
Argument & Computation 11 (2020) 151–190 151
DOI 10.3233/AAC-190471
IOS Press

Structural constraints for dynamic operators
in abstract argumentation

Johannes P. Wallner
Institute of Logic and Computation, TU Wien, Austria
E-mail: wallner@dbai.tuwien.ac.at

Abstract. Many recent studies of dynamics in formal argumentation within AI focus on the well-known formalism of Dung’s
argumentation frameworks (AFs). Despite the usefulness of AFs in many areas of argumentation, their abstract notion of
arguments creates a barrier for operators that modify a given AF, e.g., in the case that dependencies between arguments have
been abstracted away that are important for subsequent modifications. In this paper we aim to support development of dynamic
operators on formal models in abstract argumentation by providing constraints imposed on the modification of the structure
that can be used to incorporate information that has been abstracted away. Towards a broad reach, we base our results on
the general formalism of abstract dialectical frameworks (ADFs) in abstract argumentation. To show applicability, we present
two cases studies that adapt an existing extension enforcement operator that modifies AFs: in the first case study, we show
how to utilize constraints in order to obtain an enforcement operator on ADFs that is allowed to only add support relations
between arguments, and in the second case study we show how an enforcement operator on AFs can be defined that respects
dependencies between arguments. We show feasibility of our approach by studying the complexity of the proposed structural
constraints and the operators arising from the case studies, and by an experimental evaluation of an answer set programming
(ASP) implementation of the enforcement operator based on supports.

Keywords: Abstract argumentation, dynamics of argumentation, argumentation frameworks, abstract dialectical frameworks,
structured argumentation, computational complexity, constraints, answer set programming

1. Introduction

In the last decades there has been a steady stream of advances in formal approaches to argumentation
within artificial intelligence (AI) [4,19]. Central to many formal models in argumentation are argumenta-
tion frameworks (AFs) due to the work by Dung in 1995 [53]. AFs can be seen as a reasoning formalism
that is both foundational and simple: AFs consist of abstract arguments and directed attacks (conflicts)
between these arguments. The simplicity of AFs is an appealing quality, which is witnessed by the fact
that several approaches use AFs as their core reasoning engine [22,23,28,45,54,85,86]. Reasoning in
this way is done via instantiating AFs in a principled way such that the arguments capture what can be
argued for, and the attacks cover ways in which the arguments are conflicting. Semantics of AFs provide
different means of conflict handling, in order to find acceptable arguments. Importantly, semantics of
AFs only rely on the abstract view of AFs, i.e., abstract arguments and their conflict relations suffice to
find acceptable arguments from an argumentative point of view for many applications. By inspecting the
content of acceptable arguments one can trace back concrete claims that are acceptable.

AFs are also prominent as a formal basis for an emergent topic in formal argumentation, namely that
of dynamics of argumentation [10,34,44,48,52], which can partially also be attributed to the easy-to-
grasp conceptual nature of AFs. The investigation of dynamics of argumentation arose naturally in the

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial Li-
cense (CC BY-NC 4.0).

1946-2166/20/$35.00 © 2020 – IOS Press and the authors.

mailto:wallner@dbai.tuwien.ac.at

152 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

research community since argumentation is an inherently dynamic process of, e.g., posing arguments
and counterarguments towards goals in a debate.

In their initial usage, AFs were applied on “static” forms of reasoning, i.e., reasoning in contexts that
give rise to AFs that do not change. While the principles of dynamic scenarios are compatible with AFs,
in that AFs can be dynamically adapted, care needs to be taken when utilizing AFs in a dynamic con-
text. For instance, dynamic operations, if solely done on AFs, may miss certain dependencies between
arguments that are apparent when considering the internal structure of the arguments, but which have
been “abstracted away” during instantiation.

Example 1. Consider two arguments, a1 and a2, and assume that a1 is a sub argument of a2, e.g., because
a1 concludes a premise of a2. When both arguments are part of an AF then a modification of that AF may
add an attack on a1, say by a counter to the premise of a1. In many cases such a counter is deemed to,
also, attack the super argument a2, since its premise is attacked. However, if no further information than
the AF is available, then this interdependency might be missed, which may lead to unintended results,
like rejecting a1 but finding a2 to be acceptable, even though one is the premise of the other.

While certain generalizations of AFs [31,39], particularly those that incorporate support relations,
e.g., based on necessary supports [92], make it possible to explicate the apparently implicit support
relation between a1 and a2, ultimately the same underlying problem remains: modifications on abstract
frameworks may miss interdependencies between arguments.

In this paper we argue that despite these drawbacks of AFs when utilizing them in dynamic opera-
tions, abstract argumentation formalisms, as introduced by Dung [53] and to which this special issue is
dedicated, are still a very useful notion for studying dynamics of argumentation. We argue that existing
dynamic operators, and new ones, can be augmented to incorporate key structural constraints. Our goal
in this paper is to provide means with which dynamic operations on abstract arguments can be extended
so that (i) certain structural constraints are taken into account and (ii) operators can still work on a
convenient and (partial) abstract level.

Towards our goal, we view dynamic operations on abstract arguments (and their relations) as operators
working in three layers: a semantic layer, a structural layer, and a syntax layer. In the first layer, a
semantical change is specified by an operator. As a concrete example, consider extension enforcement
as defined in [10]: given an AF and a set of arguments, the output is a modified AF whose semantics
contains the given set of arguments as an extension. This operator finds interpretations as strategic moves
in an argumentation [58]. Enforcement defines certain conditions on the semantics of the output (or,
equivalently, constraints on the semantics of an output AF). On the structural side, extension enforcement
specifies that the output AF shall be close to the input AF (via a defined notion of distance between input
and output AF structures). Finally, syntactically, the operator requires that the output is, again, an AF.

More broadly, we find that the semantical layer of a dynamic operator defines semantical constraints
on the output, the structural layer specifies constraints on the structure of the output, and the syntax
layer specifies the concrete syntax an output shall have. We illustrate this “workflow” in Fig. 1(a). Anal-
ogously, one can view each layer of an operator as (a set of) constraints, each constraining the possible
candidate solutions, see Fig. 1(b). In the case of enforcement, the first layer constrains the set of candi-
date AFs to be those that satisfy the semantical constraint, then the second layer constrains to choose,
among those satisfying the first layer, those structures that are close to the input.

With this article, we contribute to the second layer, the structural layer, by giving properties that
can be required by an output structurally, with the aim of giving developers of dynamic operators a
further handle to extend operators to cover more application scenarios. As the formal foundation, we

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 153

Semantical Layer

Structural Layer

Syntax Layer

Semantical constraints

Structural constraints

Syntax constraints

(a) (b)

Fig. 1. (a) Three layers for dynamic operators and (b) outcomes that satisfy constraints of each layer.

use abstract dialectical frameworks (ADFs) [30,55] as the formal model that undergoes a change in
this paper. Although ADFs are more complex than AFs, in the sense that the acceptance conditions
of arguments can be specified in a liberal manner, they are still an abstract formalism with abstract
arguments, and, importantly, have been shown to capture several abstract formalisms in argumentation
in AI [95], and, thus, extend the reach of our contributions also to other formalisms than AFs.

