (b, c), (c, c)},N = ∅〉. {a} is a preferred extension but it is not stable.
To show that there may be zero, one or several stable extensions for an AFN, it suffices to find
an example for each case: G1 = 〈A = {a},R = {(a, a)},N = ∅〉 has no stable extension;
G2 = 〈A = {a, b},R = {(a, b)},N = ∅〉 admits {a} as a unique stable extension and G3 = 〈A =
{a, b},R = {(a, b), (b, a)},N = ∅〉 has two stable extensions: {a} and {b}. �

Proof of Theorem 3.18. Admissible
⇒) Let E be an admissible set and prove that L = (E, Ed,A \ (E ∪ Ed)) is an admissible labelling.
Safety of L follows directly from the coherence of E and the fact that an argument a is not powerful

in A iff there is no coherent set C ⊆ A containing a (see proposition 3.7) which implies that a ∈ Ed .
Let a ∈ E and show that a is legally in in L. Let b be an argument s.t. b R a. Clearly b /∈ E follows

from conflict-freeness of E . Suppose that b ∈ A \ (E ∪ Ed). Then, there exists a coherent set C ⊆ A
containing b and E 
 R C since b /∈ Ed . This means that E does not defend a which contradict the fact
that E is an admissible set. Thus b ∈ Ed , i.e. b ∈ out(L). Now let E ⊆ A s.t. E N a. From closure of E
under N−1, it holds that E ∩ E 
= ∅, i.e. E ∩ in(L) 
= ∅. Hence, a is legally in in L.

Now, let a ∈ Ed and show that a is legally out in L (i.e. either E R a or ∃E ∈ A s.t. E N a and
E ⊆ Ed). To do so, let us suppose that ∀E ⊆ A s.t. E N a, E � Ed and prove that E R a. Then we
have: ∀E ⊆ A s.t. E N a, ∃b ∈ E s.t. b /∈ Ed , i.e. there is a coherent set C containing b s.t. E 
 R C.
Thus, we can construct a coherent set C ′ satisfying ∀E ⊆ A s.t. E N a, C ′ ∩ E 
= ∅ and E 
 R C ′. But
then the set C ′ ∪ {a} is coherent too, and since a ∈ Ed , it holds (from the definition of Ed) that E R C ′.
Since E 
 R C ′, it must be the case that E R {a}. This means that every a ∈ Ed is legally out. It follows
from the preceding elements that L is an admissible labelling.

⇐) Let L be an admissible labelling and prove that E = in(L) is an admissible extension and
out(L) ⊆ Ed .
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L is safe and all arguments in in(L) (resp. in out(L)) are legally in (resp. out). The coherence of E
follows from the safety of L. E is conflict-free, for if we suppose the contrary then there exists a, b ∈ E
s.t. a R b. This means that b in not legally in. Contradiction. Thus, E is strongly coherent.

Before proving that E defends all its elements, let us first prove that out(L) ⊆ Ed . Let a ∈ out(L),
a is legally out. Then, two cases are possible: the first case is that a is attacked by some argument b

labelled in, i.e., b ∈ E , but in this case, every coherent set C containing a is attacked by b, hence by
E , i.e., a ∈ Ed . The second case is that there is E ⊆ A s.t. E N a and E ⊆ out(L). In this case either
there is no coherent set containing a, so a ∈ Ed or such coherent sets exists and every coherent set C
containing a contains at least an argument b ∈ E. Since a1 is labelled out and is legally out we have
again two cases: either E R a1 so E R C or there is E1 ⊆ A s.t. E1 N a1 and E1 ⊆ out(L) and so on. We
repeat this process. Since the possibility that a does not belong to any coherent set is discarded (in the
considered arbitrary coherent set C the continuation of this reasoning process does not involve necessity
cycles) and since the number of arguments is finite, it must exist some ai s.t. ai ∈ C and E R ai , i.e.,
each coherent set C containing a is attacked by E , hence a ∈ Ed .

Now, for all a ∈ E , suppose that b is an argument s.t. bRa. since a is legally in, b is necessarily
labelled out. From the fact that out(L) ⊆ Ed we deduce that b ∈ Ed , i.e., every coherent set containing
b is attacked by E . Thus, E defends all its elements. Since E is strongly coherent and defends all its
elements, it is an admissible set.

Complete
⇒) Let E be an complete extension and prove that (E, Ed,A \ (E ∪ Ed)) is a complete labelling.
From the previous proof, it follows that every a ∈ E (resp. a ∈ Ed) is legally in (resp. legally out).

It remains to show that every argument a ∈ A \ (E ∪ Ed) is legally undec.
Let a ∈ A \ (E ∪ Ed). Thus, there is a coherent set C containing a s.t. E 
 R C. Let us call this fact

(F). Now, for the sake of contradiction let us suppose that a is illegally undec. We have three possible
cases:

Case 1: ∃E ⊆ A s.t. E N a and E ⊆ out(L) = Ed . In this case, every coherent set C containing a

must contain at least an element of E which is also in Ed . By definition of Ed , it holds that E R C. This
contradicts (F).

Case 2: ∃b ∈ in(L) = E s.t. b R a. Again, it follows that every coherent set C containing a is attacked
by E , which is in contradiction with (F).

Case 3: ∀b ∈ A, if b R a then b ∈ out(L) = Ed and ∀E ⊆ A, if E N a then E ∩ in(L) 
= ∅. In this
case, clearly E ∪{a} is coherent and for every b that attacks a, it holds that every coherent set containing
b is attacked by E , i.e, E defends a, but a /∈ E . This contradicts the fact that E is a complete extension.
It follows that: every argument in A \ (E ∪ Ed) is legally undec.

⇐) Let L be a complete labelling and prove that E = in(L) is a complete extension and out(L) = Ed .
From the precedent proof, we have: E is admissible and out(L) ⊆ Ed . It remains to prove that E contains
all the arguments it defends and that Ed ⊆ out(L).

Let us start by proving that Ed ⊆ out(L). Let a ∈ Ed . If there is no coherent set of arguments
containing a, then a is not powerful in A (see proposition 3.7) and from the safety of L, it holds that
L(a) = out. Now, suppose that there exists at least a coherent set containing a. For the sake of con-
tradiction, let a /∈ out(L). Then, either a ∈ in(L) or a ∈ undec(L). a ∈ in(L) is impossible because
in(L) = E . If a ∈ undec(L) then a is legally undec because L is a complete labelling. It follows from
the definition of legally undec arguments that E 
 R a and ∀E ⊆ A s.t. E N a, E � out(L), i.e. any
argument in E is labelled either in (hence, not attacked by E) or undec. By applying in a repetitive
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way the same reasoning on undec arguments, and since the number of arguments is finite, we construct
a coherent set C containing a and s.t. E 
 R C. This contradicts the fact that a ∈ Ed . So Ed ⊆ out(L).

