
Argument & Computation 15 (2024) 21–48 21
DOI 10.3233/AAC-210027
IOS Press

A concurrent language for modelling agents
arguing on a shared argumentation space

Stefano Bistarelli and Carlo Taticchi ∗

Department of Mathematics and Computer Science, University of Perugia, Italy
E-mails: stefano.bistarelli@unipg.it, carlo.taticchi@unipg.it

Abstract. While agent-based modelling languages naturally implement concurrency, the currently available languages for ar-
gumentation do not allow to explicitly model this type of interaction. In this paper we introduce a concurrent language for
handling agents arguing and communicating using a shared argumentation space. We also show how to perform high-level
operations like persuasion and negotiation through basic belief revision constructs, and present a working implementation of
the language and the associated web interface.

Keywords: Argumentation theory, belief revision, concurrency, agents, language

1. Introduction

Many applications in the field of artificial intelligence aim to reproduce the human behaviour and
reasoning in order to allow machines to think and act accordingly. One of the main challenges in this
sense is to provide tools for expressing a certain kind of knowledge in a formal way so that the machines
can use it for reasoning and infer new information. Argumentation Theory provides formal models for
representing and evaluating arguments that interact with each other. Consider, for example, two people
arguing about whether lowering taxes is good or not. The first person says that a) lowering taxes would
increase productivity; the second person replies with b) a study showed that productivity decreases when
taxes are lowered; then, the first person adds c) the study is not reliable since it uses data from unverified
sources. The dialogue between the two people is conducted through three main arguments (a, b and c)
whose internal structure can be represented through different formalisms [40,46], and for which we can
identify the relations b attacks a and c attacks b. In this paper, we use the representation for Abstract
Argumentation Frameworks (AFs in short) introduced by Dung [32], in which arguments are abstract,
that is their internal structure, as well as their origin, is left unspecified. The example dialogue illustrated
above can be modelled through an AF as shown in Fig. 1.

AFs have been widely studied from the point of view of the acceptability of arguments and several au-
thors have investigated their dynamics, taking into account both theoretical [21,43] and computational1

aspects. Logical frameworks for argumentation, like the ones presented in [29,30], have been introduced
to fulfil the operational tasks related to the study of dynamics in AFs, such as the description of AFs,
the specification of modifications, and the search for sets of “good” arguments. Although some of these

*Corresponding author. E-mail: carlo.taticchi@unipg.it.
1For example, a special track on dynamics appeared in the Third International Competition on Computational Models of

Argumentation [10,11].

1946-2166 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:stefano.bistarelli@unipg.it
mailto:carlo.taticchi@unipg.it
mailto:carlo.taticchi@unipg.it
https://creativecommons.org/licenses/by-nc/4.0/

22 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Fig. 1. Example of AF with three arguments.

languages could be exploited to implement applications based on argumentation, for instance, to model
debates among political opponents, none of them considers the possibility of intelligent agents arguing
with each other in a dynamic, concurrent environment where multiple reasoning and communication
processes can take place simultaneously. This lack represents a significant gap between the reasoning
capacities of AFs and their possible use in real-life AI-based tools. Consider, for example, the situation
where two debating agents share an argumentation space represented by an AF and are capable of rea-
soning about their beliefs through argumentation semantics. Different kinds of interaction can take place
between the two agents (they might want to discuss a certain topic, cooperate to find an optimal solution
for a negotiation, or one could try to persuade the other to accept some terms), and since their reasoning
processes could take place concurrently, the outcome produced by the interaction may vary according to
how synchronisation is handled. Indeed, not only agents can act in different order (for access to memory
and information update), but also arguments acceptability can change depending on how the concurrent
interaction occurs. We will further elaborate on this in Section 3, where we give examples of how multi-
ple argumentative processes are executed concurrently. The number of issues generated by simultaneous
interactions increases with the number of actors (human or virtual) involved in a given process: if it
is true that two housemates arguing about who should be the first to use the shower will not run into
any problems related to the timing with which they present their arguments, the same cannot be said
of larger systems in which hundreds or thousands of virtual agents representing IoT devices enter into
negotiations over, for instance, a shared resource. In this case, proper management of the various actions
taking place simultaneously, within the reasoning process in which the agents are involved, is essential
to the functioning of the system. The possibility of modelling this type of situation falls, in fact, in the
sphere of interest of research on computational argumentation, which also aims to provide systems in
which virtual agents (also miming the behaviour of human counterparts) can reason automatically.

Motivated by the above considerations, we introduce a concurrent language for argumentation (cla)
that can be used for modelling different types of interaction between agents (such as negotiation and
persuasion). In particular, our language allows for modelling concurrent processes, inspired by notions
such as the Ask-and-Tell constraint system [44], and using an AF as a centralised store. Such AF provides
a representation of the state of the world shared by all agents involved in the same process and enables
agents to reason through argumentation paradigms. The language is thus endowed with primitives for
the specification of interaction between agents through the fundamental operations of adding (or remov-
ing) and checking arguments and attacks. Using these primitives to build more sophisticated processes,
we can model debating agents (e.g., chatbots) that take part in a conversation, provide arguments and
make decisions based on the structure and the semantics of the AF represented in the shared argumenta-
tion space. Alchourrón, Gärdenfors, and Makinson (AGM) theory [1] gives operations (like expansion,
contraction and revision) for updating and revising beliefs on a knowledge base. Our language is also
suitable for implementing AGM-style operations that allow modifying the shared AF and changing the
status of its arguments to enable, for instance, negotiation and other forms of dialogue.

The present work summarises and extends a series of previous studies [16–19,45] which led to the
conceptualisation and development of cla. The language was first presented in [16], where we defined
an early version of the cla syntax and operational semantics. Next, we introduced with [17] a prototype

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 23

implementation, and in [18] we showed examples of how to obtain belief revision operations via the
constructs of our language. A user interface was then provided in [19] together with some examples of
execution. A very brief overview of the work was also presented in [45]. In comparison with the works
mentioned above, this paper provides new content concerning:

• the introduction of a semantics of failure that allows the execution of a cla program to proceed and
not to suspend waiting for particular conditions to occur;

• an improved operational semantics, for the addition and removal of arguments, that captures previ-
ously unmanaged behaviours in case of parallel execution;

• concrete examples of how cla can be used to model persuasion and negotiation processes;
• a more thorough description of the implementation, with detailed examples covering the use of the

interface and insights into how the parsing tree is obtained and visited.

We want to point out that a version of the language also incorporating the notion of time has been studied
in [12–14] (see Section 6 for a more careful description). However, such a timed extension will not be
addressed in this paper, which instead focuses on the basic formalism of cla.

The rest of the paper is structured as follows: in Section 2 we recall some notions from Argumentation
Theory; in Section 3 we present the syntax and the operational semantics of our concurrent language;
Section 4 gives examples of high-level operations like persuasion and negotiation realised through cla

constructs; Section 5 describes how we implemented the language; in Section 6 we discuss existing
formalisms from the literature that bring together dynamics in argumentation and multiagent systems,
highlighting the contact points and the differences with our work; Section 7 concludes the paper with
final remarks and perspectives on future work.

2. Background

Argumentation is an interdisciplinary field that aims to understand and model the human natural fash-
ion of reasoning. In Artificial Intelligence, argumentation theory allows one to deal with uncertainty in
non-monotonic (defeasible) reasoning, and it is used to give a qualitative, logical evaluation to sets of
interacting arguments, called extensions. In his seminal paper [32], Dung defines the building blocks of
abstract argumentation.

Definition 1 (AFs). Let U be a finite set of all possible arguments,2 which we refer to as the “universe”.
An Abstract Argumentation Framework is a pair 〈Arg, R〉 where Arg ⊆ U is a set of adopted arguments
and R is a binary relation on Arg.

AFs can be represented through directed graphs, that we depict using the standard conventions. For
two arguments a, b ∈ Arg, (a, b) ∈ R represents an attack directed from a against b. Moreover, we say
that an argument b is defended by a set B ⊆ Arg if and only if, for every argument a ∈ Arg, if R(a, b)

then there is some c ∈ B such that R(c, a).
The goal is to establish which are the acceptable arguments according to a certain semantics, namely

a selection criterion. Non-accepted arguments are rejected. Different kinds of semantics have been in-
troduced [6,32] that reflect qualities which are likely to be desirable for “good” subsets of arguments. In

2We introduce both U and Arg ⊆ U (not present in the original definition by Dung) for our convenience, since in the
concurrent language that we will define in Section 3 we use an operator to dynamically add arguments from U to Arg. A similar
notion of not adopted arguments is also used in [42].

24 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

the rest of this paper, we will denote the extension-based semantics (also referred to as Dung semantics),
namely admissible, complete, stable, preferred, and grounded, with their respective abbreviation adm,
com, stb, prf and gde, and generically with σ .

Definition 2 (Extension-based semantics). Let F = 〈Arg, R〉 be an AF. A set E ⊆ Arg is conflict-free
in F , denoted E ∈ Scf (F), if and only if there are no a, b ∈ E such that (a, b) ∈ R. For E ∈ Scf (F) we
have that:

• E ∈ Sadm(F) if each a ∈ E is defended by E;
• E ∈ Scom(F) if E ∈ Sadm(F) and ∀a ∈ Arg defended by E, a ∈ E;
• E ∈ Sstb(F) if ∀a ∈ Arg \ E, ∃b ∈ E such that (b, a) ∈ R;
• E ∈ Sprf (F) if E ∈ Sadm(F) and �E′ ∈ Sadm(F) such that E ⊂ E′;
• E ∈ Sgde(F) if E ∈ Scom(F) and ∀E′ ∈ Scom(F), E ⊂ E′.

Moreover, if E satisfies one of the above semantics, we say that E is an extension for that semantics
(for example, if E ∈ Sadm(F) we say that E is an admissible extension).

The different semantics described in Definition 2 correspond to different styles of reasoning, each of
which may be more appropriate for being applied to a particular application domain. The characterisation
of the reasoning requirements for the various domains is still a largely open research problem [7] and can
only be based on general criteria rather than on specific cases. The stable semantics can be considered
the strongest one: the accepted arguments attack all the others in the framework. Since a stable extension
may not exist, one can resort to the semi-stable semantics [23], whose concept was first introduced in [48]
under the name of admissible stage. Note that the set U used in Definition 1 is finite precisely because
at least one semi-stable extension always exists for AFs with a finite number of arguments [25], while
there is no guarantee in the case of infinite AFs. The semi-stable semantics, as well as the preferred one,
do not have a unique extension, making the grounded semantics (that always exists and admits exactly
one solution) an overall good option for establishing which arguments have to be accepted.