To further our aim of supporting development of dynamic operators, we utilize the proposed con-
straints in two case studies. In the first case study we show how enforcement on AFs can be adapted to
ADFs such that relations between arguments may only be modified in a way that corresponds to support
between arguments, in contrast to attacks on AFs. In this way, we both aim to present a showcase of the
constraints and show how to generalize existing dynamic operators on AFs to the more general setting
of ADFs. Indeed, many dynamic approaches are currently restricted to AFs only. By using ADFs, and
applying suitable structural constraints, one can lift current operators on AFs to ADFs, while keeping
the intuitions of the operators.

In a second case study, we stay on the level of AFs, but adapt the existing enforcement operator
to respect information of the instantiation. Concretely, for a general view on structured argumentation
formalisms, we show how the constraints can be applied so that modifications to an AF do not miss
interdependencies between arguments on their internal structure.

Since dynamic operators are, even without further constraints, often computationally hard [44,102],
we study the complexity of the constraints we consider in this paper, and also the operators arising from
the two case studies, in order to show which constraints can be feasibly “added” to operators. In order
to have a clearer picture, we present an implementation in answer set programming (ASP) [29,71,88]
and an empirical evaluation of the support enforcement on ADFs from the first case study. Our findings
are that even when working in a more general abstract framework, and with complex constraints, state-
of-the-art search engines (such as ASP) are capable of feasibly solving many instances up to certain
sizes.

We summarize the main contributions of this article in the following.

• To situate our proposal in more concrete terms, we first adapt an existing extension enforcement
operator for AFs [9,10,44] to ADFs.

• We give a list of structural constraints on ADFs, i.e., constraints on the structure of ADFs, exemplify
their use for dynamics, and study some of their properties.

• We give two case studies for the constraints and adaptions of extension enforcement: one enforce-
ment operation on ADFs that deals with supports and one enforcement operation on AFs that re-
spects internal structure of arguments.

154 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

• To demonstrate feasibility, we show the theoretical complexity of checking whether an ADF satis-
fies the constraints, which is decidable in polynomial time in many cases, and we study the com-
plexity of the operators arising from the case studies under admissible semantics.

• We implemented a prototype of the enforcement operation on ADFs using supports based on the
Diamond system [62,63], and performed an experimental evaluation, showing good performance
for a variety of ADF instances.

The article begins with recalling background in Section 2 (AFs and ADFs) and Section 3 (enforce-
ment). We present and exemplify structural constraints in Section 4, and proceed to the case studies
in Section 5 and Section 6. Our analysis of complexity of constraints and case studies is presented in
Section 7, and our prototype implementation and experiments in Section 8. We close with a discussion
on further existing operators for which our constraints can be applied (Section 9) and on related work
(Section 10). This article significantly extends the conference version [101] by expanded discussion and
illustration, more formal details on the first case study, inclusion of the second case study, giving full
proofs, and updated experiments.

2. Abstract argumentation frameworks

In this section we recall the basics of two well-known abstract argumentation frameworks, namely
Dung’s argumentation frameworks (AFs) [53] and abstract dialectical frameworks (ADFs) [30]. There
exists a whole range of abstract formalisms for argumentation, such as bipolar frameworks (BAFs) [3,
36], extended argumentation frameworks (EAFs) [83], argumentation frameworks with recursive attacks
(AFRAs) [6] and their subsequent extensions [35,40,65], value-based frameworks (VAFs) [18], and
preference-based frameworks (PAFs) [2], to name some of the prominent formalisms, which are also
surveyed in recent articles [31,39]. Our choice of AFs and ADFs is justified by AFs being the common
core to all these other approaches, and that ADFs generalize (translate to) many other approaches [95].

2.1. Argumentation frameworks

We start the formal preliminaries with Dung’s argumentation frameworks (AFs) [53] and semantics
for these frameworks [5]. An AF consists of a set of abstract arguments and directed attacks between
these arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A, R), where A is a finite set of
arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b.

Example 2. AFs have a natural representation as directed graphs. Consider an AF F = ({a, b, c, d}, R)

with four arguments and the following attacks: R = {(a, b), (b, a), (a, c), (b, c), (c, d)}. This AF is
illustrated in Fig. 2(a).

A central notion towards the semantics of AFs is that of defense of arguments.

Definition 2. Let F = (A, R) be an AF. An argument a ∈ A is defended (in F) by a set S ⊆ A if for
each b ∈ A such that (b, a) ∈ R there exists a c ∈ S such that (c, b) ∈ R.

Semantics for argumentation frameworks are defined through a function σ which assigns to each AF
F = (A, R) a set σ(F) ⊆ 2A of extensions. We consider for σ the functions cf, adm, com, grd, and

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 155

a

b

c d

(a)

a¬b

b¬a

c

¬a ∧ ¬b

d ¬c

(b)

Fig. 2. Illustrations of the AF and the corresponding ADF from Example 3 and Example 4.

Table 1

Extensions of semantics σ from Example 2

σ σ(F)

cf {∅, {a}, {b}, {c}, {d}, {a, d}, {b, d}}
adm {∅, {a}, {b}, {a, d}, {b, d}}
com {∅, {a, d}, {b, d}}
grd {∅}
prf {{a, d}, {b, d}}

prf, which stand for conflict-free, admissible, complete, grounded, and preferred, respectively. Towards
the definition we make use of the characteristic function of AFs, defined for an AF F = (A, R) by
FF (S) = {x ∈ A | x is defended by S}.
Definition 3. Let F = (A, R) be an AF. An S ⊆ A is conflict-free (in F) if there are no a, b ∈ S such
that (a, b) ∈ R. We denote the set of conflict-free sets by cf(F). For an S ∈ cf(F) it holds that

• S ∈ adm(F) iff S ⊆ FF (S);
• S ∈ com(F) iff S = FF (S);
• S ∈ grd(F) iff S is the least fixed-point of FF ; and
• S ∈ prf(F) iff S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T .

It is well-known that for any AF F it holds that cf(F) ⊇ adm(F) ⊇ com(F) ⊇ prf(F). We use the
term σ -extension to refer to an extension under a semantics σ ∈ {cf, adm, com, grd, prf}. We note that
conflict-free sets and admissible sets are usually not referred to as a semantics, since, commonly, these
two notions are seen as auxiliary concepts. Nevertheless, for the sake of uniformity, we will refer to the
set of conflict-free sets and the set of admissible sets as conflict-free and admissible semantics. However,
we do emphasize that by referring to conflict-free sets or admissible sets by conflict-free semantics or
admissible semantics does not imply a prescriptive endeavor of placing these two concepts into the
set of “full” argumentative semantics. Similarly, we sometimes call conflict-free sets or admissible sets
conflict-free or admissible extensions, likewise with no intention of viewing them as being on the same
level as extensions of other semantics.

Example 3. Consider the AF F in Example 2. For the considered semantics σ we show the correspond-
ing extensions in Table 1.