Now let us suppose that there is a /∈ E , hence a is labelled either out or undec and E defends a, i.e.,
E ∪ a is coherent and ∀b ∈ A, if b R a then E attacks any coherent set of arguments containing b. It
follows from this statement that: ∀E ⊆ A, if E N a then E ∩ E 
= ∅, i.e., E ∩ in(L) 
= ∅ and ∀b ∈ A,
if b R a then b ∈ Ed , i.e. b ∈ out(L). It is easy to check that under these conditions, a cannot be neither
legally out nor legally undec. This contradicts the fact that L is a complete labelling. So, E contains
any argument it defends, i.e., E is a complete extension.

Grounded
⇒) Let E be the grounded extension and prove that L = (E, Ed,A \ (E ∪ Ed)) is the grounded

labelling. E is the ⊆-minimal complete extension. From the ⇒) part of the proof for complete semantics,
it follows that L = (E, Ed,A \ (E ∪ Ed)) is a complete labelling. Suppose that L is not the grounded
labelling, i.e., there is a complete labelling L′ s.t. in(L′) ⊂ in(L) = E . But, from the ⇐) part of the
proof for complete semantics, it follows that in(L′) is a complete extension which contradicts the fact
that E is the ⊆-minimal complete extension.

⇐) Let L be the grounded labelling and prove that E = in(L) is the grounded extension and out(L) =
Ed . From the ⇐) part of the proof for complete semantics, we deduce that E = in(L) is a complete
extension and that out(L) = Ed . Suppose that ∃E ′ ⊆ A s.t. E ′ ⊂ E and E ′ is a complete extension. From
the ⇒) part of the proof for complete semantics, it follows that (E ′, E ′ d,A \ (E ′ ∪ E ′ d)) is a complete
labelling. Contradicts the fact that L is the grounded labelling.

Preferred
⇒) Let E be a preferred extension and prove that (E, Ed,A \ (E ∪ Ed)) is a preferred labelling.

The proof is similar to the ⇒) part of the proof for grounded semantics except that it is based on
⊆-maximization instead of ⊆-minimization.

⇐) Let L be a preferred labelling and prove that E = in(L) is a preferred extension and out(L) = Ed .
From the ⇐) part of the proof for complete semantics, we deduce that E = in(L) is a complete extension
and that out(L) = Ed . Suppose that there is E ′ ⊆ A s.t. E ⊂ E ′ and E ′ is a complete extension. Then,
from the ⇒) part of the proof for complete semantics, it follows that (E ′, E ′ d,A\(E ′∪E ′ d)) is a complete
labelling. Contradiction with the fact that L is a preferred labelling.

Stable
⇒) Let E be an stable extension and prove that (E, Ed,A \ (E ∪ Ed)) is a stable labelling. if E is a

stable extension, then from its definition: A \ (E ∪ Ed) = ∅. Since it is also complete, form the ⇒) part
of the proof for complete semantics, the labelling L = (E, Ed,A \ (E ∪ Ed) = ∅) is complete and hence
also stable since undec(L) = ∅.

⇐) Let L be a stable labelling and prove that E = in(L) is a stable extension and out(L) = Ed . From
the ⇐) part of the proof for complete semantics, we deduce that E = in(L) is a complete extension and
out(L) = Ed . But since undec(L) = ∅, clearly Ed = A \ E , i.e. E is a stable extension.

Semi-stable
⇒) Let E be an semi-stable extension and prove that (E, Ed,A \ (E ∪ Ed)) is a semi-stable labelling.
From the ⇒) part of the proof for complete semantics, it follows that L = (E, Ed,A \ (E ∪ Ed)) is

a complete labelling. Suppose that ∃L′ s.t. undec(L′) ⊂ undec(L). From the ⇐) part of the proof for
complete semantics, in(L′) is a complete extension with out(L) = (in(L))d . It is easy to check that
undec(L′) ⊂ undec(L) is equivalent to (in(L′) ∪ (in(L′))d) ⊂ (E ∪ Ed). Contradiction with the fact that
E is a semi-stable extension.
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⇐) Let L be a semi-stable labelling and prove that E = in(L) is a semi-stable extension and out(L) =
Ed . From the ⇐) part of the proof for complete semantics, it follows that E = in(L) is a complete
extension and that out(L) = Ed . Suppose that there is complete E ′ s.t. (E ∪ Ed) ⊂ (E ′ ∪ E ′ d). From
the ⇒) part of the proof for complete semantics, it follows that L′ = (E ′, E ′ d,A \ (E ′ ∪ E ′ d)) is a
complete labelling. Moreover, it is easy to check that (E ∪Ed) ⊂ (E ′ ∪E ′ d) is equivalent to undec(L′) ⊂
undec(L). Contradiction with the fact that L is a semi-stable labelling. �

Proof of Theorem 4.1. The proof is straightforward since the definition of any kind of extension in an
AFN 〈A,R,N 〉 with N = ∅ coincides with that of the same kind of extension in the AF 〈A,R〉. �

Proof of Proposition 4.4. The proof follows immediately from Definition 4.2. �

Proof of Theorem 4.5. Admissible
⇒) Let E ∈ A be an admissible set of G and let �E be the set of subsets of arguments defined by:

�E = {Ca | a ∈ E, Ca ⊆ E and Ca is a meta-argument associated to a}. Thus, each argument of E is
represented in �E by at least one meta-argument and it is easy to check that

⋃
C∈�E

C = E . Let us show
that �E is an admissible set of HG . �E is conflict-free. Indeed, supposing the inverse means that there is
Ca, Cb ∈ �E s.t. Ca R′ Cb, i.e., there is a′ ∈ Ca and b′ ∈ Cb s.t. a′ R b′. But since Ca, Cb ⊆ E , a′, b′ ∈ E .
Contradiction with the fact that E is conflict-free.

Let Ca ∈ �E be a meta-argument of an argument a ∈ E . Let Cb /∈ �E be a meta-argument of an
argument b ∈ A \ E and Cb R′ Ca . From the definition of R′, it follows that there is b′ in Cb, hence in
A\E and there is a′ in Ca , hence in E s.t. b′ R a′. Since E defends all its elements. Namely, E defends a′
against b′. So, for every coherent set C containing b′ there is c ∈ E s.t. c R C. Since Cb is a coherent set
containing b′, then there exists a meta-argument of �E (we can take any meta-argument Cc of c) which
attacks Cb. �E defends all its elements. It is an admissible set of HG .