Besides enumerating the extensions for a certain semantics σ , one of the most common tasks per-
formed on AFs is to decide whether an argument a is accepted in some extension of Sσ (F) or in all
extensions of Sσ (F). In the former case, we say that a is credulously accepted with respect to σ ; in
the latter, a is instead sceptically accepted with respect to σ . The grounded semantics, in particular,
coincides with the set of arguments sceptically accepted by the complete ones. Like the semi-stable
semantics, the grounded one always exists and is often used since it is polynomially computable.

Example 1. In Fig. 2 we provide an example of an AF F in which: Scf (F) = {{}, {a}, {b}, {c}, {d},
{a, c}, {a, d}, {b, d}}, Sadm(F) = {{}, {a}, {c}, {d}, {a, c}, {a, d}}, Scom(F) = {{a}, {a, c}, {a, d}},
Sprf (F) = {{a, c}, {a, d}}, Sstb(F) = {{a, d}}, and Sgde(F) = {{a}}. In detail, the singleton {e} is
not conflict-free because e attacks itself. The argument b is not contained in any admissible extension
because no argument (included itself) defends b from the attack of a. The empty set {}, and the singletons
{c} and {d} are not complete extensions because a, which is not attacked by any other argument, has to be

Fig. 2. AF used in Example 1.

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 25

contained in all complete extensions. Only the maximal (with respect to set inclusion) admissible exten-
sions {a, c} and {a, d} are preferred, while the minimal complete {a} is the (unique) grounded extension.
Then, the arguments in the subset {a, d}, that conduct attacks against all the other arguments (namely
b, d and e), represent a stable extension. To conclude the example, we want to point out that argument
a is sceptically accepted with respect to the complete semantics, since it appears in all three subsets
of Scom(F). On the other hand, arguments c, which is in just one complete extension, is credulously
accepted with respect to the complete semantics.

Many of the above-mentioned semantics (such as the admissible and the complete ones) use the notion
of defence in order to decide whether an argument is part of an extension or not. The phenomenon for
which an argument is accepted in some extension because it is defended by another argument belonging
to that extension is known as reinstatement [24]. In that paper, Caminada also gives a definition for a
reinstatement labelling, a total function that assigns a label to the arguments of an AF:

Definition 3 (Reinstatement labelling). Let F = 〈Arg, R〉 be an AF and L = {IN,OUT,UNDEC}. A
labelling of F is a total function L : Arg → L. We define IN(L) = {a ∈ Arg|L(a) = IN}, OUT(L) =
{a ∈ Arg|L(a) = OUT} and UNDEC(L) = {a ∈ Arg|L(a) = UNDEC}. We say that L is a reinstatement
labelling if and only if it satisfies the following:

• ∀a, b ∈ Arg, if a ∈ IN(L) and (b, a) ∈ R then b ∈ OUT(L);
• ∀a ∈ Arg, if a ∈ OUT(L) then ∃b ∈ Arg such that b ∈ IN(L) and (b, a) ∈ R.

An argument is labelled IN if all its attackers are labelled OUT, and it is labelled OUT if at least an
IN node attacks it; in all other cases, the argument is labelled UNDEC. In Fig. 3 we show an example of
reinstatement labelling on an AF in which arguments a and c highlighted in green are IN, red ones (b
and d) are OUT, and the yellow argument e (that attacks itself) is UNDEC.

A labelling-based semantics [6] associates with an AF a subset of all the possible labellings. There ex-
ists a connection between reinstatement labellings and the Dung-style semantics: the set of in arguments
in any reinstatement labelling constitutes a complete extension, while extensions for other semantics can
be obtained through restrictions on the labelling as shown in Table 1. In the following sections, we use
the notation LF

σ to identify a labelling L corresponding to an extension of the semantics σ with respect
to the AF F . Note that other definitions of labelling functions (as the one presented in [49]) can also
be used to partition arguments of an AF, grasping different nuances in terms of acceptability. In [20],
a unifying framework capturing several labelling proposals is described. In the next section, where we
present our concurrent language for argumentation, the labelling of Definition 3 is used to implement
both primitives and high-level operations that rely on the acceptability state of agent’s belief and are able
to change the underlying argumentation space accordingly.

Fig. 3. Example of reinstatement labelling.

26 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Table 1

Reinstatement labelling vs semantics

Labelling restrictions Semantics
No restrictions Complete
Empty UNDEC Stable
Maximal IN/maximal OUT Preferred
Maximal UNDEC/minimal IN/minimal OUT Grounded

Table 2

cla syntax

P ::= C.A

C ::= p(x) :: A|C.C

A ::= success|add(Arg, R) → A|rmv(Arg, R) → A|E|A‖A|∃xA|p(a, l, σ)

E ::= Ew|Ef |Ef +P E

Ew ::= checkw(Arg, R) −→ A|c-testw(a, l, σ) −→ A|s-testw(a, l, σ) −→ A|Ew + Ew

Ef ::= checkf (Arg, R) −→ A|c-testf (a, l, σ) −→ A|s-testf (a, l, σ) −→ A|Ef ‖GEf |failure

Table 3

cla operational semantics – addition and removal

〈add(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg ∪ Arg′, R ∪ R′′〉〉
with R′′ = {(a, b) ∈ R′|a, b ∈ Arg ∪ Arg′} Addition

〈rmv(Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg \ Arg′, R \ {R′ ∪ R′′}〉〉
where R′′ = {(a, b) ∈ R|a ∈ Arg′ ∨ b ∈ Arg′} Removal

3. Syntax and semantics

The syntax of the concurrent language for argumentation (cla) is presented in Table 2, where P , C, A

and E denote a generic process, a sequence of procedure declarations (or clauses), a generic agent and
a generic guarded agent, respectively. In a cla process P = C.A, A is the initial agent to be executed in
the context of the set of declarations C. To simplify the notation, we write a process P = C.A simply as
the corresponding agent A. The operational model of P can be formally described by a transition system
T = (Conf , →). Configurations (in) Conf are pairs consisting of a process and an AF F = 〈Arg, R〉
representing the common argumentation space.

In Tables 3–10 we give the definitions for the transition rules. The transition relation −→⊆ Conf ×
Conf is the least relation satisfying those rules, and it characterises the evolution of the system. In
particular, 〈A, F 〉 −→ 〈A′, F ′〉 represents a transition from a state in which we have the process A and
the AF F to a state in which we have the process A′ and the AF F ′.

Addition and removal. Suppose to have an agent A whose argumentation space is represented by an
AF F = 〈Arg, R〉. The agents success and failure represent a successful and a failed termination, re-
spectively, so they may not make any further transition. An add(Arg′, R′) → A action (see Table 3)
performed by the agent results in the addition of a set of arguments Arg′ ⊆ U (where U is the universe)
and a set of relations R′ to the AF F . When performing an addition, (possibly) new arguments are taken
from U \ Arg. We want to make clear that the tuple (Arg′, R′) is not an AF, indeed it is possible to have
Arg′ = ∅ and R′ �= ∅, which allows to perform an addition of only attack relations to the considered AF.
It is as well possible to add only arguments to F , or both arguments and attacks. However, the structure

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 27

Fig. 4. Example of two AFs. The rightmost is obtained from that on the left after removing argument b′ and the attack (b′, a).

of the shared store after an add operation is guaranteed to be an AF compliant with Definition 1, since
only attacks between arguments in Arg ∪ Args′ are added to R. Intuitively, rmv(Arg, R) → A allows
to specify arguments and/or attacks to remove from the argumentation space. As illustrated in Table 3,
removing an argument from an AF implies to also remove the attack relations involving that argument,
while trying to remove an argument (or an attack) which does not exist in F will have no consequences.
Other works (e.g., [22,29,31]) have already considered the possibility of retracting arguments to cope
with different situations. To give a few examples, an agent might want to hide an already presented argu-
ment to comply with a security policy update, or because the audience forces it to retract what was stated
previously. In the real world, some statements may be forgotten or simply lose value over time, cases
that can be reproduced by deleting an argument. The removal is also used to determine the importance
of arguments in an AF: the authors of [2] present a methodology for assessing when an argument a is
decisive within a dialogue; if removing a does not produce any change on the set of extensions, then a

is not decisive. Note that our language is very permissive: there are no constraints on which arguments
or attacks an agent can add/remove.

Example 2. Consider an agent A who wants to add three arguments a, b and b′ with the attacks (b, a)

and (b′, a) into the shared AF. The desired result can be obtained by running the following cla program.

add
({

a, b, b′},
{
(b, a),

(
b′, a

)}) −→ success

Assuming that the underlying argumentation space is initially empty, we obtain the AF depicted in Fig. 4
(left). From this situation, we can remove the argument b′ with the program below.

rmv
({

b′}, {}) −→ success

The only attack involving b′, that is (b′, a), will also be removed. We obtain the AF of Fig. 4 (right).

Check. When a non-terminal operation of our language succeeds, the execution proceeds with the sub-
sequent action. Otherwise, two are the possible outcomes: the operation can fail, making the execution
to terminate, or it can suspend. Accordingly, we distinguish two categories of expressions that can be
written using cla syntax: Ew is an expression with waiting that suspends the execution in the case that
the condition on its head is not satisfied, while Ef is an expression with failure that can only succeed
or fail. By allowing expressions to fail, the program can continue the execution even if some of the
operation does not succeed. The operation checkw(Arg′, R′) → A in Table 4 is used to verify whether
the specified arguments and attack relations are contained in the set of arguments and attacks of the
argumentation space, without introducing any further change. If the check is positive, then the operation
succeeds, otherwise it suspends. On the other hand, checkf (Arg, R) → A fails when its guard is not
satisfied.

28 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Table 4

cla operational semantics – check

Arg′ ⊆ Arg ∧ R′ ⊆ R

〈checkw/f (Arg′, R′) → A, 〈Arg, R〉〉 −→ 〈A, 〈Arg, R〉〉 Check (1)

Arg′ � Arg ∨ R′ � R

〈checkf (Arg′, R′) → A, 〈Arg, R〉〉 −→ failure
Check (2)

Fig. 5. Example of an AF obtained from that of Fig. 4 (right) by adding argument c and the attack (c, b).