156 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

2.2. Abstract dialectical frameworks

We recall ADFs from [30], which are based on earlier works [32]. We begin with basics from propo-
sitional logic and three-valued interpretations. Let A be a finite set of arguments (statements). An inter-
pretation is a function I mapping arguments to one of the three truth values I : A → {t, f, u}. That is,
an interpretation maps each argument to either true (t), false (f), or undefined (u). An interpretation I is
two-valued if I (a) ∈ {t, f} for all a ∈ A, and trivial, denoted as Iu, if I (a) = u for all a ∈ A. Further,
let It (If) be the interpretation assigning all arguments to t (f).

For Boolean formulas ϕ we consider the classical connectives of logical conjunction “∧”, logical
disjunction “∨”, logical negation “¬”, and material implication “→”. A two-valued interpretation I

extends to the evaluation of a formula ϕ under I as usual, denoted by I (ϕ).
For a formula ϕ and a three-valued interpretation I let ϕ[I] be the formula obtained from ϕ with each

argument that I assigns to either true or false being replaced by the corresponding truth constant, i.e.,
ϕ[I] = ϕ[x
→ � | I (x) = t][x
→ ⊥ | I (x) = f]; arguments assigned to undefined are not modified.

An interpretation I is equally or more informative than J , denoted by J �i I , if J (a) ∈ {t, f} implies
J (a) = I (a) for all a ∈ A. We denote by <i the strict version of �i , i.e., J <i I if J �i I and ∃a ∈ A

s.t. J (a) = u and I (a) ∈ {t, f}.
Definition 4. An ADF is a tuple D = (A, L, C) where A is a set of arguments, L ⊆ A × A is a set
of links, and C = {ϕa}a∈A is a collection of acceptance conditions, each given by a formula over the
parents of an argument: parD(a) = {b ∈ A | (b, a) ∈ L}.
Example 4. Fig. 2(b) shows an ADF D = ({a, b, c, d}, L, C) with L = {(a, b), (b, a), (a, c), (b, c),

(c, d)}. The acceptance conditions are shown close to the arguments.

The semantics of ADFs are based on the characteristic function �D mapping interpretations to updated
interpretations.

Definition 5. Let D = (A, L, C) be an ADF. The characteristic function �D is defined by �D(I) = J

with

J (a) =

⎧⎪⎨
⎪⎩

t if ϕa[I] is a tautology,

f if ϕa[I] is unsatisfiable, and

u otherwise.

Semantics of ADFs are defined in a similar fashion as for AFs, based on the characteristic function.

Definition 6. Given an ADF D, an interpretation I

• is admissible in D iff I �i �D(I);
• is complete in D iff I = �D(I);
• is grounded in D iff I is the least fixed-point of �D; and
• is preferred in D iff I is �i-maximal admissible in D.

We refer to the set of all admissible, complete, grounded, and preferred interpretations of an ADF D by
adm(D), com(D), grd(D), and prf(D), respectively. In any ADF D, it holds that prf(D) ⊆ com(D) ⊆
adm(D). Further, by definition, it holds that the grounded interpretation is a complete interpretation.

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 157

Table 2

Interpretations of semantics σ from Example 4

σ σ(D)

com {{a
→ u, b
→ u, c
→ u, d
→ u},
{a
→ t, b
→ f, c
→ f, d
→ t},
{a
→ f, b
→ t, c
→ f, d
→ t}}

grd {{a
→ u, b
→ u, c
→ u, d
→ u}}
prf {{a
→ t, b
→ f, c
→ f, d
→ t},

{a
→ f, b
→ t, c
→ f, d
→ t}}

Example 5. For the ADF from Example 4, the σ -interpretations are shown in Table 2. Admissible
interpretations are not shown due to their number: there are 11 admissible interpretations for this ADF.

We will also make use of a fragment of ADFs, called bipolar ADFs. Towards the definition, we recall
the notion of attacking and supporting relations, as specified in ADFs.1 Formally, we make use of an
auxiliary notion: we denote the update of an interpretation I with truth value x ∈ {t, f, u} for argument
b by I |bx, i.e., I |bx(b) = x and I |bx(a) = I (a) for a �= b.

Definition 7. Let D = (A, L, C) be an ADF. We say that a link (b, a) ∈ L is

• supporting (in D) if for every two-valued interpretation I , I (ϕa) = t implies I |bt (ϕa) = t; and
• attacking (in D) if for every two-valued interpretation I , I (ϕa) = f implies I |bt (ϕa) = f.

Intuitively, if a link from a to b is attacking (supporting), then it cannot be the case that acceptance of
a leads to a change of b’s status to that of being accepted (not accepted).

An ADF D is called bipolar (is a BADF) if each link (b, a) ∈ L is attacking or supporting. A link that
is both attacking and supporting is called redundant.

An AF F = (A, R) can be translated to an ADF by defining DF = (A, R, C) with ϕa = ∧
(b,a)∈R ¬b

(see also Fig. 2). Note that the resulting ADF DF has only attacking links which are not supporting. The
semantics of an AF and its corresponding ADF coincide (by relating an extension E with interpretation
I via E = {a | I (a) = t} [30]).

3. Enforcement on argumentation frameworks

Enforcement on AFs deals with the task of how to modify a given AF such that the modified AF
satisfies certain semantical constraints. Usually also the number of modifications has to be minimum.
Enforcement has been studied from several angles: possibility and impossibility results [9,10], repre-
sentational aspects and use cases in a logical setting [25,51,58], computational aspects [44,90,102], and
axiomatic studies [11,51,58,73].

Several variants of enforcement have been defined. For the purposes of this paper, we look at the
enforcement variant called non-strict enforcement under strong expansions with a bounded number of
expanded arguments [44]. This choice is mostly due to illustrative reasons; other variants fit the aims of
the paper, as well. We base our results on this variant, since it is intuitively appealing: expansions relate

1We remark that the notion of “support” in abstract argumentation is not uniform. Common interpretations of support include
support relation seen as deductive support [27], as necessary support [91,92], or as evidential support [93,94], see also [36].

158 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

to addition of arguments, with the strong variant indicating attacks originating only from new arguments.
Compared to other operations studied, “strict” variants would place more restrictions on the semantic
goal, and other types of expansions [8] have different restrictions which attacks may be added.

For an AF F = (A, R), an expansion of F is any F ′ = (A′, R′) with A ⊆ A′ and R ⊆ R′ (new
arguments and new attacks may be added arbitrarily). Given an AF F = (A, R), a strong expansion of
F that adds new arguments A′, with A ∩ A′ = ∅, is a modified AF F ′ = (A ∪ A′, R′) with R ⊆ R′
(all original attacks are in R′) and if an attack (a, b) ∈ R′ \ R was added, then a ∈ A′ and b ∈ A (new
attacks originate from new arguments onto original arguments only).

Based on strong expansions, we define enforcement as follows.