⇐) Let � be an admissible set of HG and let E� = ⋃
C∈� C. Since each meta-argument of � is a

coherent set, it follows that E� is coherent and from the conflict-freeness of � it follows that E� is
conflict free. Hence, E� is strongly coherent. Let a ∈ E , b /∈ E and b R a. Then for every meta argument
Cb /∈ � associated to b and every meta-argument Ca ∈ � associated to a, it holds that: Cb R′ Ca . Since
� is admissible, there is a meta-argument C ∈ � s.t. C R′ Cb, i.e. E� R Cb. But since any coherent set
of arguments C ′ containing b contains at least one sub-argument associated to b, it follows that for every
coherent set of arguments C ′ containing b, we have E� R C ′. Thus, E� is strongly coherent and defends
all its elements, i.e. an admissible set of G.

Complete
⇒) Let E ∈ A be a complete extension of G and let �E be the set of subsets of arguments defined

by: �E = {Ca | a ∈ E, Ca ⊆ E and Ca is a meta-argument associated to a}. Thus, each argument of E is
represented in �E by at least one meta-argument and it is easy to check that

⋃
C∈�E

C = E . Let us show
that �E is a complete extension of HG . From the previous proof, it follows that �E is an admissible set
of HG . It remains to show that �E contains every meta-argument it defends.

For the sake of contradiction, suppose that there is a meta-argument Ea /∈ �E associated to a /∈ E
defended by �E , i.e., ∀C s.t. C R′ Ca , �E R′ C.

First, let us precise that a first consequence of our hypotheses is that �E ∪ {Ca} is conflict-free. Indeed
if we suppose that �E R′ Ca then since �E defends Ca it holds that �E R′ �E which contradicts the
fact that �E is conflict-free. If we suppose that Ca R �E then since �E is admissible, �E R′ Ca which
coincides with the first case implying conflict in �E .
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Now, let us show that our hypotheses contradict the fact that E is a complete extension of G. Since
Ca is a coherent set, there is a0 ∈ Ca s.t. there is no E ⊆ A with E N a0. E ∪ a0 is coherent since E
is coherent and a0 does not have any necessities to satisfy. if b is any argument s.t. b R a0 then any
meta-argument Cb associated to b verifies Cb R′ Ca . Since �E defends Ca it follows that �E R′Cb. Since
any coherent set C ′ containing b contains at least one meta-argument associated to b. Thus, for every
coherent set C ′ containing b it holds that �E R′ C ′, i.e. E R C ′. This means that E defends a0 /∈ E .
Contradicts the fact that E is a complete extension of G.

⇐) Let � be a complete extension of HG and let E� = ⋃
C∈� C. From the ⇐) part of the proof for

admissible sets, it follows that E� is an admissible set of G. For the sake of contradiction, suppose that
there exists a /∈ E� and E� defends a, i.e. E� ∪ {a} is coherent and if b R a then for every coherent
set C containing b, E� R C. Let Ca be a meta-argument associated to a, hence Ca /∈ � because a /∈ E�

and show that � defends Ca . From E� ∪ {a} is coherent, it follows that all arguments of Ca except a are
in E�. If Cb is a meta-argument s.t. Cb R′ Ca then two cases are possible. The first case is that Cb R a′
with a′ 
= a hence a′ ∈ E�, then there is at least a meta-argument associated to a′ in �. Consequently,
Cb R �. But since � is admissible it follows that � R′ Cb. The second case is that Cb R a,i.e., there is
b′ ∈ Cb s.t. b′ R a. Then, from the hypothesis that E� defends a, it follows that for every coherent set C
containing b′, E� R C. But Cb is a coherent set containing b′, so E� R Cb, i.e. there is a meta-argument
C ′ ∈ � s.t. C ′ R′ Cb. This means that � defends Ca which is outside it. Contradiction with the fact that �

is a complete extension of HG .
Grounded
⇒) Let E be the grounded extension of G and �E is the corresponding set of meta-arguments defined

as above. It follows from the ⇒) part of the proof of the complete semantics, that �E is a complete
extension of HG . Suppose that �E is not the grounded extension of HG , i.e., there is �′ ⊂ �E s.t. �′ is
a complete extension of HG . From the ⇐) part of the proof of the complete semantics, it follows that
E�′ = ⋃

C∈�′ C is a complete extension of G. But since �′ ⊂ �E it is obvious that E�′ ⊂ E�E = E .
Contradiction with the fact that E is the grounded extension of G.

⇐) Let � be the grounded extension of HG , i.e. the ⊆-minimal complete extension of HG . Then, from
the ⇐) part of the proof of the complete semantics, it follows that the set of arguments E� = ⋃

C∈� C
is a complete extension of G. Suppose for the sake of contradiction that E� is not the minimal complete
extension of G, i.e., that there is a set E ′ ⊂ E� and E ′ is a complete extension of G. From the ⇒) part of
the proof of the complete semantics, it follows that �E ′ is a complete extension of HG . But since E ′ ⊂ E�

it is obvious that �E ′ ⊂ �E�
= �. Contradiction with the fact that � is the grounded extension of HG .

Preferred
⇒) Let E be a preferred extension of G and �E is the corresponding set of meta-arguments defined

as above. It follows from the ⇒) part of the proof of the complete semantics, that �E is a complete
extension of HG . Suppose that �E is not a preferred extension of HG , i.e., there is �′ ⊃ �E s.t. �′ is
a complete extension of HG . From the ⇐) part of the proof of the complete semantics, it follows that
E�′ = ⋃

C∈�′ C is a complete extension of G. But since �′ ⊃ �E it is obvious that E�′ ⊃ E�E = E .
Contradiction with the fact that E is a preferred extension of G.