Table 5

cla operational semantics – credulous and sceptical test

∃LF
σ |LF

σ (a) = l

〈c-testw/f (a, l, σ) → A, F 〉 −→ 〈A, F 〉
∀LF

σ .LF
σ (a) �= l

〈c-testf (a, l, σ) → A, F 〉 −→ failure
Credulous Test

∀LF
σ .LF

σ (a) = l

〈s-testw/f (a, l, σ) → A, F 〉 −→ 〈A, F 〉
∃LF

σ |LF
σ (a) �= l

〈s-testf (a, l, σ) → A, F 〉 −→ failure
Sceptical Test

Example 2 (Continued). Starting from the AF of Fig. 4 (right), we want to add a new argument c and
the attack (c, b) only if the argument b is already in the shared argumentation space. Opting for a check
with failure, we have the subsequent program, leading to the AF of Fig. 5.

checkf
({b}, {}) −→ add

({c}, {(c, b)
}) −→ success

Note that, in this case, the operation checkw({b}, {}) would have produced the same result since the
condition in the check is satisfied. On the other hand, checkf ({d}, {}) fails since d is not in the AF when
the check is performed, and checkw({d}, {}) suspends for the same reason.

Credulous and sceptical test. We also have two distinct test operations (see Table 5), one credu-
lous and the other sceptical, both requiring the specification of an argument a ∈ A, a label l ∈
{IN,OUT,UNDEC} and a semantics σ ∈ {adm, com, stb, prf , gde}. The operations c-testw(a, l, σ) → A

and c-testf (a, l, σ) → A succeed if there exists at least a labelling LF
σ such that LF

σ (a) = l; otherwise
(in the case LF

σ (a) �= l in all labellings) c-testw(a, l, σ) → A suspends and c-testf (a, l, σ) → A fails.
Then, s-testw(a, l, σ) → A and s-testf (a, l, σ) → A succeed if a is labelled l in all possible labellings
LF

σ and suspend (fail, respectively) in the case LF
σ (a) �= l in some labelling. Note that since the set of

extensions Sσ (F) is finite, all test operations are decidable.

Example 2 (Continued). Agent A now wants to test whether the argument a in the shared AF of Fig. 5
is credulously accepted with respect to the admissible semantics and, in case of a positive answer, it
wants to introduce a new argument d attacking a. We use the test with failure, but the same operation
with waiting would not change the result.

c-testf (a,IN, adm) −→ add
({d}, {(d, a)

}) −→ success

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 29

Fig. 6. Example of an AF obtained from that of Fig. 5 by adding argument d and the attack (d, a).

Table 6

cla operational semantics – maximum parallelism

〈A1, F 〉 −→ 〈A′
1, F

′〉, 〈A2, F 〉 −→ 〈A′
2, F

′′〉A′
1, A

′
2 �= success, failure

〈A1‖A2, F 〉 −→ 〈A′
1‖A′

2, ∗(F, F ′, F ′′)〉 Max-Par (1)

〈A1, F 〉 −→ 〈success, F ′〉, 〈A2, F 〉 −→ 〈A′
2, F

′′〉
〈A1‖A2, F 〉 −→ 〈A′

2, ∗(F, F ′, F ′′)〉
〈A2‖A1, F 〉 −→ 〈A′

2, ∗(F, F ′, F ′′)〉

〈A1, F 〉 −→ failure
〈A1‖A2, F 〉 −→ failure

〈A2‖A1, F 〉 −→ failure

Max-Par (2)

Since the test succeeds, we obtain an AF as in Fig. 6. If we had chosen to perform a sceptical test instead,
s-testf (a,IN, adm) would have failed, and s-testw(a,IN, adm) would have suspended.

Parallelism. A debate involving many agents that asynchronously provide arguments can be modelled
as a parallel composition of add operations performed on the argumentation space. The parallel com-
position in cla can be declined in two different ways: i) in terms of maximum parallelism and ii) with
interleaving. According to maximum parallelism, all the actions that are composed through the parallel
operator ‖ are executed in one single computational step, while, following the interleaving approach,
only one action is executed at a time. The operator ‖ of Table 6 enables the specification of concurrent
argumentation processes in form of maximum parallelism.

Parallel composition of two actions A1‖A2, with the assumption of maximum parallelism, can result
in three possible behaviours: it succeeds when both actions succeed, suspends when at least one action
suspends and fails in the remaining case (i.e., when both actions fail). We use ∗(F, F ′, F ′′) := (F ′ ∩
F ′′) ∪ ((F ′ ∪ F ′′) \ F) to handle parallel additions and removals of arguments.3 In particular, if an
argument b′ is added and removed at the same moment (e.g., through the program add({b′}, {(b′, a)}) →
success‖rmv({b′}, {}) → success), we have two possible outcomes:

• if b′ is not present in the argumentation space (see Fig. 4, right), then the add operation prevails
over the rmv one since b′ ∈ ((F ′ ∪ F ′′) \ F) and we obtain an AF as the leftmost in Fig. 4;

• on the other hand, when b′ is already in the shared memory (Fig. 4, left), we have that b′ /∈ ((F ′ ∪
F ′′) \ F) and b′ is removed (we obtain an AF as in Fig. 4, right).

In Table 7, instead, we give the transition rules for the parallel composition operator ‖ when inter-
leaving is taken into account. In this case, only one agent is handled at a time and the actions of two
concurrent agents are executed sequentially in two distinct steps of the computation.

Note that the operations that read and modify the shared AF are atomic (like the ask and tell opera-
tors from which they derive [44]) and therefore do not risk producing inconsistent data. Furthermore,

3Union, intersection and difference between AFs are intended as the union, intersection and difference of their sets of argu-
ments and attacks, respectively.

30 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Table 7

cla operational semantics – parallelism with interleaving

〈A1, F 〉 −→ 〈A′
1, F

′〉A′
1 �= success, failure

〈A1‖A2, F 〉 −→ 〈A′
1‖A2, F

′〉
〈A2‖A1, F 〉 −→ 〈A′

1‖A2, F ′〉
Inter-Par (1)

〈A1, F 〉 −→ 〈success, F ′〉
〈A1‖A2, F 〉 −→ 〈A2, F

′〉
〈A2‖A1, F 〉 −→ 〈A2, F ′〉

〈A1, F 〉 −→ failure
〈A1‖A2, F 〉 −→ failure

〈A2‖A1, F 〉 −→ failure

Inter-Par (2)

Fig. 7. Example of an AF obtained from that of Fig. 6 by adding argument e and the attack (e, d).

although having one or more agents acting asynchronously does not affect the way in which the shared
AF is accessed and modified, the possibility of modelling parallel agents makes it possible to simulate
the behaviour of real agents acting individually in a distributed environment.

Example 2 (Continued). Suppose that not one, but two agents A and B want to modify the shared
argumentation space given by the AF of Fig. 6. Agent A wants to add an argument e with the attack
(e, d), while agent B wants to remove the same argument e. The two agents act simultaneously, so their
behaviour can be modelled through the parallel operator.

add
({e}, {(e, d)

}) −→ success

‖
rmv

({e}, {}) −→ success

Under the assumption of maximum parallelism, operations add({e}, {}), and rmv({e}, {}) are executed at
the same time during the initial step of the computation. Since argument e is not in the initial argumenta-
tion space (see Fig. 6), it is added to the shared AF. At this point, both parallel branches of the program
succeed and, consequently, the program itself terminates with success.

On the other hand, when using the interleaving approach, the execution of the above program can
proceed in two ways. If the processor first handles the operation add({e}, {(e, d)}) and then rmv({e}, {}),
the argument e is added into the argumentation space during the first step of the computation, and it is
removed in the second step, producing in result an AF shaped like that of Fig. 6. If, instead, rmv({e}, {})
is executed first and add({e}, {(e, d)}) second, the resulting AF will be the one of Fig. 7, since argument
e will remain in the shared argumentation space.

Guarded parallelism. The operator ‖G for guarded parallelism is designed to execute all the operations
for which the guard in the inner expression is satisfied. As shown in Table 8, E1‖GE2 succeeds when
either E1, E2 or both succeed and all the operations with a satisfiable guard are executed. It only fails

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 31

Table 8

cla operational semantics – guarded parallelism

〈E1, F 〉 −→ 〈A1, F 〉, 〈E2, F 〉 −→ 〈A2, F 〉
〈E1‖GE2, F 〉 −→ 〈A1‖A2, F 〉 Guarded Parallelism (1)

〈E1, F 〉 −→ 〈E′
1, F 〉, 〈E2, F 〉 −→ 〈E′

2, F 〉
〈E1‖GE2, F 〉 −→ 〈E′

1‖GE′
2, F 〉 Guarded Parallelism (2)

〈E1, F 〉 −→ 〈A1, F 〉, 〈E2, F 〉 −→ failure
〈E1‖GE2, F 〉 −→ 〈A1, F 〉
〈E2‖GE1, F 〉 −→ 〈A1, F 〉

Guarded Parallelism (3)

Fig. 8. Example of an AF obtained from that of Fig. 7 by adding argument f and the attacks (f, c) and (f, e).

if both the expressions E1 and E2 fail. This behaviour is different both from classical parallelism (for
which all the agents have to terminate in order for the procedure to succeed) and from nondeterminism
(that only selects one branch). Since only the composition of expressions that can fail are allowed in a
guarded parallelism, it cannot suspend under any circumstances.

Example 2 (Continued). To illustrate the functioning of operator ‖G we use again two agents A and
B sharing an argumentation space represented by the AF of Fig. 7. A will perform a credulous test to
know if a is IN for some admissible labelling, and in case of a positive response, it will add an argument
f which attacks both c and e. At the same time, agent B first wants to verify through a sceptical test
whether a is IN in all admissible labelling, and if so, it will add an argument g with the attack (g, a).
Both test operations composed via guarded parallelism are with failure as imposed by the operational
semantics in Table 8.

c-testf (a,IN, adm) −→ add
({f }, {(f, c), (f, e)

}) −→ success

‖G

s-testf (a,IN, adm) −→ add
({g}, {(g, a)

}) −→ success

As we can see from the resulting AF depicted in Fig. 8, only one of the parallel branches is executed with
success. The credulous test performed by agent A succeeds, leading to the addition of argument f and
the attacks (f, c) and (f, e). The sceptical test of agent B, however, fails, causing this second branch to
terminate with failure. We want to remark that since one of the expressions composed through guarded
parallelism succeeds, the whole construct still succeeds.