Definition 8. Let F = (A, R) be an AF, σ be a semantics, A′ be a set with A∩A′ = ∅, and S ⊆ A∪A′.
An AF F ′ = (A ∪ A′, R′) non-strictly enforces S under σ if

• R ⊆ R′,
• for any (a, b) ∈ R′ \ R we have a ∈ A′ and b ∈ A, and
• ∃S ′ ∈ σ(F ′) with S ⊆ S ′.

That is, one needs to find a modified AF F ′ that strongly expands F by new arguments A′ and S must
be part of a σ -extension of F ′. Among all candidates, typically, one further restricts solution AFs to be
optimal w.r.t. the modifications to the attacks. This is specified by finding an optimal AF F ∗ = (A ∪
A′, R∗) that non-strictly enforces S under σ and there is no F ′ = (A∪A′, R′) that non-strictly enforces S

under σ and |(R�R′)| < |(R�R∗)|, with � the usual symmetric difference: X�Y = (X \Y)∪ (Y \X).

Example 6. Consider the AF from Example 3. Say we want to enforce {a, d} to be part of the
grounded extension in a strongly expanded AF that can add argument e (i.e. A′ = {e}). This can
be achieved by adding the attack (e, b), resulting in F ∗ = (A∗, R∗) with A∗ = {a, b, c, d, e} and
R∗ = {(a, b), (b, a), (a, c), (b, c), (c, d), (e, b)}. We have grd(F ∗) = {e, a, d}, implying that {a, d} is
non-strictly enforced under grounded semantics. The modified AF F ∗ is optimal: only one attack was
added, and without modifications {a, d} is not part of the grounded extension (the grounded extension is
empty in the unmodified AF). See Fig. 3 for an illustration.

4. Structural constraints for dynamic operators

This section introduces several constraints to be used to extend current dynamic operators, and support
development of new operators. From a principled point of view, we consider dynamic operators that
take an ADF D as input and produce a modified ADF D∗ as output. For the sake of readability, we
will, unless stated otherwise, refer to a modified ADF by D∗ = (A∗, L∗, C∗). A dynamic operator then

a

b

c d

a

b

c d

e

Fig. 3. Enforcing {a, d} being part of the grounded extension, by adding argument e and attack (e, b) (Example 6).

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 159

defines certain constrains on the output, namely on (i) the semantics, (ii) the structure, and (iii) the
concrete syntax. We first exemplify constraints on the enforcement operator from Section 3 when lifted
from AFs to ADFs.

Definition 9. Let D = (A, L, C) be an ADF, σ be a semantics, A′ be a set of arguments to expand, and
I be a three-valued interpretation over A ∪ A′. An ADF D′ = (A ∪ A′, L′, C ′) non-strictly enforces I

under σ if

• L ⊆ L′,
• for any (a, b) ∈ L′ \ L we have a ∈ A′ and b ∈ A, and
• ∃I ′ ∈ σ(D′) s.t. I �i I ′.

That is, we want to enforce that I is “part” of a σ -interpretation by modifying D in the following way:
there has to be a σ -interpretation I ′ such that if an argument a is assigned true (false) by I , then I ′ assigns
true (false) to a, as well. Further, analogously as for AFs, one can look at optimality constraints: we say
that an ADF D∗ = (A∗, L∗, C∗) is an optimal solution to non-strict enforcement if D∗ non-strictly
enforces I under σ , and there is no D′ = (A′, L′, C ′) with |(L�L′)| < |(L�L∗)| that non-strictly
enforces I under σ . Intuitively, there has to be a σ -interpretation I ′ in the modified D∗ such that the
requirements of I are met (some arguments have to be true, some false, undecided arguments are not
constrained). Compared to Definition 8 the only major change is to respect the three-valued semantics
of ADFs.

Within the three-layered view, this adapted enforcement operator works as follows:

(1) the semantical constraint specifies the “goal”, i.e., the arguments to be true/false in a σ -
interpretation,

(2) the structural constraints state that only expansions of the original ADF may be considered (with
possibly only considering optimal solutions), and

(3) a syntactical constraint stating that the output shall be an ADF (leaving the form of acceptance
conditions, e.g., regarding normal forms, open).

Example 7. Consider again the ADF D from Example 4. Say we want to enforce that both a and d are
true in the grounded interpretation. Further, say we may add only argument e. This means, we desire to
enforce interpretation I = {a
→ t, b
→ u, c
→ u, d
→ t, e
→ u} (a and d must be true, all other
arguments are unconstrained). Unmodified, both arguments are undecided in the grounded interpretation
of D, since the grounded interpretation assigns all arguments to undecided. The enforcement can be
achieved by adding an argument e (similarly as in Example 6 for enforcement on AFs) that “attacks”
argument b, by adapting the acceptance condition of b to ϕ′

b = ¬a ∧ ¬e (from originally ϕb = ¬a).
This enforcement is shown in Fig. 4.

We now proceed to introducing several structural constraints that are intended to refine candidate
ADFs for a dynamic operator on ADFs. The enforcement operator defined above is one example for
such an operator, but in the following we do not assume a concrete operator (however, we connect
several constraints to the enforcement operator). Formally, a constraint c is specified in such a way that
one can decide whether an ADF satisfies the constraint. The intention is then to choose, among all ADFs
satisfying the given semantical constraints, e.g., from the ADF enforcement operator defined above, one
ADF satisfying a given structural constraint c. Many of the subsequent constraints are intended to be
used in a mix of several constraints. That is why we begin with defining how to state combinations of
constraints.

160 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

a¬b

b¬a

c

¬a ∧ ¬b

d ¬c

a¬b

b¬a ∧ ¬e

c

¬a ∧ ¬b

d ¬c

e �

Fig. 4. Enforcing {a, d} being true in the grounded interpretation: adding argument e, with ϕe = � and adapting ϕb to
ϕ′

b = ¬a ∧ ¬e (Example 7).

Boolean combinations of constraints. In the following, when K = {c1, . . . , cn} is a set of (structural)
constraints, we consider also the constraint that is a Boolean combination of these constraints. That is,
a Boolean formula � that has as its variables constraints in K . Satisfaction, for an ADF D, of � is then
defined in a standard way: if D satisfies a ci ∈ K , then � = ci is satisfied by D; if � = ¬ci , then
D satisfies � if it does not satisfy ci ; the connectives of conjunction and disjunction are defined in the
standard way, as well.

General constraints. For concrete atomic constraints, we start with basic constraints, namely ones that
specify limits of arguments and links. That is, for a given ADF D∗ = (A∗, L∗, C∗) (a potential output
ADF), argument sets A and A′, and sets of links L and L′, we define the following constraints, with
L|A∗ = L ∩ (A∗ × A∗).

(G1) A ⊆ A∗ ⊆ A′
(G2) L|A∗ ⊆ L∗ ⊆ L′|A∗

These constraints specify which arguments may be in the output (G1) and which links may be present
(G2). For instance, via (G1), one can specify for enforcement under expansions how many arguments
the expansion may add to the original framework (in the constraints A and L give a lower bound and A′
and L′ give an upper bound).