⇐) Let � be a preferred extension of HG , i.e. a ⊆-maximal complete extension of HG . Then, from
the ⇐) part of the proof of the complete semantics, it follows that the set of arguments E� = ⋃

C∈� C
is a complete extension of G. Suppose for the sake of contradiction that E� is not a maximal complete
extension of G, i.e., that there is a set E ′ ⊃ E� and E ′ is a complete extension of G. From the ⇒) part of
the proof of the complete semantics, it follows that �E ′ is a complete extension of HG . But since E ′ ⊃ E�

it is obvious that �E ′ ⊃ �E�
= �. Contradiction with the fact that � is a preferred extension of HG .
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Stable
⇒) Let E be a stable extension of G and �E is the corresponding set of meta-arguments defined

as above. It follows from the ⇒) part of the proof of the complete semantics, that �E is a complete
extension of HG . Suppose that �E is not a stable extension of HG , i.e., there is a meta-argument Ca /∈ �E
associated to an argument a /∈ E s.t. �E 
 R′ Ca . Thus, there is an argument a /∈ E and a coherent set Ca

containing a s.t. E 
 R Ca . Contradiction with the fact that E is a stable extension of G.
⇐) Let � be a stable extension of HG , i.e. a complete extension of HG which attacks any meta-

argument outside it. Then, from the ⇐) part of the proof of the complete semantics, it follows that the
set of arguments E� = ⋃

C∈� C is a complete extension of G. Suppose for the sake of contradiction that
E� is not a stable extension of G, i.e., that there is an argument a /∈ E� and a coherent set C containing a

s.t. E 
 R C. This means, there exists a meta-argument Ca ⊆ C associated to a (if C itself is a ⊆-minimal
coherent set containing a, then Ca = C, otherwise it is easy to check that a ⊆-minimal coherent set
Ca ⊂ C containing a always exists) s.t. Ca /∈ � and � 
 R′ Ca . Contradicts the fact that � is a stable
extension of HG .

Semi-stable
⇒) Let E be a semi-stable extension of G and �E is the corresponding set of meta-arguments defined

as above. It follows from the ⇒) part of the proof of the complete semantics, that �E is a complete
extension of HG . Suppose that �E is not a semi-stable extension of HG , i.e., there is �′ ⊆ A′ s.t. �′ is a
complete extension of HG and (�′ ∪ �′ d) ⊃ (�E ∪ �d

E). From the ⇐) part of the proof of the complete
semantics, it follows that E�′ = ⋃

C∈�′ C is a complete extension of G. From (�′ ∪ �′ d) ⊃ (�E ∪ �d
E) it

is easy to verify that (E�′ ∪ Ed
�′) ⊂ (E ∪ Ed). Contradiction with the fact that E is a semi-stable extension

of G.
⇐) Let � be a semi-stable extension of HG , i.e. a ⊆-maximal complete extension of HG . Then, from

the ⇐) part of the proof of the complete semantics, it follows that the set of arguments E� = ⋃
C∈� C is

a complete extension of G. Suppose for the sake of contradiction that E� is not a semi-stable extension
of G, i.e., that there is a set E ′ ⊆ A s.t. E ′ is a complete extension of G and (E ′ ∪ E ′ d) ⊃ (E� ∪ Ed

�). From
the ⇒) part of the proof of the complete semantics, it follows that �E ′ is a complete extension of HG .
But from (E ′ ∪ E ′ d) ⊃ (E� ∪ Ed

�) it is easy to check that (�E ′ ∪ �d
E ′) ⊃ � ∪ �d . Contradiction with the

fact that � is a semi-stable extension of HG . �

Proof of Theorem 5.1. To prove the theorem let us first prove the following lemma which says that any
atom not appearing as a head in any rule of an LP is interpreted as false in any P-stable model of this LP.

Lemma 2. Let � be an LP and I = 〈T , F 〉 be a P-stable model of �. If a is an atom of (HB�\Head(�))

then I (a) = f.

Proof of Lemma 2. By definition, I is the least model of the generalized reduct �I of � by I . Hence,
I is the fixpoint obtained by repeating the application of the operator � on �I starting from the inter-
pretation 〈∅,HB�〉. Let a ∈ (HB� \ Head(�)). From the definition of � it is clear that the only way to
assign the values t or u to a is to have a rule r in πI s.t. a = Head(r) which is obviously not possible
for a. Then, a receives necessarily the value f. Notice also that from the previous lemma, it follows that
I and I ′ agree on atoms whose truth value is undefined (u), i.e. HB� \ (T ∪ F) = HB�′ \ (T ∪ F ′). �

Now let us turn to our theorem. Let � be an LP and �′ be the LP resulting from its simplification.
We consider the partition of the rules of � constituted from the following sets of rules. �1 = {r ∈
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� | (Body+(r) ∪ Body−(r)) ⊆ Head(�)} (rules whose all atoms of the body appear in the set of
heads of � rules); �2 = {r ∈ � | a /∈ Head(�) for some a ∈ Body+(r)} and �3 contains the
possible remaining rules, i.e., rules whose positive body is included in the set of heads of � rules, but
at least an atom of the negative body does not appear in the set of heads of � rules, i.e., �3 = {r ∈
�|Body+(�) ⊆ Head(�) and a /∈ Head(�) for some a ∈ Body−(r)}. Then, clearly �′ = �1 ∪ �′

3
where �′

3 is obtained from �3 by removing any expression not a s.t. a /∈ Head(�). Let �I (resp.
�′ I ′

) be the generalized reduct of � (resp. of �′) by I (resp. by I ′). Then, �I = �I
1 ∪ �I

2 ∪ �I
3 and

�′ I ′ = �I ′
1 ∪�′ I ′

3 where �I
1 (resp. �I

2, �I
3, �I ′

1 , �′ I ′
3 ) is obtained from �1 (resp. from �2, �3, �1, �′

3)
by replacing in every rule of �1 (resp. of �2, �3, �1, �′

3) any expression not a by f if I (a) = t (resp.
if I (a) = t, I (a) = t, I ′(a) = t, I ′(a) = t), by t if I (a) = f (resp. if I (a) = f, I (a) = f, I ′(a) = f,
I ′(a) = f) and by u if I (a) = u (resp. if I (a) = u, I (a) = u, I ′(a) = u, I ′(a) = u). It is easy to verify
that �I

1 = �I ′
1 since I and I ′ agree on each atom appearing in �1. Each rule in �I

3 corresponds exactly
to a rule in �′ I ′

3 to which we add to the body at least one t corresponding to expressions not a where a

does not appear in Head(�) (Lemma 2 shows that their value in I is f).
Now let I0 = 〈∅,HB�〉 and I ′

0 = 〈∅,HB�′ 〉. Let �n(I0) = In = 〈Tn, Fn〉 (resp. �n(I ′
0) = I ′

n =
〈T ′

n, F
′
n〉) be the result of n successive applications of � on � (resp. �′) starting from I0 (resp. from I ′

0).
The proof of our theorem turns out to prove that for every n � 0, T ′

n = Tn and F ′
n = Fn ∩HB�′ . It is easy

to check that this is equivalent to the fact that T ′
n = Tn and U ′

n = Un where Un (resp. U ′
n) are the atoms

having the truth value u in the interpretation �n(I0) (resp. �n(I ′
0)). Let us prove this fact by induction

on n.