If then else. The operator +P is left-associative and realises an if-then-else construct (see Table 9): if
we have E1 +P E2 and E1 is successful, than E1 will be always chosen over E2, even if also E2 is suc-
cessful, so in order for E2 to be selected, it has to be the only one that succeeds. Moreover E1 needs to

32 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Table 9

cla operational semantics – if then else

〈E1, F 〉 −→ 〈A1, F 〉
〈E1 +P E2, F 〉 −→ 〈E1, F 〉

〈E1, F 〉 −→ 〈E′
1, F 〉

〈E1 +P E2, F 〉 −→ 〈E′
1 +P E2, F 〉 If Then Else (1)

〈E1, F 〉 −→ failure, 〈E2, F 〉 −→ 〈A2, F 〉
〈E1 +P E2, F 〉 −→ 〈E2, F 〉 If Then Else (2)

Fig. 9. Example of an AF obtained from that of Fig. 8 by removing argument c.

be an expression with failure, since a waiting expression might never fail, making it impossible to con-
tinue the execution with E2. Differently from nondeterminism, +P prioritises the execution of a branch
when both E1 and E2 can be executed. Notice that an if-then-else construct cannot be obtained from
nondeterminism since our language is not expressive enough to capture success or failure conditions
of each branch (we have angelic nondeterminism, but only with a one-step lookahead obtained through
check/test guards).

Example 2 (Continued). This time, our agent wants to choose between two possible executions, pri-
oritising one and leaving the second as a fallback in case the first one fails. For this purpose, the +P

operator is used. In the example, the agent will first try to perform a credulous test to find out whether
argument c is OUT in at least one labelling of the shared AF of Fig. 8. In the case of a positive response,
c will be removed and the execution will successfully terminate. If the test on argument c fails, the agent
will try to perform the same test on d and if this latter argument turns out to be OUT in at least one
labelling of the AF, it will be removed. Again, the execution will end with success.

c-testf (c,OUT, adm) −→ rmv
({c}, {}) −→ success

+P

c-testf (d,OUT, adm) −→ rmv
({d}, {}) −→ success

The execution of the program above produces the AF represented in Fig. 9. We can see that the first
condition to be tested, that is c-testf (c,OUT, adm), is true, thus the first branch of the +P operator is
executed and the argument c is removed. The second part of the construct, which would have led to the
removal of d, is also true but is never executed because the program terminates with success before that.
In fact, the program would fail only if both conditions were false and would suspend only if the first
condition was false and the second suspended.

Nondeterminism, hidden variable and procedure call. The remaining operators shown in Table 10 are
classical concurrency compositions. Any agent composed through + (rule Nondeterminism of Table 10)

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 33

Table 10

cla operational semantics – nondeterminism, hidden variables and procedure call

〈E1, F 〉 −→ 〈A1, F 〉
〈E1 + E2, F 〉 −→ 〈A1, F 〉
〈E2 + E1, F 〉 −→ 〈A1, F 〉

〈E1, F 〉 −→ 〈E′
1, F 〉, 〈E2, F 〉 −→ 〈E′

2, F 〉
〈E1 + E2, F 〉 −→ 〈E′

1 + E′
2, F 〉 Nondeterminism

〈A[y/x], F 〉 −→ 〈A′, F ′〉
〈∃xA, F 〉 −→ 〈A′, F ′〉 with y ∈ U \ Arg Hidden Variables

〈p(y), F 〉 −→ 〈A[y/x], F 〉 with p(x) :: A and x ∈ {a, l, σ } Procedure Call

is chosen if its guards succeed. The existential quantifier ∃xA (rule Hidden Variable of Table 10) behaves
like agent A where variables in x are local to A, thus hiding the information on x provided by the external
environment. Finally, the procedure call has a single parameter which can be an argument, a label among
IN , OUT and UNDEC, or a semantics σ . If necessary, the procedure call can be extended for allowing
more than one parameter.

Given the transition system defined in Tables 3–10, we can observe the behaviour of a process P =
C.A through the trace (list of instructions executed) of terminating computations. The observables of the
language provided in the following Definition 4 collect the results of successful or failed computations
that an agent A can perform.

Definition 4 (Observables for cla). Let P = C.A be a cla process. We define

Oio(P) = λF.
{
F1 · · · Fn · ss|F = F1 and 〈A, F1〉−→∗〈success, Fn〉

}

∪ {
F1 · · · Fn · ff |F = F1 and 〈A, F1〉−→∗〈failure, Fn〉

}

where −→∗ denotes the reflexive and transitive closure of a transition relation −→.

As we will see in the next section, we aim to use the operators of our language to model the behaviour
of agents involved in particular argumentative processes.

4. cla for persuasion and negotiation dialogues

The basic constructs which compose cla operational semantics allow realising programs that simulate
the interaction between two or more counterparts. The process of exchanging information through such
an interaction can assume different nuances, according to the goal of the communication itself. For
instance, two agents in conflict to obtain a resource within a distributed system may want to come to
a compromise they both can agree on. In that case, we talk about negotiation. Another possibility for
one agent is to persuade the other to accept a fact or a condition. Below, we provide examples of how
high-level interaction between agents can be obtained through cla programs.

4.1. Persuasion with cla

According to [50], persuasion is a particular form of dialogue in which the involved counterparts
try to affirm their own thesis. Each participant/agent in the persuasion dialogue holds a thesis which is
opposed to the others and needs to be proven “true” in order to be accepted. To persuade its opponents,

34 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Fig. 10. AFs representing the evolution of a persuasion process from its beginning (on the left) to its conclusion (on the right).

an agent can elaborate different strategies [35] (sequences of actions to perform in the system) both
for supporting its own beliefs and for defeating those supported by others. An approach to persuasion
through argumentation is given in [39], where agents play a game to solve conflicts of points of view
between discordant theses: an agent has to defend its position by replying to every attack against its
initial claim. If it fails, the opponent wins the game. Below, we provide an example of how a persuasion
dialogue can be enacted by using cla constructs.

Example 3. Imagine two agents, A and B, discussing about the problem of violence in video games.
This topic is often used as an example of an argumentative process where discordant opinions are pro-
vided for or against a certain initial thesis (see for instance [51]). Agent A believes that violent video
games can make people, especially the young, more aggressive, while agent B has the opposite opinion,
that is video games are harmless and safe for all users. This scene can be represented through an AF
(like that in Fig. 10, left) with two conflicting arguments: a, which supports video games, and b, which
is against them. Attacks in the frameworks are deduced from the arguments themselves: in this example
we have that a attacks b and b attacks a.

We use the grounded semantics as criterion for establishing the acceptability of arguments. Other
semantics can be considered as well with similar results. In this initial situation, since a and b are
attacking each other without being defended, none of them can be part of the grounded extension, and
thus no agent will be able to persuade the other. In an attempt to prove the validity of their thesis, the two
agents bring forward new arguments: A states that young people could emulate the violent behaviours
seen in video games (argument c of Fig. 10, middle), while B points out that violent scenes in video
games are not real (argument d of Fig. 10, middle). Neither argument a nor b can still be accepted. The
discussion ends, in this example, with agent A adding that people can still be influenced by what they
see, regardless of whether it is fact or fiction. This last argument corresponds to e in Fig. 10 (right), and
forms, together with a and c, the grounded extension. At this point, assuming agent B does not reply, A

has proven its thesis (the argument a) to be acceptable, persuading the other agent. All arguments used
in this example are summarized below.

a: “Violent video games can make people, especially the young, more aggressive.”
b: “Video games are harmless and safe for all users.”
c: “Young people could emulate the violent behaviours seen in video games.”
d: “Violent scenes in video games are not real.”
e: “People can be influenced by what they see, regardless of whether it is fact or fiction.”

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 35

Table 11

Example of a cla program for persuasion

A : add({a}, {}) −→ checkw({b}, {}) −→ add({}, {(a, b)}) −→ add({c}, {(c, b)}) −→
checkw({d}, {}) −→ add({e}, {(e, d)}) −→ c-testf (a,IN, gde) −→ success

B : add({b}, {}) −→ checkw({a}, {}) −→ add({}, {(b, a)}) −→ add({d}, {(d, a)}) −→
c-testf (b,IN, gde) −→ success

P : A‖B

The whole dialogue can be formulated through a cla program. We propose one possible implementa-
tion in Table 11, where two agents interact via the transition rules of Tables 3–10 and synchronisation
is obtained through the check operator. The first agent A adds argument a into the argumentation space
and then waits until also argument b can be found in the underlying AF. Afterwards, A adds argument
c together with two attacks, one from a to b and the other one from b to c. Then A waits again for
argument d to be present in the AF, after which argument e and the attack (e, d) are added. Finally, A

execute a credulous test with failure on argument a: if this latter is labelled IN in the grounded labelling,
the execution terminates with success. Concurrently, agent B executes its process, which starts with the
addition of an argument b. Then B check if argument a is in the argumentation space and, in case of a
positive answer, another argument d, and the attacks (b, a) and (d, a) are also added. The last operation
executed by B is a credulous test with failure that succeeds if argument b is IN in the grounded labelling.
Different solutions can also be adopted to model the same dialogue. For instance, agent A could add the
argument c into the argumentation space and then use a parallel construct to concurrently add the two
attacks (a, b) and (c, b).

We want to highlight that the parts involved in the debate used for Example 3 do not take turns as
happens for traditional dialogue games, but each agent asynchronously executes cla procedures defining
its behaviour. Some advantages of this approach are that agents neither rely on a synchronised system
clock (which may not be available in distributed environments) nor need to wait for specific actions to
terminate in order to achieve coordination with other agents. Parallel constructs allow for the execution
of multiple actions at the same time, which, for instance, in the context of the Internet of things, may
translate to having multiple devices involved in simultaneous argumentation processes.

4.2. Negotiation with cla

Negotiation is a process that aims to solve conflicts arising from the interaction between two or more
parties that have different individual goals (for instance, a request of computational resources in a dis-
tributed network), and its outcome is an agreement that translates in common benefits for all participants
[3]. In order to conduct a negotiation, intelligent agents must be given the capability to change the con-
ditions that meet their goals.

Example 4. We describe an example in which two agents, a client A and a provider B, negotiate over
desired parameters for an internet connection. The terms of negotiation are established on the bandwidth
(measured in Mbps). The process begins with agent A asking for a connection with at least 100 Mbps
of bandwidth to ensure a good streaming quality (argument a in the AF of Fig. 11). The provider has
its initial proposal set to 50 Mbps (argument b) as for all new customers. Being the provider’s offer
incompatible with the client’s request, the arguments supporting their proposals are in conflict. In par-
ticular, we see in Fig. 11 that a and b attack each other. At this point, both the agents retract their initial

36 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Fig. 11. Two AFs representing the evolution of a negotiation.