Argument constraints. The next basic constraint gives a concrete handle which arguments are present
in the output. For an ADF D∗ = (A∗, L∗, C∗) and argument a we define:

(A1) a ∈ A∗

Example 8. Assume an enforcement operator that can expand the set of arguments, but the operator is
not required to add all possible arguments (in contrast to the enforcement operator defined above). Say,
that we can expand by arguments a1 and a2. Suppose further that by adding a1 to the original framework
we can enforce the given interpretation. However, consider now the case that a1 is a super argument of
a2, which is specified by the contents of both arguments. Simple addition of a1 might be reasonable, in
certain cases, but it is likewise adequate to require that all sub arguments have to be present, as well. This
can be specified by an implication: ((a1 ∈ A∗) → (a2 ∈ A∗)). That is, this Boolean constraint specifies
that whenever a1 is part of the output ADF D∗ (e.g., by expansion), then also a2 must be present in D∗.
In Section 6 further uses of such implications are exemplified for an enforcement operator respecting the
internal structure of arguments.

Constraints on links. Next, we consider constraints on links. For notation, we say that, in the ADF D∗,
links L+ are supporting links and L− are attacking links. For a link l define:

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 161

(L1) l ∈ L∗
(L2) l ∈ L+
(L3) l ∈ L−
(L4) (A∗, L∗) belongs to specified graph class

Example 9. Constraining the type of links can imply that the output ADF belongs to a proper sub-family
of ADFs: if we require each link to be either attacking or supporting (via (l ∈ L∗) → ((l ∈ L+) ∨ (l ∈
L−))), the output ADF is a BADF. Similarly, one can constrain that a part of the ADF is a BADF.

If each link is constrained to be attacking and not supporting, then the output ADF belongs to the
family of frameworks defined in [87], which we call SETAFs here, in case no acceptance condition is
unsatisfiable. These SETAFs are similar to AFs, but sets of arguments attack an argument.

That ADFs with only attacking links and SETAFs have a connection has been established by a trans-
lation of SETAFs to ADFs [95]. That ADFs with only attacking links have a corresponding form as
SETAFs, in case no acceptance condition is unsatisfiable, can be shown by considering that each accep-
tance condition in an attack-only ADF can be represented via a Boolean formula in conjunctive normal
form with only negative literals. A similar result has been shown for BADFs in [61, Theorem 3.1.23];
we specialize this result to attack-only ADFs and state a direct proof for the sake of completeness.

Proposition 1. If an ADF D∗ = (A∗, L∗, C∗) satisfies constraint K = ∧
l∈L∗((l ∈ L−) ∧ ¬(l ∈ L+)),

then each acceptance condition ϕ∗
a ∈ C∗ with parD∗(a) �= ∅ can be expressed as a Boolean formula in

conjunctive normal form (CNF) with only negative literals.

Proof. Let a ∈ A∗. If parD∗(a) �= ∅, then ϕ∗
a is neither tautological nor unsatisfiable, since the incoming

links are not redundant (are not supporting). Thus, ϕ∗
a is both satisfiable and refutable. Consider a two-

valued interpretation I s.t. I (ϕ∗
a) evaluates to false. By property of attacking-only links, it follows that

switching the truth value of any set of parents to true in I does not change the outcome. Now, take
each interpretation I s.t. (i) I (ϕ∗

a) evaluates to false and (ii) there is no I ′ s.t. I ′(ϕ∗
a) evaluates to false

and {x | I ′(x) = t} � {x | I (x) = t} (I is subset-minimal w.r.t. arguments assigned to true). Let I
be all such interpretations. Define ϕ′

a = ∧
I∈I(

∨
I (x)=t ¬x). We show that ϕ∗

a ≡ ϕ′
a holds. Let J be a

two-valued interpretation satisfying ϕ∗
a . Then for each I ∈ I we have {x | I (x) = t} � {x | J (x) = t}

(otherwise J would not satisfy ϕ∗
a). Thus, J satisfies

∨
I (x)=t ¬x (at least one argument assigned to true

by I is false in J). This implies that J satisfies ϕ′
a . Assume that J satisfies ϕ′

a . If J does not satisfy ϕ∗
a

then there is a J ′ ∈ I s.t. {x | J ′(x) = t} ⊆ {x | J (x) = t}. This implies a clause
∨

J ′(x)=t ¬x in ϕ′
a .

This implies that J does not satisfy this clause, a contradiction. Thus, J satisfies ϕ∗
a . �

From this result it can be inferred, via [78, Proposition 1], that if each acceptance condition is either
equal to � or in CNF with negative literals, the ADF in question can be written as a SETAF. However,
unsatisfiable conditions (ϕa = ⊥) have no direct analogue. The underlying intuition is that if a set of
arguments X attacks, in a SETAF, an argument a, then this can be written as

∨
b∈X ¬b (one of the

attackers must be “out” or false for the set-attack to be countered). If more sets attacking a exist, then
this can be represented as a Boolean formula in CNF:

∧
(X,a)

∨
b∈X ¬b. An unsatisfiable formula ϕ ≡ ⊥

cannot be directly represented in this way.

Example 10. Constraining that the output D∗ belongs to a sub-family of ADFs also may lead to the
case that there is no ADF (of that sub-family) that satisfies the given constraints. Consider constraining

162 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

the output to have two arguments {a, b}, and the output shall have as its complete semantics the exact
correspondence � = {{a | I (a) = t} | I ∈ com(D∗)} with � = {∅, {a}, {b}, {a, b}}. That is, the
semantical constraint states that there has to be a complete interpretation assigning no argument to true,
one that assigns only a to true, one that assigns only b to true, and one that assigns both arguments to
true. Such a semantical constraint does not correspond to the requirement we defined for enforcement,
however, dynamic operators requiring exact semantics in the output framework exist, we recall some in
Section 9. Requiring that each link in the output is attacking and non-supporting leads to non-existence
of solution ADFs. If there is no link in the ADF, then there would be only one complete (grounded)
interpretation. If there is a link, such a link has to originate from either a or b and lead to either a or b.
Since this link is not supporting, but attacking, it follows that one acceptance condition is not equivalent
to � or ⊥. This implies that assigning one argument to true (or both) leads to non-acceptance of an
argument. This implies that {a
→ t, b
→ t} is not complete. Another way of seeing this fact is by
considering any (set-)attack: such an attack cannot exist, since {a
→ t, b
→ t} is complete. To have
� as the semantical result under complete semantics on AFs, one needs more arguments (see [12,57]).
In general ADFs, such a correspondence is possible without more arguments when allowing the use of
supports.

Constraining the underlying graph structure of an ADF, i.e., (A∗, L∗), can be useful, as well, e.g.,
with constraint (L4). Example graph classes are directed acyclic graphs or bipartite graphs. For instance,
directed acyclic graphs have appealing properties: one can view “leaf” arguments (i.e., arguments x

whose dependencies parD(x) are empty) as, e.g., undisputed or evidential facts, or assumptions. In
some formal approaches to (abstract) argumentation, arguments without dependencies are necessary, for
instance for evidential argumentation systems (EASes) [93]. Computationally, acyclicity exhibits milder
complexity than general graph structures, for several reasoning tasks, both for AFs [53,59,60] and for
ADFs [77]. Bipartite graphs also enjoy interesting properties [56], and can be seen as arguments from
two parties corresponding to the bipartite partition.