• For n = 0, �0(I0) = I0 and �0(I ′
0) = I ′

0. The fact is true since T0 = T ′
0 = ∅ and U0 = U ′

0 = ∅.
• Suppose Tn = T ′

n and Un = U ′
n and prove that Tn+1 = T ′

n+1 and Un+1 = U ′
n+1. Let a ∈ HB� s.t.

In+1(a) = t, then there is a rule r : a ← a1, . . . , ak in �I s.t. for all i � k, In(a) = t. It is clear
that r /∈ �I

2. Indeed, every rule r ′ /∈ �I
2 has in its body at least an atom from (HB� \ Head(�))

which has necessarily the value f since from the definition of �, such an atom can never receive
the value t or u. If r ∈ �I

1 then I ′
n+1(a) = In+1(a) = t since �I

1 = �′ I ′
and Tn = T ′

n. If r ∈ �I
3

then there is a rule r ′ : a ← a′
1, . . . , a

′
m in �′ I ′

3 s.t. m < k, {a′
1, . . . , a

′
m} ⊆ {a1, . . . , ak} and for

all b ∈ ({a1, . . . , ak} \ {a′
1, . . . , a

′
m}), b = t. Since Tn = T ′

n it follows that I ′
n+1(a) = In+1(a) = t.

Inversely, let a ∈ HB�′ s.t. I ′
n+1(a) = t, then there is a rule r : a ← a1, . . . , ak in �′ I ′

s.t. for all
i � k, I ′

n(a) = t. If r ∈ �′ I ′
1 then In+1(a) = I ′

n+1(a) = t since �I
1 = �′ I ′

and Tn = T ′
n. If r ∈ �′ I ′

3

then there is a rule r ′ : a ← a′
1, . . . , a

′
m in �′ I ′

3 s.t. m > k, {a1, . . . , ak} ⊆ {a′
1, . . . , a

′
k} and for all

b ∈ ({a′
1, . . . , a

′
m} \ {a1, . . . , ak}), b = t. Since Tn = T ′

n it follows that In+1(a) = I ′
n+1(a) = t.

Let a ∈ HB� s.t. In+1(a) = u, then In+1(a) 
= t and there is a rule r : a ← a1, . . . , ak in �I

s.t. for all i � k, In(a) 
= f. It is clear that r /∈ �I
2. Indeed, every rule r ′ /∈ �I

2 has in its body at
least an atom from (HB� \ Head(�)) which has necessarily the value f since from the definition
of �, such an atom can never receive the value t or u. If r ∈ �I

1 then I ′
n+1(a) = In+1(a) = u

since �I
1 = �′ I ′

, Tn = T ′
n and Un = U ′

n. If r ∈ �I
3 then there is a rule r ′ : a ← a′

1, . . . , a
′
m in

�′ I ′
3 s.t. m < k, {a′

1, . . . , a
′
m} ⊆ {a1, . . . , ak} and for all b ∈ ({a1, . . . , ak} \ {a′

1, . . . , a
′
m}), b = t.

Since Tn = T ′
n and Un = U ′

n it follows that I ′
n+1(a) = In+1(a) = u. Inversely, let a ∈ HB�′ s.t.

I ′
n+1(a) = u, then I ′

n+1(a) 
= t and there is a rule r : a ← a1, . . . , ak in �′ I ′
s.t. for all i � k,

I ′
n(a) 
= f. If r ∈ �′ I ′

1 then In+1(a) = I ′
n+1(a) = u since �I

1 = �′ I ′
, Tn = T ′

n and Un = U ′
n. If

r ∈ �′ I ′
3 then there is a rule r ′ : a ← a′

1, . . . , a
′
m in �′ I ′

3 s.t. m > k, {a1, . . . , ak} ⊆ {a′
1, . . . , a

′
k}
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and for all b ∈ ({a′
1, . . . , a

′
m} \ {a1, . . . , ak}), b = t. Since Tn = T ′

n and Un = U ′
n it follows that

In+1(a) = I ′
n+1(a) = u. �

Proof of Corollary 5.2. The proof follows easily from Definition 2.7. �

Proof of Theorem 5.6. Complete labelling – P-stable model

• L is a complete labelling ⇒ Int(L) is a P-stable model
Let L = (IN, OUT, UND) be a complete labelling of G� and I = Int(L) = 〈T , F 〉 be the
associated 3-valued interpretation of �. To prove that I is a P-stable model of � we have to prove
that I is the minimal fixpoint of the operator � applied on the generalized reduct �I , i.e. the fixpoint
obtained by the successive application of the operator � on �I starting from the interpretation
I0 = 〈∅,HB�〉. Let us denote by �n the operator corresponding to the application of � for n

successive times.
First, let us show that I is a fixpoint of �, i.e. �(I) = I . For that purpose, it suffices to show
that: ∀a ∈ HB�, �(I)(a) = t iff I (a) = t and �(I)(a) = f iff I (a) = f (it follows then that
�(I)(a) = u iff I (a) = u). Let a ∈ HB�:
�(I)(a) = t iff ∃r ∈ � s.t. r = a ← a1, . . . , am, not am+1, . . . , an. with
∀i ∈ {1, . . . , m} : I (ai) = t and ∀j ∈ {m + 1, . . . , n} : I (aj ) = f.
iff ∃r ∈ � s.t. r = a ← a1, . . . , am, not am+1, . . . , an. with
∀i ∈ {1, . . . , m}, ∃ri ∈ � : Head(ri) = ai and L(ri) = in and
∀j ∈ {m + 1, . . . , n}, ∀rj ∈ � s.t. Head(rj ) = aj , L(ri) = out. iff ∃r ∈ � s.t.
r = a ← a1, . . . , am, not am+1, . . . , an. and L(r) = in.
iff I (a) = t.

�(I)(a) = f iff ∀r ∈ � s.t. r = a ← a1, . . . , am, not am+1, . . . , an.,
∃i ∈ {1, . . . , m}: I (ai) = f or ∃j ∈ {m + 1, . . . , n}: I (aj ) = t.
iff ∀r ∈ � s.t. r = a ← a1, . . . , am, not am+1, . . . , an.,
either ∃i ∈ {1, . . . , m}, ∀ri ∈ � s.t. Head(ri) = ai , L(ri) = out
or ∃j ∈ {m + 1, . . . , n}, ∃rj ∈ � s.t. Head(rj ) = aj , L(ri) = in. iff ∀r ∈ � s.t.
r = a ← a1, . . . , am, not am+1, . . . , an., L(r) = out.
iff I (a) = f.