Table 12

Example of a cla program for negotiation

A : add({a}, {}) −→ checkw({b}, {}) −→ add({}, {(a, b)}) −→ c-testf (a,IN, gde) −→ success
+P c-testf (a,OUT/UNDEC, gde) −→ rmv({a}, {}) −→ add({a′}, {}) −→ c-testf (a′,IN, gde) −→ success

B : add({b}, {}) −→ checkw({a}, {}) −→ add({}, {(b, a)}) −→ c-testf (b,IN, gde) −→ success
+P c-testf (b,OUT/UNDEC, gde) −→ rmv({b}, {}) −→ add({b′}, {}) −→ c-testf (b′,IN, gde) −→ success

P : A‖B

bandwidth proposals: A is now willing to accept 70 Mbps (argument a′ of Fig. 10), while B decides
to concede up to 80 Mbps (argument b′). The two arguments a′ and b′ are not in conflict, therefore no
attack is added between them. Using again the grounded semantics for testing the acceptability, we can
see that both a′ and b′ are acceptable together, so the two agents have reached an agreement. Note that if
the two agents cannot find a better agreement than the starting one, the negotiation could be interrupted
and end in a stalemate. The conversation between client and provider is summarised as follows.

a: “I will be using streaming services, so I will ask for 100 Mbps of bandwidth to feel comfortable.”
b: “I offer 50 Mbps to all new customers, thus I will make you the same offer.”
a′: “I do not plan to use the entire 100 Mbps bandwidth, but 50 Mbps is not enough for my needs.

Therefore, I will not accept less than 70 Mbps.”
b′: “It is in my interest to get new customers, so I can grant up to 80 Mbps.”

We show in Table 12 a cla program realising the negotiation described in this example. Note that we
write c-testf (a,OUT/UNDEC, gde), in which we specify two labels at once, in place of two consecutive
credulous tests, one for the label IN and one for the label OUT.

5. Implementation

To facilitate the use of the tool we develop a web interface exposing the functionalities of our language.
In this section we provide a description for the interface, followed by insights on the implementation of
cla itself.

5.1. Web interface

The interface consists of a web page4 divided into three main areas (shown in Fig. 12): an input form,
a text box for the program output and another text box for the shared AF. The output of our tool shows,
for each step, the executed operation and the remaining part of the program, together with the results of
check and test operations.

The user can either manually input a program in the designated area or select a sample program from
those available a the drop down menu. Two buttons below the input area run the program and display the

4Web interface available at https://conarg.dmi.unipg.it/cla/.

https://conarg.dmi.unipg.it/cla/

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 37

Fig. 12. Execution of the program in Example 5.

result in different ways. Clicking the button “Run all”, the result of the whole program is immediately
displayed in the area below and the AF shown on the right represents the final state of the shared store.
On the other hand, the button “Run 1 step” shows, as the name suggests, one step at time: each click
on the button makes another step of the execution appear in the output area. The AF on the right side is
updated after each add or rmv operation, showing the evolution of the underlying argumentation space.
Note that the difference between the two usable modes is only in the visualisation, since both compute
the whole result beforehand. Regardless of the chosen method, the executed operation is highlighted in
yellow in each line of the output.

Example 5 (Parallel actions). Consider the program below.

checkw({c},{}) -> add({a,b},{(a,c)}) -> success ||
add({c},{}) -> success;

Running the program produces the results in Fig. 12. Note that the AF representing the argumentation
space is always empty at the beginning. In line 1 of the output, the parser recognises a valid program.
Two threads (one for each action) are started. In this example, the action that occurred first in the program
is also executed first, but in general it can happen in any order. In line 3, the program executes a waiting
checkw: if the AF contains an argument c then the visit on that branch can continue (and the add
operation is executed). Otherwise, the checkw is repeated until it (possibly) becomes true. Since the
AF is empty by default and no other action has modified it yet, the check on the AF return a negative

38 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

answer (line 4). In the meanwhile, the add operation of the second thread is executed in line 6. The
AF is modified accordingly, introducing an argument c. AF = 〈{c}, {}〉. This branch of the execution
terminates in line 7 with a success. At this point, the check of the first thread (which had previously
given negative results) is repeated, this time giving an affirmative answer (lines 8 and 9). The execution
then continues in line 10 with the add operation which produces further modifications on the AF. At
this point, AF = 〈{c, a, b}, {(a, c)}〉. This branch successfully terminates in line 11 and since both the
parallel actions of our program succeed, the whole program terminates with a success (line 12).

Example 6 (Nondeterminism). We have the following program with a parallel composition and a non-
deterministic operation.

add({a,b},{}) -> sum(
checkw({c},{}) -> add({},{(c,a)}) -> success,
testcw({a},in,complete) -> rmv({b},{}) -> success
) ||
add({c},{}) -> success;

It is possible to obtain different outcomes according to the order in which the thread handling the
parallelism are executed. We show an example in Fig. 13.

After identifying the program in line 1 and the parallel composition in line 2, the visit of the tree
proceeds with the execution of the add operation of the first thread, which introduces in the AF two
new arguments, namely a and b (line 3). AF = 〈{a, b}, {}〉. The node corresponding to a nonde-
terministic choice on the same thread is visited immediately after in line 4. It is important to note
that our implementation of the sum inspects all the guards on child nodes and selects a verified one
(if any) at random. In the program we are analysing, the child of sum are checkw({c},{}) and

Fig. 13. Execution of a the cla program in Example 6.

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 39

Fig. 14. Execution of the program in Example 7.

testcw({a},in,complete), and only the latter is true at the time of the verification, meaning
the former will be ignored. Then the program continues executing the other thread, which adds an ar-
gument c to the AF and terminates with a success (lines 5 and 6). AF = 〈{a, b, c}, {}〉. At this point,
checkw({c},{}) becomes true, but the choice on which expression will be executed has already
been made. The remaining thread resumes its execution performing the testcw operation (line 7). The
waiting test succeeds on the first try in line 8, leading to the removal of argument b (line 9), as specified
by the parse tree. Now we have AF = 〈{a, c}, {}〉. The branch and the whole program also succeed (lines
10 and 11).

Example 7 (If-then-else). We run the following program, whose result is shown in Fig. 14.

add({a,b},{(a,b)}) ->
checkf({c},{}) -> add({d},{}) -> success +P
testcf({b},in,complete) -> add({e},{}) -> success;

After initialising the AF with two arguments and an attack between them in line 3 (AF =
〈{a, b}, {(a, b)}〉.), the program executes an if-then-else construct (line 4). The first condition consists of
a checkf operation, which immediately fails (lines 5 and 6). The program proceeds with the second
condition, this time a testcf, that also fails (lines 7 and 8). Since both conditions fail, also the program
terminates with a failure in line 9. We remark that more than two conditions can be declared by the use
of +P and only the last one can be a waiting expression.

5.2. cla parser and synchronisation

We implemented our language using python and ANTLR5 [38], a parser generator for reading, pro-
cessing, executing, and translating structured text. Starting from a grammar, ANTLR generates a parser
that can build and walk parse trees. ANTLR provides two ways of traversing the syntax tree: either

5ANTLR website: https://www.antlr.org.

https://www.antlr.org

40 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

through a listener (the default option) or a visitor. The biggest difference between the listener and visitor
mechanisms is that listener methods are called independently, whereas visitor methods must walk their
children with explicit visit calls. Not invoking visitor methods on the children of a node means those
subtrees are not visited. Since we want to implement guards in our language, we need the possibility
to decide which part of the tree will be visited, making our choice fall on the visitor approach. Our
project consists of a grammar file and seven python classes, the most interesting being the CustomVis-
itor, in which we define the behaviour of the parser, and the class ArgFun containing all the auxiliary
argumentation-related functions used to process the argumentation space of the agents (that is, indeed,
an AF). We define our grammar using the syntax given in Table 2 and we obtain a .g4 file of which
we show the main part in Table 13. Capitalized words are placeholder for terminals specifying syntactic
elements of the language: for instance, ARROW stands for the symbol ->, PAR corresponds to ‖, and
ARGS is any list of literals enclosed in curly brackets.

Starting from the grammar, ANTLR automatically generates all the components we will use for pars-
ing the language, the most remarkable being the list of used tokens, the interpreter containing names for
literals and rules and symbolic names for the tokens, a lexer which recognises input symbols from a char-
acter stream, the parser itself (endowed with all the necessary support code) and the visitor class. Then,
we need to manually override the default methods provided in the visitor to customise the behaviour of
the parser. The visit of the parse tree always starts with the execution of the function visitPrg, which
recursively visits all its children. The parser recognises twenty types of node (the non-terminal elements
in the grammar), identified through a three-letter code preceded by # (see Table 13). These codes are
then used as a shortcut to recall nodes for which we want to specify a desired behaviour. Below, we
provide details on the implementation of visiting functions.

• visitPrg: calls the visit on its children, collects the results and, in case of termination, returns the
output of the whole program.

• visitPar: starts two separated threads to execute (visit) two actions in parallel, returning true if both
succeeds, false if at least one action fails, and suspends if an action is waiting for its guard to become
true.

• visitAdd and visitRmv: modify the AF by either adding or removing part of the AF, respectively.
Always succeeds and continues on the children. Note that visitRmv succeeds also if the specified
arguments and/or attacks are not in the AF. In that case, the AF is left unchanged.

• visitSuc and visitFlr: correspond to visits to terminal nodes and return true (success) and false
(failure), respectively.

• visitNdt: implements a concatenation of + operators, inspecting the guards of all its children and
randomly selecting a branch to execute among the possible ones. A guard can be a waiting check
or either of the waiting tests. If no guards are found with satisfiable conditions, visitNdt waits for
changes in the AF until some child can be executed.

• visitGpa: implements a concatenation of ‖G operators and execute all its children in separated
threads. Contrary to visitNdt, visitGpa only works with expressions that can fail (and do not sus-
pend), thus allowing for two possible outcomes, that is success if at least one expression succeeds,
and failure if all expressions fail.

• visitIte: behaves like an if-then-else construct. The first child must be an expression with guaranteed
termination (either success or failure). The children are executed in the same order in which they are
specified and, as soon as a satisfiable guard is found, the corresponding branch is executed. Since
some child can be a waiting expression, visitIte is not guaranteed to terminate.