Constraints on acceptance conditions. We proceed to constraints on acceptance conditions. Given an
ADF D∗ = (A∗, L∗, C∗), a ϕs ∈ C∗, v ∈ {t, f}, a three-valued interpretation I , a two-valued interpreta-
tion I ′, and a formula ψ , we define the following constraints. Recall that by ϕ[I] we denote the formula
obtained by replacing arguments assigned to true by � and to false by ⊥, and by I ′(ϕ) we denote the
evaluation of the Boolean formula ϕ by a two-valued interpretation I ′.

(C1) I ′(ϕs) = v

(C2) ϕs[I] satisfiable (refutable, tautological, or unsatisfiable)
(C3) ϕs = ψ

(C4) ϕs[I] ≡ ψ

That is, (C1) specifies that the acceptance condition of argument s shall evaluate to truth value v for a
given two-valued interpretation I ′. Constraints of type (C2) state that the partially evaluated acceptance
condition of argument s must be satisfiable (or refutable, tautological, or unsatisfiable), indicating, e.g.,
that an argument can be accepted, in a certain context (or not). The third type of constraints says that an
acceptance condition must be (exactly) equal to a given formula, and the last one that a partially evaluated
acceptance condition (under three-valued interpretation I) must be equivalent to a given formula.

Example 11. Constraints of type (C2) can be used, e.g., to require the output ADF to belong to the
subclass of AFs. Let Iu (If) be an interpretation with all arguments assigned to undecided (false). One

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 163

can require that (b ∈ A∗ → ϕb[If] tautological) and ((a, b) ∈ L∗ → ϕb[Iu|at] unsatisfiable) for parents
of b. In other words, argument b is acceptable if all parents are false (ϕb[If] is tautological), and not
acceptable if parent a is true (ϕb[Iu|at] updates parent a to true and then b is not acceptable if the resulting
formula is unsatisfiable). To make this concrete, consider that argument b shall be attacked by arguments
a and c, in the sense of an AF. Say one specifies that a and c are the only parents of b. Define I1 = {a
→
f, b
→ f, c
→ f} and I2 = {a
→ u, b
→ u, c
→ u}. Stating (b ∈ A∗ → ϕa[I1] tautological)
says that, if b is in the output ADF, then ϕa[I1] ≡ � (when all arguments are false, b is acceptable).
Further, by stating ((a, b) ∈ L∗ → ϕb[I2|at unsatisfiable) we get an attack from a onto b: I2|at = {a
→
t, b
→ u, c
→ u} and ϕb[I2|at] ≡ ⊥. Taken together, they imply that an argument can be accepted
if all arguments are assigned false and assigning one argument with an incoming link to true implies
non-acceptance.

Another use case for the constraints is when considering the internal structure of arguments. If two
structures of arguments are logically inconsistent, and this is to be expressed directly within acceptance
conditions, the preceding attack-like constraint can be used as well.

Further, one can constrain supports. For instance, one can specify that supporting links are a kind of
necessary support: ((a, b) ∈ L+) → (ϕb[Iu|af] unsatisfiable). Intuitively, this specifies that if a parent is
false then the child argument cannot be acceptable.

Another type of constraint that can be expressed is to require no change between certain dependencies
between arguments. For instance, say an argument a has several parents in an original ADF and a new
one (b) in a modified ADF. Further, we want to state that in the output ADF all dependencies from par-
ents, except b, are unchanged if b is false. This can be written as ϕ∗

s [Iu|bf] ≡ ϕs (C4), with ϕs being the
original acceptance condition of s. A use case of such constraints is also discussed in the first case study
in Section 5.

Constraints on characteristic functions. Next we introduce a different type of constraint on the char-
acteristic functions of ADFs �D∗ . Let v, v′ ∈ {t, f, u}, and s and s ′ be arguments.

(Char) for each three-valued interpretation I it holds that �D∗(I)(s) = v implies �D∗(I)(s ′) = v′

Note that we restrict the three-valued interpretations I to be over the universe of arguments of D∗.

Example 12. A use case for this constraint is to state that two arguments cannot be both acceptable at the
same time, even if there is no link between them. Consider ∀I, �D∗(I)(s) = t implies �D∗(I)(s ′) = f,
which implies that if s accepted, in a scenario encoded by an interpretation I , then s ′ cannot be accepted.
Similarly, one may encode positive relations. Note that it is not required that s is a parent of s ′ or vice
versa. A potential use of this constraint is that an argument shall be rejected whenever one of its sub
arguments is rejected (e.g. via an attack from another argument). While this seemingly contradicts an
intuition that dependencies between arguments are to be expressed as links, such indirect dependencies
can occur: e.g., consider three arguments a, b, and c, with b a sub argument of c. When acceptance of a

leads to non-acceptance of b, e.g., through an attack from a, then c should be, likewise, rejected (unless
exceptional cases occur). While this can be expressed via links from b to c, a constraint of type (Char)
can express such behavior inside acceptance conditions, modeling potentially more complex scenarios.
For instance, in some approaches to instantiation of AFs, no direct relation between sub arguments is
specified.

Weights and optimization. For optimization constraints, define the cost of an ADF D via cost(D). For
this paper, we let the cost function be abstract.

164 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

(O1) cost(D∗) � k

(O2) cost(D∗) minimum over all ADFs

Example 13. A straightforward way to define weights, and costs, is exemplified by the extension en-
forcement operation, where a modified attack contributes unit weight to the overall cost. That is, for an
input ADF D = (A, L, C) and output ADF D∗ = (A∗, L∗, C∗) the cost is cost(D∗) = |L�L∗|, i.e., the
cost is the cardinality of the symmetric difference between the input and output links.

5. Case study: An enforcement operator for ADFs based on supports

In this section we use some of the proposed constraints to adapt the enforcement operator on ADFs to
allow for only supporting links to be added. For the sake of readability, we will continually develop this
operator.

We adapt non-strict enforcement under strong expansions of ADFs, as defined in Definition 9. We
briefly recall this operator. Given an ADF D = (A, L, C), a semantics σ , an interpretation I , and
arguments to expand A′, it holds that D∗ = (A∗, L∗, C∗) is a solution if two conditions hold. First
(A∗, L∗) is to be a strong expansion of (A, L) (first two items of Definition 9). The second condition is
that ∃I ′ ∈ σ(D∗) s.t. I �i I ′. For illustrative purposes, we initially drop the condition of optimality on
modified links.

Consider, first, a variant of this operator that respects the following constraint:

((
a′, b

) ∈ L∗) → (
a′, b

) ∈ L+ for each b ∈ A and a′ ∈ A′.

That is, all new links shall be supporting. While, technically, this achieves a “support enforcement”
operation, we remark that such an operator enjoys rather high freedom in achieving the enforcement.