Now it remains to show minimality of I . To do so, it suffices to show that the successive applications
of � on �I starting from I0 will mark as true any atom a s.t. I (a) = t (I (a) = t ⇒ ∃n � 1 s.t.
�n(I0)(a) = t) and as false any atom a s.t. I (a) = f (I (a) = f ⇒ ∀n � 1, �n(I0)(a) = f).
Indeed, since I has been shown to be a fixpont of � and since the successive application of � on
�I starting from I0 yields the minimal fixpoint of � then it is clear that further applications of �

cannot add to I neither true nor false atoms.

∗ (I (a) = t ⇒ ∃n � 1 s.t. �n(I0)(a) = t)
Let a ∈ HB� s.t. I (a) = t. From safety of L it follows that there is a sequence r1, . . . , rs ∈ IN(L)

s.t. Head(rs) = a and {r1, . . . , rs} is a meta-argument for rs in the sense of Definition 4.2.
We can construct a partition R1, . . . , Rk of k sets of {r1, . . . , rs} (k � s) with Rk = {rs}, if
r ∈ R1 then Body+r = ∅ (R1 
= ∅ since at least r1 ∈ R1), if r ∈ Ri (1 < i � k) then
Body+r ⊆ ⋃

j<i Head(rj ) and ∀r ∈ Ri (1 � i � k), if r ′ ∈ � is s.t. Head(r ′) ∈ Body−(r)
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then L(r ′) = out. Now, we prove by induction on i that: (Prop) : ∀i ∈ {1, . . . , k}, if r ∈ Rk and
Head(r) = a then �i(I0)(a) = t (our result follows then by taking i = k).
For i = 0, let r ∈ R0 and Head(r) = a. Since we have: if r ′ ∈ � is s.t. Head(r ′) ∈ Body−(r)

then I (a′) = out, it follows that I (a′) = f for every a′ ∈ Body−(r). Thus �1(I0)(a) =
�(I0)(a) = t.
Suppose that (Prop) holds for any j � i < k and show that it holds for i + 1. Let r ∈ Ri+1 and
Head(r) = a. If a′ ∈ Body+(r) then it holds that a′ = Head(r ′) for some r ′ ∈ Rj with j � i.
From the induction hypothesis it follows that �j(I0)(a

′) = t, hence �i(I0)(a
′) = t. Moreover, if

a′ ∈ Body−(r) then I (a′) = f. It follows that �i+1(I0)(a) = t.
∗ I (a) = f ⇒ ∀n � 1, �n(I0)(a) = f Let a ∈ HB� s.t. I (a) = f. Then, for every rule r whose

head is a i.e., of the form r : a → a0, . . . , am, not am+1, . . . , not an we have that L(r) = out.
Since L is completely, r is legally out and two cases are possible. The first case is that for some
j ∈ {m + 1, . . . , n} there is a rule rj s.t. Head(rj ) = aj and L(rj ) = in which implies that
I (aj ) = t. In this case, it is clear that for every n � 1, �n(I0)(a) = f. The second case is that for
some i ∈ {0, . . . , m}, for all rule ri s.t. Head(ri) = ai it holds that L(ri) = out which implies
that I (ai) = f. In this case we repeat for aj the same reasoning for r . since the number of rules
is finite, either every starting rule r is involved in a cycle or for any (minimal) sequence of rules
r1, . . . rk verifying: Head(rk) = a, Body+(r1) = ∅ and for i > 1, Body+(ri) = ⋃

j<i Head(rj ),
there is at least one rule r of the sequence s.t. I (b) = t for some b ∈ Body−(r). In both cases, it
is clear that there is no mean to assign to a the value t or u.

• Label(I ) is a complete labelling ⇐ I is a P-stable model
Let I be a P-stable model of �, i.e. a minimal fixpoint of the generalized reduct �I . Then, �(I) = I

(The application of � is on �I ) and I is a minimal interpretation satisfying the previous equality.
Let L = Label(I ), we prove that for every r ∈ G�, if r is labelled in (resp. out, undec) in L then
it is legally ∈ (resp. legally out, legally undec) and that L is safe.
Let r :∈ G� of the form a → a0, . . . , am, not am+1, . . . , not an s.t. L(r) = in. Since L(r) = in and
from the definition of the function Label, it follows that for all i ∈ {0, . . . , m}, I (ai) = t and for
all j ∈ {m + 1, . . . , n}, I (aj ) = f. Now, suppose for the sake of contradiction that r is illegally in.
Two cases are possible.
Case 1: there is a rule r ′ s.t. L(r ′) 
= out and r ′R�r , i.e., there is a rule r ′ s.t. L(r ′) 
= out
and Head(r ′) = aj for some j ∈ {m + 1, . . . , n}. Suppose that r ′ has the form: r ′ : aj →
a′

0, . . . , a
′
m′, not a′

m′+1, . . . , a
′
n′ . If L(r ′) = in then from the definition of Label, for all i ∈

{0, . . . , m′}, I (a′
i) = t and for all j ∈ {m′ + 1, . . . , n′}, I (a′

j ) = f. But from �(I) = I it fol-
lows that I (aj ) = t which contradicts the fact that for all j ∈ {m + 1, . . . , n}, I (aj ) = f. If
L(r ′) = undec, a similar reasoning yields I (aj ) = u which contradicts also the same fact.
Case 2: there is a set of rules Ri s.t. for every r ′ ∈ Ri , L(r ′) 
=∈ and RiN�r , i.e., for some
i ∈ {0, . . . , m}, for every rule r ′ s.t. Head(r ′) = ai (the set Ri contains all such rules and
only them), we have that L(r ′) 
= in. Let r ′ ∈ Ri and consider that r ′ has the form aj →
a′

0, . . . , a
′
m′, not a′

m′+1, . . . , a
′
n′ . If L(r ′) = out then from the definition of Label it follows that:

there is either i ∈ {0, . . . , m′} s.t. I (a′
i) = f or j ∈ {m′+1, . . . , n′} s.t. I (a′

j ) = t. If L(r ′) = undec
then from the definition of Label it follows that: (1) there is either i ∈ {0, . . . , m′} s.t. I (a′

i) 
= t
or j ∈ {m′ + 1, . . . , n′} s.t. I (a′

j ) 
= f and (2) for all i ∈ {0, . . . , m′}, I (a′
i) 
= f and for all

j ∈ {m′ + 1, . . . , n′}, I (a′
j ) 
= t. But then from �(I) = I it follows that either I (ai) = f or

I (ai) = f i.e., I (ai) 
= t which contradicts the fact that for all i ∈ {0, . . . , m}, I (ai) = t.
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By a similar reasoning one can prove that if r is labelled out (resp. undec) in L then it is legally out
(resp. undec).