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 41

Table 13

Part of .g4 file specifying the cla grammar

grammar CA;

program
: par_action SEMICOLON #prg
;

par_action
: action (PAR action)* #par
;

action
: ’(’ action ’)’ #pac
| ’add(’ (EMP | ARGS) ’,’ (EMP | ATKS) ’)’ ARROW action #add
| ’rmv(’ (EMP | ARGS) ’,’ (EMP | ATKS) ’)’ ARROW action #rmv
| expression #exp
| SUCCESS #suc
| FAILURE #flr
;

expression
: ’(’ expression ’)’ #pex
| expression_w #exw
| expression_f #exf
| ’sum(’ expression_w (’,’ expression_w)* ’)’ #ndt
| ’gpar(’ expression_f (’,’ expression_f)* ’)’ #gpa
| expression_f (PPLUS expression)* #ite
;

expression_w
: ’checkw(’ (EMP | ARGS) ’,’ (EMP | ATKS) ’)’ ARROW action #ckw
| ’testcw(’ (EMP | ARGS) ’,’ LABEL ’,’ SEM ’)’ ARROW action #tcw
| ’testsw(’ (EMP | ARGS) ’,’ LABEL ’,’ SEM ’)’ ARROW action #tsw
;

expression_f
: ’checkf(’ (EMP | ARGS) ’,’ (EMP | ATKS) ’)’ ARROW action #ckf
| ’testcf(’ (EMP | ARGS) ’,’ LABEL ’,’ SEM ’)’ ARROW action #tcf
| ’testsf(’ (EMP | ARGS) ’,’ LABEL ’,’ SEM ’)’ ARROW action #tsf
;

ARROW
: ’->’
;

...

• visitCkw and visitCkf : check if a given set of arguments and/or attacks is present in the argumenta-
tion space. In case of success, both nodes visit the consequent action. On the other hand, when the
argumentation space does not contain the specified parts of AF, visitCkw waits for the condition to
become true, while visitCkf immediately returns false and leads to branch failure.

42 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Fig. 15. Parse tree of the cla program in Example 5.

• visitTcw, visitTcf, visitTsw and visitTsf : call a solver6 to execute credulous and sceptical tests on the
acceptability of a given set of arguments. As with the checks, the test functions are also available
in two versions, one that always terminates (with either a success or a failure) and the other that
possibly suspends and waits for the condition to become true.

In addition to the visiting functions, we have a set of core functions responsible for managing auxiliary
tasks, like starting new threads when a parallel composition is detected, making changes to the shared
AF and computing the semantics for the test operations. All the components are put together in the Main
class, which takes in input and runs the user-defined program. First of all, the input stream (a string
containing the definition of the program to run) is passed to the lexer, which extracts the tokens and
sends them to the parser. Then, the parser uses the tokens to generate a tree ready to be traversed (see
Fig. 15 for an example.). Finally, the visitor walks the tree and executes the program.

The synchronisation between parallel cla agents is obtained in form of interleaving, i.e., only one
agent is handled by the processor at a time. To implement the interleaving approach in cla we use the
functionality provided by Python’s multiprocessing package. In particular, we rely on two fundamental
components to manage the synchronisation of parallel processes: threads and shared variables. First,
when the parser detects a construct that requires the parallel execution of two branches, separate threads
are started whose management and scheduling are then automatically delegated to the processor. In each
thread, the execution of the cla program continues independently, with the possibility of starting further
parallel processes. Secondly, access to the shared AF is also managed so as not to cause the generation
of inconsistent information. The AF itself is stored in a shared variable, access to which can be managed
with a lock-and-unlock system: when any thread wants to read or write the contents of this variable, it
must first request control over it, which is granted to only one thread at a time. Control is then released
at the end of the operation. Read and write operations on the AF thus become atomic.

The implementation of cla can be used for both research purposes and practical applications. Al-
though in this paper we are not going to address the issues arising from the computational complexity of
argumentation problems [33], we want to point out that efficient implementations of cla programs can
be achieved by using, for example, the grounded semantics, for which finding and verifying extensions
is a task that can be performed in polynomial time [33].

6ConArg website: https://conarg.dmi.unipg.it.

https://conarg.dmi.unipg.it

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 43

6. Related work

A formalism for expressing dynamics in AFs is defined in [43] as a Dynamic Argumentation Frame-
work (DAF). The aim of that paper is to provide a method for instantiating Dung-style AFs by consid-
ering a universal set of arguments U . A DAF consists of an AF 〈U, R〉 and a set of evidence, which has
the role of restricting 〈U, R〉 to possible arguments and relations, so to obtain a static instance of the
framework. DAFs are built starting from argumental structures, in which a tree of arguments supports a
claim (corresponding to the root of the tree), and then adding attacks between argumental structures. The
dynamic component of a DAF is thus the set of evidence. The introduced approach allows for general-
ising AFs, adding the possibility of modelling changes, but, contrary to our study, it does not consider
how such modifications affect the semantics and does not allow to model the behaviour of concurrent
agents.

The impact of modifications on an AF in terms of sets of extensions is studied in [26]. Different
kinds of revision are introduced, in which a new argument interacts with an already existing one. The
authors describe different kinds of revision differing in the number of extensions that appear in the
outcome, with respect to a semantics: a decisive revision allows to obtain a unique non-empty extension,
a selective revision reduces the number of extensions (to a minimum of two), while a questioning one
increases that number; a destructive revision eliminates all extensions, an expansive revision maintain
the number of extensions and increases the number of accepted arguments; a conservative revision does
not introduce changes on the semantics level, and an altering revision adds and deletes arguments in the
extensions. All these revisions are obtained through the addition of a single argument, together with a
single attack relation either towards or from the original AF, and can be implemented as procedures of
our language. The review operator we define in the syntax of our language (as the other two operator for
expansion and contraction), instead, does not consider whole extensions, but just an argument at a time,
allowing communicating agents to modify their beliefs in a finer grain.

Focusing on syntactic expansion of an AF (the mere addition of arguments and attacks), [8] show
under which conditions a set of arguments can be enforced (to become accepted) for a specific semantics.
Moreover, since adding new arguments and attacks may lead to a decrease in term of extensions and
accepted arguments, the authors also investigate whether an expansion behaves in a monotonic fashion,
thus preserving the status of all originally accepted arguments. The study is only conducted on the case
of weak expansion (that adds further arguments which do not attack previous arguments). The notion
of expansion we use in the presented work is very different from that in [8]. First of all, we take into
account semantics when defining the expansion, making it more similar to an enforcement itself: we can
increment the labels of an argument so to match a desired acceptance status. Therefore, our expansion
turns out to be more general, being able to change the status of a given topic not only accepted but also
rejected, indecisive or indeterminate. This is useful, for instance, when we want to diminish the beliefs
of an opponent agent.

Enforcing is also studied in [28], where the authors consider an expansion of the AF that only allows
the addition of new attack relations, while the set of arguments remains the same (differently from [8]).
It is shown, indeed, that if no new argument is introduced, it is always possible to guarantee the success
of enforcement for any classical semantics. Also in this case, we want to highlight the differences with
our work. Starting from the modifications allowed into the framework, we are not limited to only change
the set of relations, since we implement procedures that also add and remove arguments. Moreover,
the operators we define are not just enforcement operators, since they allow to modify the acceptability
status of a single argument of an AF.

44 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

In our model, AFs are equipped with a universe of arguments that agents use to add new information
in the knowledge base. The problem of combining AFs is addressed in [9], that study the computational
complexity of verifying if a subset of argument is an extension for a certain semantics in incomplete
argumentation frameworks obtained by merging different beliefs. The incompleteness is considered both
for arguments and attack relation. Similarly to our approach, arguments (and attacks) can be brought
forward by agents and used to build new acceptable extensions. On the other hand, the scope of [9] is
focused on a complexity analysis and does not provide implementations for the merging.

The authors of [36] introduce a model for representing the mental states of agents. In the proposed
setting, argumentation is used to express changes in agents’ intentions produced as a consequence of
interaction processes, with a particular focus on negotiation. The mental model of an agent is defined
via a specifically designed logical model, which is then used to evaluate the beliefs through argumenta-
tion semantics. This logic is intended to allow one to examine single agents rather than the interaction
between multiple agents. In this aspect, and in the fact that only negotiation is considered as a possible
communicative process, the work in [36] diverges from ours, which, instead, aims at providing a flexible
framework for modelling any kind of (possibly concurrent) interaction, using argumentation to handle
beliefs belonging to all the involved agents.

The integration of new agents (and therefore new beliefs) in an existing system is a challenging prob-
lem that needs to be addressed in order to enable dynamics in open multi-agent systems. The concurrent
programming language of [47] builds upon the Ask-and-Tell paradigm [44] to allow a form of commu-
nication between agents which can resort to a parametric belief revision operator to adjust their beliefs
and integrate additional knowledge. Differently from ours, such a language focuses on the exchange
of information between agents without providing any mechanism for reasoning on shared information,
therefore precluding the possibility of modelling protocols like negotiation and persuasion.

Different frameworks have been adopted to model communication processes in multi-agent systems.
Among those frameworks, Petri Nets offer the capability of representing concurrent interactions, be-
sides verifying particular properties (like reachability and liveness) related to agents’ behaviour. In [27],
Coloured Petri Nets constitute the basis of a language for conversation specification. A conversation is
intended here as a sequence of actions that can also happen simultaneously, and that can realise pro-
tocols like negotiation. However, the authors do not consider the notion of beliefs belonging to agents
in the system and they only aim at modelling the series of actions that correspond to a certain form of
interaction.

The possibility of concurrent actions performed by agents is also contemplated in [5], where Dung-
style AFs are extended to directly integrate a notion of persuasion. In the resulting formalism, called
Abstract Persuasion Argumentation Framework (APA), the classical notion of defence is reinterpreted
to accommodate a broader meaning, including the ability to persuade as well as defend. In particular,
arguments in an APA can be converted (and thus transformed) into other arguments. A subsequent
work [4] further extends APAs with numerical values which also make it possible to represent resource
allocations and conditional relations between arguments. Even if persuasion is presented in these works
as dynamic relation, APAs (and their extension) cannot represent dynamic interactions between agents,
which we can model instead through the constructs of our language. Moreover, in our general setting,
not only negotiation as in [4,5], but any process between multiple agents can be modelled.

A timed version of cla has been studied in [12,13] with the introduction of constructs allowing for
the specification of temporal intervals in which actions occur. Expressions, for instance, are endowed
with timeouts that, once expired, make the execution terminate with failure. This behaviour could bet-
ter represents real-world situations in which timed applications cannot indefinitely wait for an event to

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 45

happen. Concurrent operations, then, are modelled following a maximum parallelism approach (i.e., it is
assumed that there are infinite processors, and all parallel operations can be performed simultaneously).
An interleaving model on a single processor is adopted instead in [14] for basic cla computation steps.
Contrary to maximum parallelism, the interleaving approach limits the number of enabled agents exe-
cuted at a time, mimicking the limited number of available processors as in the real world: only one of
the enabled agents is executed at each instant of time, while all the other agents may have to wait for the
processor to be free.