Example 14. Consider ADF D = ({a, b, c}, L, C) with ϕa = b, ϕb = c, and ϕc = ⊥. Assume that we
expand with an argument d and that we want to enforce a to be true in an admissible interpretation. This
can be achieved simply by modifying ϕa to ϕ′

a = b ∨ ¬b (see Fig. 5(a)). Note that this modified ADF is
an expansion, and new links are supporting (there are no new links).

Another potentially unintended example is when we desire to have an argument a false in an admis-
sible interpretation of an expanded ADF. Say we have only one argument a, and may add argument b.
The following modification can be applied: ϕ∗

a = ϕa ∧ b and ϕ∗
b ≡ ⊥. That is, one can specify that

argument a is accepted only if b is true, and stating that b is never acceptable. Intuitively, one “supports”
an argument by requiring a new argument, and declaring that the new argument is not acceptable.

Let us utilize the structural constraints to specify permissible changes in a more rigorous way. Consider
that acceptance conditions shall be unchanged if new arguments are rejected (similarly as in Example 11
and constraint type (C4)):

Iu|A′
f

(
ϕ∗

a

) ≡ ϕa for each a ∈ A.

That is, when evaluating an acceptance condition partially under the interpretation assigning all ex-
panded arguments A′ to false, the resulting formula shall be equivalent to the original (unmodified)
acceptance condition.

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 165

a

b

b

c

c

⊥

a

b ∨ ¬b

b

c

c

⊥

d�
(a)

a

b ∨ d

b

c ∨ d

c

d

d�
(b)

a

b

b

c

c

d

d�
(c)

Fig. 5. Enforcing a being true in an admissible interpretation via support enforcement: without further constraints (a), without
modifying acceptance conditions when expanded arguments are rejected (b), and additionally when optimizing added links
(Example 14).

Example 15. Continuing Example 14, under the new constraint, the modification shown in Fig. 5(a)
is not allowed anymore. The reason for this is that the constraint just introduced is violated: ϕ′

a|df =
b ∨ ¬b[d
→ ⊥] = b ∨ ¬b �≡ ϕa . That is, when evaluating the modified acceptance conditions partially
for when d is false, the resulting formula is not equivalent to the original acceptance condition. One way
to achieve the enforcement request of having a being true in an admissible interpretation is shown in
Fig. 5(b), where several links were added from expanded argument d onto all others, requiring now d to
be true.

In light of the preceding example, in addition we now specify that the cost of a solution D∗ is |L�L∗|
(similarly as for enforcement on AFs). A solution D∗ is optimal if there is no other solution with strictly
less cost.

Example 16. Under the optimization constraint, an optimal solution, for enforcement of Example 14,
would be to having d support c, by modifying the acceptance condition to ϕ′

c = d (see Fig. 5(c)). Another
optimal solution is to directly support a via d, by modifying ϕa to ϕ′

a = b ∨ d.

Finally, we specify that expanded arguments are always acceptable: for each a′ ∈ A′ we have ϕ∗
a′ ≡ �.

Summarizing, we use the following constraints (with constraint type on the right):

((
a′, b

) ∈ L∗) → (
a′, b

) ∈ L+ ∀b ∈ A ∀a′ ∈ A′ (L1), (L2)
Iu|A′

f

(
ϕ∗

a

) ≡ ϕa ∀a ∈ A (C4)
ϕ∗

a′ ≡ � ∀a′ ∈ A′ (C4)

Additionally, this operator uses constraints of type (A1) and (L1) in order to specify expansions, and
(O2) for the optimization. We call the corresponding operator that is defined via Definition 9 and respects
these three constraints support enforcement.

Example 17. Support enforcement can lead to rejection of arguments. Assume two arguments, a and b

with ϕa = ¬b and ϕb = ⊥. Enforcing a to be false in an admissible interpretation can be achieved via
supporting b (e.g. via modification ϕ∗

b = c for a supporter c).

166 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

Support enforcement, however, is not always possible: assume that we want to enforce that a is false
in an admissible interpretation. If ϕa ≡ �, then supporting enforcement fails (support cannot make a
modification to a, or any other part of an ADF, that leads to a being false in an admissible interpretation).

As the reader might have guessed, when looking at Example 16, support enforcement is possible if no
argument is enforced to be false.

Proposition 2. Let D = (A, L, C) be an ADF, I be a three-valued interpretation over A∗ = (A ∪ A′)
with A ∩ A′ = ∅ for a non-empty A′, and σ be a semantics. If �a ∈ A∗ s.t. I (a) = f then there exists an
ADF D∗ = (A∗, L∗, C∗) that enforces I under σ for the support enforcement operator.

Proof. For any argument a that is assigned true by I one can modify the acceptance condition by
ϕ∗

a = ϕa ∨ b for any b ∈ A′ (then a is true in the grounded interpretation of the resulting modified
ADF). �

The preceding proposition implies straightforward solutions to the support enforcement for arguments
to be enforced to be true. The same simple modification is not applicable for arguments to be enforced
to be false: a direct support of a new argument onto such an argument can only lead to more cases of
acceptance. In such a case, an indirect support of, e.g., an attacker can lead to a successful enforcement.
In any case, while we abstain in the above definition from introducing further constraints to support en-
forcement, several further constraints can be feasibly added, such as constraints which links are allowed
to be added, and how acceptance conditions may change. In Section 7, we investigate which further
constraints can be added to support enforcement (or other operations) without increased computational
complexity.

Further, if enforcement is possible (independently of whether arguments are to be true/false), for a
concrete instance, then it is possible with a singleton argument to expand, whenever the interpretation
that represents the enforcement goal assigns undecided to the expanded arguments (if two ore more
expanded arguments must be true, then one cannot restrict to one expanded argument). Formally, if
one can enforce the desired status among the original arguments, then one can do so, for the original
arguments, with a single new argument.

Proposition 3. Let D = (A, L, C) be an ADF, I be a three-valued interpretation over A∗ = (A ∪ A′)
with A ∩ A′ = ∅ for a non-empty A′, and σ be a semantics. If there is an ADF D∗ = (A∗, L∗, C∗)
that enforces I under σ for the support enforcement operator, then there also exists an ADF D∗

1 =
(A ∪ {a′}, L∗

1, C
∗
1), that enforces I ′ = {I (a) | a ∈ A} ∪ {a′
→ t} under σ for the support enforcement

operator for a singleton expanded argument set {a′}.
Proof. Assume that D∗ enforces I under σ , for any of the considered semantics, and that there is a
J ∈ σ(D∗) with I �i J . Construct D∗

1 from D∗ by replacing each newly added variable (argument in
A′) by a distinguished argument a′. We claim that I ′ is enforced under σ with D∗

1 . Consider first that J is
complete (which is the case when σ ∈ {com, prf, grd}). We argue that �D∗(J)(x) = �D∗

1
(J)(x) for each

x ∈ A∪{a′}. Since J is complete it follows that J assigns t to all arguments in A′ (they have tautological
acceptance conditions). Replacing them with a single argument does not change (partial) evaluation of
acceptance conditions. From this, it follows that J , when restricted to arguments A ∪ {a′} is complete
in D∗

1 . For complete-base semantics, the result follows in a straightforward fashion: if J is grounded
(preferred) in D∗, then J , projected onto arguments in D∗

1 , is grounded (preferred) in D∗
1 (since partial

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 167

evaluations under three-valued interpretations that assign true to all expanded arguments are preserved
from one framework to the other).