For safety of L, let r be a rule r ∈ IN(L) with Head(r) = a. From the definition of the function
Label and the fact that r is legally in it follows that I (a) = t. Now, for the sake of contradiction,
suppose that r is not powerful in IN(L). Thus, if r1 . . . rn is a minimal sequence of rules s.t. rn = r ,
Body+(r1) = ∅ and for all i ∈ {2, . . . , n}, Body+(ri) ⊆ ⋃

j<i Head(rj ), there is a rule r ′ of the
sequence s.t. L(r ′) 
= in, i.e. L(r ′) = out or L(r ′) = undec. By considering the structure of r ′ and
the definition of the function label it follows that the possible values of I for the atoms appearing in the
body of r ′ do never allow one to use r ′ in a process ending by assigning the value t to a. Contradiction.

Grounded labelling – Well-founded model

• L is a grounded labelling ⇒ Int(L) is a well-founded model
Let L = (IN, OUT, UND) be the grounded labelling of G�. Then L is also complete and hence
I = Int(L) = 〈T , F 〉 is a P-stable model of �. Suppose that I is not the P-stable model of �

having the minimal set T . Thus, it exists a P-stable model I ′ = 〈T ′, F ′〉 of � s.t. T ′ ⊂ T . It follows
that L′ = Label(I ′) = (IN′, OUIT′, UND′) is a complete labelling of G�. But, from the definition
of the function Label it is easy to check that IN′ ⊂ IN which contradicts the fact that L is the
grounded labelling of G�.

• Label(L) is a grounded labelling ⇐ I is a well-founded model
Let I = 〈T , F 〉 be the Well-founded model of �. Then I is also a P-stable model of � and
hence L = Label(I ) = (IN, OUT, UND) is a complete labelling of G�. Suppose that L is
not the complete labelling G� having the minimal set IN. Thus, it exists a complete labelling
L′ = (IN′, OUT′, UND′) of G� s.t. IN′ ⊂ IN. It follows that I ′ = Int(L′) = (T ′, F ′) is a P-
stable model �. But, from the definition of the function Int it is easy to check that T ′ ⊂ T which
contradicts the fact that I is the well-founded model of �.

Preferred labelling – M-stable model
We obtain that if L is a preferred labelling of G� (resp. if I is an M-stable model of �) then Int(L) is

an M-stable model of � (resp. then Label(I ) is a preferred labelling of G�) by a proof similar to the
previous one.

Stable labelling – Stable model

• L is a stable labelling ⇒ Int(L) is a stable model
Let L = (IN, OUT, UND) be a stable labelling of G�. Then L is a complete labelling of G� s.t.
OUT = ∅. Hence, I = Int(L) = 〈T , F 〉 is a P-stable model of �. But, from the definition of
Label it is easy to check that no atom of � can receive the value u, i.e., IN ∪ OUT = HB(�).
Thus, I = Int(L) is a stable model of �.

• Label(L) is a stable labelling ⇐ I is a stable model
Let I = 〈T , F 〉 be a stable model of �. Then I is P-stable model of � s.t. T ∪ F = ∅. Hence,
L = Label(I ) = (IN, OUT, UND) is a complete labelling of G�. But, from the definition of Int
it is easy to check that UND = ∅ Thus, L = Label(I ) is a stable labelling of G�.

Semi-stable labelling vs L-stable model

• L is a semi-stable labelling � Int(L) is an L-stable model
Consider a counter-example. We take the LP � with the rules: {(x) : c → not c; (y) :
a → not b; (z) : c → not c; (u) : c → not c; (v) : c → not c}. The correspond-
ing AFN using Definition 5.3 is G� = 〈A�,R�,N�〉 with A� = {x, y, z, u, v}, R� =
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{(x, x), (x, u), (y, z), (z, y), (u, u), (u, x), (v, v)} and N = {(z, u), (y, v)}. G� has two semi-
stable labellings: L1 = ({y}, {z, u}, {x, v}) and L2 = ({z}, {y, v}, {x, u}). We can verify that
Int(L1) = 〈{a}, {b}〉 and Int(L2) = 〈{b}, {a, g}〉 but Int(L2) is an L-stable model of � but
Int(L1) is not.

• Label(I ) is a semi-stable labelling � I is an L-stable model
Consider a counter-example. We take the LP � with the rules: {(x) : c → e not c; (y) : a →
not b; (z) : b → not a; (u) : c → b, not c; (v) : g → a not g; (w) : d → not e; (k) :
e → not d}. The corresponding AFN using Definition 5.3 is G� = 〈A�,R�,N�〉 with A� =
{x, y, z, u, v, w, k}, R� = {(x, x), (x, u), (y, z), (z, y), (u, u), (u, x), (v, v), (w, k), (k, w)} and
N = {(z, u), (y, v), (k, x)}. � has three L-stable models: I1 = 〈{a, d}, {b, c, e}〉, I2 =
〈{b, d}, {a, e, g}〉 and I3 = 〈{b, e}, {a, d, g}〉. We can verify that Label(I1) = ({y, w}, {x, z, u, k},
{v}), Label(I2) = ({z, w}, {x, y, v, k}, {u}) and Label(I3) = ({z, k}, {y, v, w}, {x, u}). Only
Label(I1) and Label(I2) are semi-stable labellings. Label(I3) is not a semi-stable la-
belling. �

Proof of Theorem 5.7. Follows from Theorem 5.6 and Definitions 5.4 and 5.5. �

Proof of Theorem 5.11. Complete labelling – P-stable model
⇒) Let L be a complete labelling of G and IL = Int′(L). We prove that IL is a least fix point of �.

(1) Case 1. a ∈ A
• prove that �(IL)(a) = t iff IL(a) = t

�(IL)(a) = t iff there is a rule r : a ← e1, . . . , em, not a1, not an s.t. ∀i ∈ {1, . . . , m},
IL(ei) = t and ∀j ∈ {1, . . . , n}, IL(aj ) = f.
iff there is a rule r : a ← e1, . . . , em, not a1, not an s.t. ∀i ∈ {1, . . . , m} there is a rule: ei ← ai

with L(ai) = in and ∀j ∈ {1, . . . , n}, IL(aj ) = f.
iff there is a rule r : a ← e1, . . . , em, not a1, not an s.t. ∀Ei ⊆ A with Ei N r , ∃ai ∈ Ei s.t.
L(ai) = in and ∀j ∈ {1, . . . , n}, L(aj ) = out.
iff L(a) = in.
iff IL(a) = t.