7. Conclusion and future work

We introduced a concurrent language for argumentation, that can be used by (intelligent) agents to im-
plement different forms of communication. The agents involved in the process share an AF that serves
as an argumentation space and where arguments represent the agreed beliefs. The shared AF can be
modified via a set of primitives that allow the addition and removal of arguments and attacks. All agents
have at their disposal a universe of arguments to choose from when they need to introduce new in-
formation. Besides operations at a syntactic level, we also defined semantic operations that verify the
acceptability of the arguments in the store. The functioning of all cla operations was described in detail
and shown through explanatory examples, emphasising how the parallel execution of multiple processes
takes place. Finally, we presented a tool (also endowed with a web interface) for modelling concurrent
argumentation processes written in cla, giving insights on the implementation choices and describing
the main components of the tool.

For the future, we plan to extend this work in many directions. First of all, given the known issues of
abstract argumentation [41], we want to consider (semi-)structured AFs, e.g., CAFs [34], and provide
an implementation for our expansion, contraction and revision operators, for which a different store
(structured and not abstract, indeed) need to be considered. The concurrent primitives are already general
enough and do not require substantial changes.

On the operations level, we are currently only able to modify the acceptance status of the arguments,
without further considerations on the obtained semantics. To gain control also over changes on the set
of extensions, we want to introduce operators able to obtain a specified semantics (when possible) or to
leave it unchanged (this can be done relying on the notion of robustness [15]).

Then, we would like to investigate the relation between the revision operations that can be imple-
mented in cla and the AGM postulates for belief revision [1]. Following this direction, we could devise
a set of AGM-style operations that allow for modifying an AF (the shared memory our agents access to
communicate) and changing the status of its arguments so as to allow negotiation and the other forms
of dialogues. Chatbots using argumentation techniques to interact with the users could benefit from this
approach.

As a final consideration, whereas in real-life cases it is always clear which part involved in a debate is
stating a particular argument, AFs do not hold any notion of “ownership” for arguments or attacks, that
is, any bond with the one making the assertion is lost. To overcome this problem, we want to implement
the possibility of attaching labels on (groups of) arguments and attacks of AFs, in order to preserve
the information related to who added a certain argument or attack, extending and taking into account
the work in [37]. Consequently, we can also obtain a notion of locality (or scope) of the belief in the
argumentation space: arguments owned by a given agents can be placed into a local store and used in
the implementation of specific operators through hidden variables.

46 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

Acknowledgement

We thank the anonymous reviewers for their insightful comments and valuable suggestions. Stefano
Bistarelli and Carlo Taticchi are members of the INdAM Research group GNCS and of Consorzio CINI.
This work has been partially supported by: GNCS-INdAM, CUP E55F22000270001; Project RACRA –
funded by Ricerca di Base 2018-2019, University of Perugia; Project BLOCKCHAIN4FOODCHAIN:
funded by Ricerca di Base 2020, University of Perugia; Project DopUP – REGIONE UMBRIA PSR
2014-2020; Project GIUSTIZIA AGILE, CUP: J89J22000900005.

References

[1] C.E. Alchourrón, P. Gärdenfors and D. Makinson, On the logic of theory change: Partial meet contraction and revision
functions, The Journal of Symbolic Logic 50(02) (1985), 510–530. doi:10.2307/2274239.

[2] L. Amgoud and F.D. de Saint-Cyr, Extracting the core of a persuasion dialog to evaluate its quality, in: Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, C. Sossai and G. Chemello, eds, Springer, Berlin Heidelberg,
2009, pp. 59–70. ISBN 978-3-642-02906-6. doi:10.1007/978-3-642-02906-6_7.

[3] L. Amgoud and S. Vesic, A formal analysis of the role of argumentation in negotiation dialogues, J. Log. Comput. 22(5)
(2012), 957–978. doi:10.1093/logcom/exr037.

[4] R. Arisaka and T. Ito, Numerical abstract persuasion argumentation for expressing concurrent multi-agent negotiations,
in: Artificial Intelligence. IJCAI 2019 International Workshops – Macao, Revised Selected Best Papers, China, August
10–12, 2019, A.E.F. Seghrouchni and D. Sarne, eds, Lecture Notes in Computer Science, Vol. 12158, Springer, 2019, pp.
131–149. doi:10.1007/978-3-030-56150-5_7.

[5] R. Arisaka and K. Satoh, Abstract argumentation/persuasion/dynamics, in: PRIMA 2018: Principles and Practice of
Multi-Agent Systems – 21st International Conference, Proceedings, Tokyo, Japan, October 29–November 2, 2018, T.
Miller, N. Oren, Y. Sakurai, I. Noda, B.T.R. Savarimuthu and T.C. Son, eds, Lecture Notes in Computer Science, Vol.
11224, Springer, 2018, pp. 331–343. doi:10.1007/978-3-030-03098-8_20.

[6] P. Baroni, M. Caminada and M. Giacomin, An introduction to argumentation semantics, Knowledge Eng. Review 26(4)
(2011), 365–410. doi:10.1017/S0269888911000166.

[7] P. Baroni and M. Giacomin, On principle-based evaluation of extension-based argumentation semantics, Artif. Intell.
171(10–15) (2007), 675–700. doi:10.1016/j.artint.2007.04.004.

[8] R. Baumann and G. Brewka, Expanding argumentation frameworks: Enforcing and monotonicity results, in: Computa-
tional Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September 8–10, 2010, P. Baroni,
F. Cerutti, M. Giacomin and G.R. Simari, eds, Frontiers in Artificial Intelligence and Applications, Vol. 216, IOS Press,
2010, pp. 75–86.

[9] D. Baumeister, D. Neugebauer, J. Rothe and H. Schadrack, Verification in incomplete argumentation frameworks, Artif.
Intell. 264 (2018), 1–26. doi:10.1016/j.artint.2018.08.001.

[10] S. Bistarelli, L. Kotthoff, F. Santini and C. Taticchi, A first overview of ICCMA’19, in: Proceedings of the Workshop on
Advances In Argumentation In Artificial Intelligence 2020 co-located with the 19th International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2020), Online, November 25–26, 2020, B. Fazzinga, F. Furfaro and F. Parisi,
eds, CEUR Workshop Proceedings, Vol. 2777, CEUR-WS.org, 2020, pp. 90–102.

[11] S. Bistarelli, L. Kotthoff, F. Santini and C. Taticchi, Summary report for the third international competition on computa-
tional models of argumentation, AI Mag. 42(3) (2021), 70–73. doi:10.1609/aimag.v42i3.15109.

[12] S. Bistarelli, M.C. Meo and C. Taticchi, Timed concurrent language for argumentation, in: Proceedings of the 36th Italian
Conference on Computational Logic, Parma, Italy, September 7–9, 2021, S. Monica and F. Bergenti, eds, CEUR Workshop
Proceedings, Vol. 3002, CEUR-WS.org, 2021, pp. 1–15, http://ceur-ws.org/Vol-3002/paper11.pdf.

[13] S. Bistarelli, M.C. Meo and C. Taticchi, Concurrent argumentation with time: An overview, in: Proceedings of the 5th
Workshop on Advances in Argumentation in Artificial Intelligence 2021 Co-Located with the 20th International Confer-
ence of the Italian Association for Artificial Intelligence (AIxIA 2021), Milan, Italy, November 29th, 2021, M. D’Agostino,
F.A. D’Asaro and C. Larese, eds, CEUR Workshop Proceedings, Vols 3086, CEUR-WS.org, 2021, http://ceur-ws.org/Vol-
3086/short3.pdf.

[14] S. Bistarelli, M.C. Meo and C. Taticchi, Timed concurrent language for argumentation: An interleaving approach, in:
Practical Aspects of Declarative Languages – 24th International Symposium, PADL 2022, Proceedings, Philadelphia,
PA, USA, January 17–18, 2022, J. Cheney and S. Perri, eds, Lecture Notes in Computer Science, Vol. 13165, Springer,
2022, pp. 101–116. doi:10.1007/978-3-030-94479-7_7.

https://doi.org/10.2307/2274239
https://doi.org/10.1007/978-3-642-02906-6_7
https://doi.org/10.1093/logcom/exr037
https://doi.org/10.1007/978-3-030-56150-5_7
https://doi.org/10.1007/978-3-030-03098-8_20
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1016/j.artint.2007.04.004
https://doi.org/10.1016/j.artint.2018.08.001
https://doi.org/10.1609/aimag.v42i3.15109
http://ceur-ws.org/Vol-3002/paper11.pdf
http://ceur-ws.org/Vol-3086/short3.pdf
http://ceur-ws.org/Vol-3086/short3.pdf
https://doi.org/10.1007/978-3-030-94479-7_7

S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents 47

[15] S. Bistarelli, F. Santini and C. Taticchi, On looking for invariant operators in argumentation semantics, in: Proceedings
of the Thirty-First International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018, Melbourne,
Florida, USA, May 21–23, 2018, 2018, pp. 537–540.

[16] S. Bistarelli and C. Taticchi, A concurrent language for argumentation, in: Proceedings of the Workshop on Advances in
Argumentation in Artificial Intelligence 2020 Co-Located with the 19th International Conference of the Italian Association
for Artificial Intelligence (AIxIA 2020), Online, November 25–26, 2020, B. Fazzinga, F. Furfaro and F. Parisi, eds, CEUR
Workshop Proceedings, Vol. 2777, CEUR-WS.org, 2020, pp. 75–89.

[17] S. Bistarelli and C. Taticchi, Towards an implementation of a concurrent language for argumentation, in: AIxIA 2020 –
Advances in Artificial Intelligence – XIXth International Conference of the Italian Association for Artificial Intelligence,
Virtual Event, November 25–27, 2020, Revised Selected Papers, M. Baldoni and S. Bandini, eds, Lecture Notes in Com-
puter Science, Vol. 12414, Springer, 2020, pp. 154–171. doi:10.1007/978-3-030-77091-4_10.

[18] S. Bistarelli and C. Taticchi, A concurrent language for argumentation: Preliminary notes, in: Recent Developments in the
Design and Implementation of Programming Languages, Gabbrielli’s Festschrift, November 27, 2020, F.S. de Boer and
J. Mauro, eds, OASIcs, Vol. 86, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Bologna, Italy, 2020, pp. 9:1–9:22.
doi:10.4230/OASIcs.Gabbrielli.9.

[19] S. Bistarelli and C. Taticchi, Introducing a tool for concurrent argumentation, in: Logics in Artificial Intelligence – 17th
European Conference, JELIA 2021, Virtual Event, May 17-20, 2021, Proceedings, W. Faber, G. Friedrich, M. Gebser
and M. Morak, eds, Lecture Notes in Computer Science, Vol. 12678, Springer, 2021, pp. 18–24. doi:10.1007/978-3-030-
75775-5_2.