• prove that �(IL)(a) = f iff IL(a) = f
�(IL)(a) = f iff for all rule r : a ← e1, . . . , em, not a1, not an, ∃i ∈ {1, . . . , m}s.t.IL(ei) = f
or ∃j ∈ {1, . . . , n} s.t. IL(aj ) = t.
iff for all rule r : a ← e1, . . . , em, not a1, not an, ∃i ∈ {1, . . . , m} s.t; for all rule: ei ← ai ,
L(ai) = out or ∃j ∈ {1, . . . , n} s.t. IL(aj ) = t.
iff for all rule r : a ← e1, . . . , em, not a1, not an, ∃Ei ⊆ A with Ei N r , ∀ai ∈ Ei , L(ai) =
out or ∃j ∈ {1, . . . , n} s.t. aj R r and L(aj ) = in.
iff L(a) = out.
iff IL(a) = f.

• The proof that �(IL)(a) = u iff IL(a) = u follows immediately from the previous two proofs.

(2) Case 2. e ∈ A′

• prove that �(IL)(e) = t iff IL(e) = t
�(IL)(e) = t iff there is a rule r : e ← a s.t. IL(a) = t.
iff there is a rule r : e ← a s.t. L(a) = in.
iff IL(e) = t.
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• prove that �(IL)(e) = f iff IL(e) = f
�(IL)(e) = f iff for all rule r : e ← a, IL(a) = f.
iff for all rule r : e ← a, L(a) = out.
iff IL(e) = f.

• The proof that �(IL)(e) = u iff IL(e) = u follows immediately from the previous two proofs.

To prove minimality of IL it suffices to show (in a similar way as in theorem 5.6) that the successive
application of the operator � on �G starting from I0 yields to an interpretation in which all true (resp.
false) atoms of IL are true (resp. false).

⇐) Let I = 〈T , F 〉 be a P-stable model of �G and prove that LI = (I )(T ∩A, F ∩A,A \ (T ∪ F))

is a complete labelling of G, i.e., all arguments of G are labelled legally in LI and LI is safe.

• Let a be an argument of G labelled in. Then, there is in �G a unique rule r : a ←
e1, . . . , em, not a1, . . . , not an with I (a) = t. It follows that ∀i ∈ {1, . . . , m}, I (ei) = t and
∀j ∈ {1, . . . , m}, I (aj ) = f. Thus, for all E ⊆ A s.t. E N a, there exists ai ∈ E s.t. LI (ai) = in
and for all aj ∈ A s.t. aj R a, L(aj ) = out. It follows that a is legally in.

• Let a be an argument of G labelled out. Then, there is in �G a unique rule r : a ←
e1, . . . , em, not a1, . . . , not an with I (a) = f. It follows that either ∃i ∈ {1, . . . , m}, I (ei) = f
or ∃j ∈ {1, . . . , m}, I (aj ) = t. Thus, either there exists E ⊆ A s.t. E N a and for all ai ∈ E,
LI (ai) = out or there exists aj ∈ A s.t. aj R a and L(aj ) = in. It follows that a is legally out.

• Let a be an argument of G labelled undec. Then, there is in �G a unique rule r : a ←
e1, . . . , em, not a1, . . . , not an with I (a) = u. It follows that ∀i ∈ {1, . . . , m}, I (ei) 
= f and
∀j ∈ {1, . . . , m}, I (aj ) 
= t and either ∃i ∈ {1, . . . , m} s.t. I (ei) 
= t or ∃j ∈ {1, . . . , n} s.t.
I (aj ) 
= f. Thus, for all E ⊆ A s.t. E N a, E � out(LI ) and for all aj ∈ A s.t. aj R a,
L(aj ) 
= in and either there is E ⊆ A s.t. E N a and E ∩ in(LI ) 
= ∅ or there is aj ∈ A s.t.
aj R a and L(aj ) 
= out. It follows that a is legally undec.

To show safety of LI , observe that if we suppose the contrary, then by assigning f to each atom
corresponding to an argument which is not powerful in in(LI ) and to the corresponding atoms ei , the
obtained interpretation is still a fixpoint of �G which contradicts the minimality of I .

Grounded labelling – Well-founded model
⇒) If L is the grounded labelling of G then it is also complete, thus IL = Int′(L) is a P-stable model

of �G . Suppose that IL is not well-founded, i.e., that there is a P-stable model I ′ = 〈T ′, F ′〉 of �G with
T ′ ⊂ T . It follows that the labelling LI ′ = (T ′ ∩A, F ′ ∩A,A \ (T ′ ∪ F ′)) is a complete labelling of G.
It is easy to check that in(LI ′) ⊂ in(L) which contradicts the fact that L is the grounded labelling of G.

⇐) If I = 〈T , F 〉 is the well-founded model of �G then it is also P-stable, thus LI = Label′(I ) is
a complete labelling of G. Suppose that LI is not grounded, i.e., that there is a complete labelling L′ s.t;
in(L′) ⊂ in(LI ). It follows that the labelling Int(L′) = 〈T ′, F ′〉 is a P-stable model of �G . It is easy to
check that T ′ ⊂ T which contradicts the fact that I is the well-founded model of �G .

Preferred labelling – M-stable model
The proof is similar to the previous one.
Stable labelling – Stable model
⇒) If L is a stable labelling of G then it is complete and undec(L) = ∅. Thus, IL = Int′(L) is a

P-stable model of �G . Moreover, for each atom of A in �G there is one and only one rule of �G which
labelled in L either in or out but never undec. From the definition of the function Int′, it is easy to
check that for each atom a ∈ A ∪ A′, we have that I(L)(a) equals either t or f but never u. Thus I(L) is
a P-stable model of �G without undefined atoms, i.e., a stable model of �G .
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⇐) If I 〈T , F 〉 is a stable model of �G then it is a P-stable model and T ∪ F = HB�G . Thus, LI =
Label′(I ) is a complete labelling of G. Moreover, for each argument of G there is one and only one
rule of �G whose any body’s atom has either the truth value t or f by I but never the value u. From the
definition of the function Label′, it is easy to check that for each argument a in G, we have that L(I )(a)

is either in or out but never undec. Thus L(I ) is a complete labelling of G without arguments labelled
undec, i.e., a stable labelling of G.

Semi-stable labelling – L-stable model
The proof is similar to that for the link between grounded (resp. preferred) labelling of G and well-

founded (resp. M-stable) models of �G . �
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