[20] S. Bistarelli and C. Taticchi, A unifying four-state labelling semantics for bridging abstract argumentation frameworks
and belief revision, in: Proceedings of the 22nd Italian Conference on Theoretical Computer Science, Bologna, Italy,
September 13–15, 2021, C.S. Coen and I. Salvo, eds, CEUR Workshop Proceedings, Vol. 3072, CEUR-WS.org, 2021, pp.
93–106, http://ceur-ws.org/Vol-3072/paper8.pdf.

[21] G. Boella, S. Kaci and L.W.N. van der Torre, Dynamics in argumentation with single extensions: Attack refinement
and the grounded extension (extended version), in: Argumentation in Multi-Agent Systems, 6th International Workshop,
ArgMAS 2009. Revised Selected and Invited Papers, Lecture Notes in Computer Science, Vol. 6057, Springer, 2009, pp.
150–159. ISBN 978-3-642-12804-2.

[22] G. Boella, S. Kaci and L.W.N. van der Torre, Dynamics in argumentation with single extensions: Abstraction principles
and the grounded extension, in: Proceedings, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
10th European Conference, ECSQARU 2009, Verona, Italy, July 1–3, C. Sossai and G. Chemello, eds, Lecture Notes in
Computer Science, Vol. 5590, Springer, 2009, pp. 107–118. doi:10.1007/978-3-642-02906-6_11.

[23] M. Caminada, Semi-Stable Semantics, in: Computational Models of Argument: Proceedings of COMMA 2006, September
11–12, 2006, P.E. Dunne and T.J.M. Bench-Capon, eds, Frontiers in Artificial Intelligence and Applications, Vol. 144,
IOS Press, Liverpool, UK, 2006, pp. 121–130, http://www.booksonline.iospress.nl/Content/View.aspx?piid=1932.

[24] M. Caminada, On the issue of reinstatement in argumentation, in: Logics in Artificial Intelligence, 10th European Confer-
ence, JELIA 2006, Proceedings, Lecture Notes in Computer Science, Liverpool, UK, September 13–15, 2006, Vol. 4160,
Springer, 2006, pp. 111–123. ISBN 978-3-540-39625-3.

[25] M. Caminada and B. Verheij, On the existence of semi-stable extensions, in: Proceedings of the 22nd Benelux Conference
on Artificial Intelligence (BNAIC 2010), 2010.

[26] C. Cayrol, F.D. de Saint-Cyr and M.-C. Lagasquie-Schiex, Revision of an argumentation system, in: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16–19, 2008, AAAI Press, 2008, pp. 124–134. ISBN 978-1-57735-384-3.

[27] R.S. Cost, Y. Chen, T.W. Finin, Y. Labrou and Y. Peng, Using colored Petri nets for conversation modeling, in: Issues in
Agent Communication, F. Dignum and M. Greaves, eds, Lecture Notes in Computer Science, Vol. 1916, Springer, 2000,
pp. 178–192. doi:10.1007/10722777_12.

[28] S. Coste-Marquis, S. Konieczny, J. Mailly and P. Marquis, Extension enforcement in abstract argumentation as an opti-
mization problem, in: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25–31, 2015, Q. Yang and M.J. Wooldridge, eds, AAAI Press, 2015, pp. 2876–2882.

[29] F.D. de Saint-Cyr, P. Bisquert, C. Cayrol and M. Lagasquie-Schiex, Argumentation update in YALLA (yet another logic
language for argumentation), Int. J. Approx. Reason. 75 (2016), 57–92. doi:10.1016/j.ijar.2016.04.003.

[30] S. Doutre, A. Herzig and L. Perrussel, A dynamic logic framework for abstract argumentation, in: Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July
20–24, 2014, 2014.

[31] S. Doutre, F. Maffre and P. McBurney, A dynamic logic framework for abstract argumentation: Adding and removing
arguments, in: Advances in Artificial Intelligence: From Theory to Practice – 30th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Proceedings, Part II, Arras, France,
June 27–30, 2017, S. Benferhat, K. Tabia and M. Ali, eds, Lecture Notes in Computer Science, Vol. 10351, Springer,
2017, pp. 295–305. doi:10.1007/978-3-319-60045-1_32.

https://doi.org/10.1007/978-3-030-77091-4_10
https://doi.org/10.4230/OASIcs.Gabbrielli.9
https://doi.org/10.1007/978-3-030-75775-5_2
https://doi.org/10.1007/978-3-030-75775-5_2
http://ceur-ws.org/Vol-3072/paper8.pdf
https://doi.org/10.1007/978-3-642-02906-6_11
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1932
https://doi.org/10.1007/10722777_12
https://doi.org/10.1016/j.ijar.2016.04.003
https://doi.org/10.1007/978-3-319-60045-1_32

48 S. Bistarelli and C. Taticchi / A concurrent language for modelling arguing agents

[32] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artificial Intelligence 77(2) (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.

[33] W. Dvořák and P.E. Dunne, Computational problems in formal argumentation and their complexity, FLAP 4(8) (2017).
[34] W. Dvořák and S. Woltran, Complexity of abstract argumentation under a claim-centric view, Artif. Intell. 285 (2020),

103290. doi:10.1016/j.artint.2020.103290.
[35] M. Kacprzak, K. Budzynska and O. Yaskorska, A logic for strategies in persuasion dialogue games, in: Advances in

Knowledge-Based and Intelligent Information and Engineering Systems – 16th Annual KES Conference, San Sebastian,
Spain, 10–12 September 2012, Frontiers in Artificial Intelligence and Applications, Vol. 243, IOS Press, 2012, pp. 98–107.
ISBN 978-1-61499-104-5. doi:10.3233/978-1-61499-105-2-98.

[36] S. Kraus, K.P. Sycara and A. Evenchik, Reaching agreements through argumentation: A logical model and implementa-
tion, Artif. Intell. 104(1–2) (1998), 1–69. doi:10.1016/S0004-3702(98)00078-2.

[37] N. Maudet, S. Parsons and I. Rahwan, Argumentation in Multi-Agent Systems: Context and Recent Developments, in:
Argumentation in Multi-Agent Systems, Third International Workshop, ArgMAS 2006, Hakodate, Japan, May 8, 2006,
Revised Selected and Invited Papers, 2006, pp. 1–16.

[38] T. Parr, The Definitive ANTLR 4 Reference, the Pragmatic Bookshelf, 2013. ISBN 9781934356999.
[39] H. Prakken, Models of persuasion dialogue, in: Argumentation in Artificial Intelligence, Springer, 2009, pp. 281–300.

ISBN 978-0-387-98196-3. doi:10.1007/978-0-387-98197-0_14.
[40] H. Prakken, An abstract framework for argumentation with structured arguments, Argument & Computation 1(2) (2010),

93–124. doi:10.1080/19462160903564592.
[41] H. Prakken and M.D. Winter, Abstraction in argumentation: Necessary but dangerous, in: Computational Models of Ar-

gument – Proceedings of COMMA 2018, Warsaw, Poland, 12–14 September 2018, S. Modgil, K. Budzynska and J.
Lawrence, eds, Frontiers in Artificial Intelligence and Applications, Vol. 305, IOS Press, 2018, pp. 85–96.

[42] R. Riveret, N. Oren and G. Sartor, A probabilistic deontic argumentation framework, Int. J. Approx. Reason. 126 (2020),
249–271. doi:10.1016/j.ijar.2020.08.012.

[43] N.D. Rotstein, M.O. Moguillansky, A.J. Garcia and G.R. Simari, An abstract argumentation framework for handling
dynamics, in: Proceedings of the Argument, Dialogue and Decision Workshop in NMR 2008, Sydney, Australia, 2008, pp.
131–139.

[44] V.A. Saraswat and M. Rinard, Concurrent constraint programming, in: Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages – POPL ’90, ACM Press, San Francisco, California, United States,
1990, pp. 232–245. ISBN 978-0-89791-343-0.

[45] C. Taticchi, A concurrent language for negotiation and debate with argumentation, in: AAMAS ’21: 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3–7, 2021,
F. Dignum, A. Lomuscio, U. Endriss and A. Nowé, eds, ACM, 2021, pp. 1840–1841, https://dl.acm.org/doi/10.5555/
3463952.3464258.

[46] F. Toni, A tutorial on assumption-based argumentation, Argument & Computation 5(1) (2014), 89–117. doi:10.1080/
19462166.2013.869878.

[47] R.M. van Eijk, F.S. de Boer, W. van der Hoek and J.C. Meyer, in: Open Multi-Agent Systems: Agent Communication and
Integration, in: Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL), 6th International Workshop,
ATAL ’99, Proceedings, Orlando, Florida, USA, July 15–17, 1999, N.R. Jennings and Y. Lespérance, eds, Lecture Notes
in Computer Science, Vol. 1757, Springer, 1999, pp. 218–232. doi:10.1007/10719619_16.

[48] B. Verheij, Two approaches to dialectical argumentation: Admissible sets and argumentation stages, in: Proceedings of
the Eighth Dutch Conference on Artificial Intelligence (NAIC’96), Utrecht, 1996. Utrecht University, J.-J.C. Meyer and
L.C. van der Gaag, eds, 1996, pp. 357–368.

[49] B. Verheij, A labeling approach to the computation of credulous acceptance in argumentation, in: IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6–12, 2007, M.M. Veloso,
ed., 2007, pp. 623–628, http://ijcai.org/Proceedings/07/Papers/099.pdf.

[50] D. Walton, Types of dialogue, dialectical shifts and fallacies, in: Argumentation Illuminated, Proceedings of the Interna-
tional Society for the Study of Argumentation in Amsterdam, SICSAT, 1992, 1992, pp. 133–147.

[51] D. Walton and T.F. Gordon, Argument invention with the Carneades argumentation system, SCRIPTed 14 (2017), 168.
doi:10.2966/scrip.140217.168.

https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2020.103290
https://doi.org/10.3233/978-1-61499-105-2-98
https://doi.org/10.1016/S0004-3702(98)00078-2
https://doi.org/10.1007/978-0-387-98197-0_14
https://doi.org/10.1080/19462160903564592
https://doi.org/10.1016/j.ijar.2020.08.012
https://dl.acm.org/doi/10.5555/3463952.3464258
https://dl.acm.org/doi/10.5555/3463952.3464258
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1007/10719619_16
http://ijcai.org/Proceedings/07/Papers/099.pdf
https://doi.org/10.2966/scrip.140217.168

	Introduction
	Background
	Syntax and semantics
	cla for persuasion and negotiation dialogues
	Persuasion with cla
	Negotiation with cla

	Implementation
	Web interface
	cla parser and synchronisation

	Related work
	Conclusion and future work
	Acknowledgement
	References