Consider now that J ∈ adm(D∗) is admissible, but not necessarily complete. Let J ′ be the same
interpretation, but restricted to A ∪ {a′} and assigning true to a′. Let a ∈ A be an arbitrary argument in
the original ADF. Let ϕa be the original acceptance condition of a, and ϕ∗

a be the modified one in D∗.
Let ϕ′

a = ϕ∗
a [A′
→ a′], i.e., each expanded argument is replaced by a′. If J (a) ∈ {t, f}, then ϕ∗

a [J] is
tautological or unsatisfiable. In both cases, ϕ′

a[J ′] has the same property, i.e., is tautological if ϕ∗
a [J] is

tautological and is unsatisfiable if ϕ∗
a [J] is unsatisfiable (possibly, more arguments are assigned to be

true in J ′ than in J w.r.t. a’s acceptance condition, yet this preserves tautologies and unsatisfiability; due
to expanded arguments’ tautological acceptance conditions, no expanded argument is assigned false).
Consider the last case, i.e., that a is assigned undecided by J . Then ϕ∗

a [J] and ϕ′
a[J ′] might not share

the property of being a tautology or being unsatisfiable, yet, J ′ is, nevertheless, admissible (whenever
J ′(a) = u it holds trivially that J ′(a) �i �D∗(J ′)(a)). In conclusion, J ′ is admissible in D∗

1 and, by
construction, I ′(x) �i J ′(x) for each x ∈ A. This achieves the enforcement request. �

6. Case study: An enforcement operator for structured argumentation

In this section we will use our structural constraints to adapt the non-strict enforcement operator on
AFs (Definition 8) to respect knowledge bases from structured argumentation the AF was instantiated
from. On a high-level, the enforcement operator we define receives as input an AF instantiated by a part
of a given knowledge base, and aims to find an expansion of that AF enforcing certain arguments, with
expansions respecting the knowledge base. Formal approaches to structured argumentation are quite
heterogeneous [7], which is why we abstract from these approaches, in order to capture the intuitions of
several formalisms.

Structured argumentation approaches [21,22,28,68,72,85] provide formal recipes for instantiating ar-
guments and their relationships from a given knowledge base. In several cases the formalism that is
instantiated is an AF [28,85]. We assume that a knowledge base is given as a set B of elements. This set
may contain facts, rules, or further ingredients required to instantiate arguments. In this paper we do not
specify these elements. For our purposes we assume only a few functions that a structured argumentation
approach is composed of: (i) a function args that returns all (abstract) arguments that can be generated
from a knowledge base, (ii) a given function kb that returns for a set of arguments their contents, i.e.,
returns the subset B ′ ⊆ B that is needed to instantiate the arguments, and (iii) a function att that returns
all attacks that can be instantiated. Formally, we also assume that the functions behave well, i.e., we have
kb(args(B)) ⊆ B for any knowledge base B (every knowledge base element, when inspecting instanti-
ated arguments from knowledge base B, is in B) and we assume that it holds that A ⊆ args(kb(A) (when
looking at the base of a set of arguments, then all these arguments can be constructed from that base).
For att, we assume that (a, b) ∈ att(B) implies {a, b} ⊆ args(B). Further, we assume that for B ′ ⊆ B

we get f (B ′) ⊆ f (B) for f ∈ {args, att}, and for argument sets A′ ⊆ A we have kb(A′) ⊆ kb(A). This
means that all functions args, att, and kb are ⊆-monotone. While subset monotonicity for the functions
args and kb appear rational, there are cases when att is, in fact, not subset-monotone: in presence of
preferences, that are to be included in a knowledge base, addition of preferences might affect presence
of attacks non-monotonically. We discuss impact of this at the end of this section, but leave the main
part of this section to deal with the case of ⊆-monotone att functions.

168 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

a

x

b

¬a

c

¬b

a c

y

d

z

a1 a2 a3 a4 a5

x ← a

¬a ← b

¬b ← c

y ← a, c

z ← d

(a) (b)

Fig. 6. A simple structured (assumption-based) argumentation framework (Example 18). For the ABA framework consisting of
four assumptions a, b, c, and d, and rules as shown in (b), several arguments can be constructed, with five arguments shown in
(a). Attacks arise when an argument concludes a negated assumption of another argument (e.g., argument a2 attacks argument
a1 on assumption a).

Example 18. We exemplify the functions args, kb, and att by a simple knowledge base, and associated
AF that is constructed in the case of assumption-based argumentation frameworks (ABA) [28]. Similar
functions can be defined, e.g., for the ASPIC+ framework [85]. We will not explicate the definitions of
ABA, but stay on an intuitive level, and also, for illustration purposes, simplify some notions.

Two main ingredients for ABA are assumptions and rules. Say we have four assumptions {a, b, c, d},
and rules as shown in Fig. 6: from a one can derive x, from b one can derive the negation (contrary) of
a, from c one can derive the negation of b, from a and c together one can derive y, and finally from d

one can derive z. These derivations directly correspond to the arguments a1 to a5. By the contraries the
arguments derive, one can infer that a2 attacks a1 and that a3 attacks a2. That is, for B = {a, b, c, d}
we get args(B) = {a1, a2, a3, a4, a5}, att(B) = {(a2, a1), (a3, a2)}, and e.g., kb({a1, a4}) = {a, c}.2 In
Fig. 7 we show for each B ′ ⊇ {a, b} the corresponding abstract argumentation framework. For instance,
for B ′ = {a, b, c} we have F3.

In the following we assume that we are given both a knowledge base B, and an AF F =
(args(B), att(B)) instantiated from this base. Further, we assume a subframework F ′ = (A′, R′) as
the current state of argumentation such that B ′ ⊆ B and A′ = args(B ′) and R′ = att(B ′). One inter-
pretation of this context is that the arguments in F ′ have been uttered, while the remaining part of the
knowledge base B \ B ′ has not been uttered (or, is “private” to an agent). For instance, in Fig. 7, F4

corresponds to the full AF, for the knowledge base from Example 18, and F1 could be a current AF.
The enforcement operator we now define aims to provide means to find a knowledge base B∗, with

args(B ′) ⊆ args(B∗) ⊆ args(B), such that a desired argument (or set of arguments) is acceptable, under
a certain semantics σ . Towards the operator, we again adapt the existing enforcement operator in AFs
(recall Definition 8), and modify this operator, as follows (the full definition is given in Definition 10).
First, for the expansion we do not require strongness nor addition of all arguments that may added.
Further, we apply the following constraints (the arguments that may be added are args(B) \ args(B ′)).

2In this example we included only assumptions as part of B, i.e., only assumptions as part of the knowledge base, and
incorporated the rules (and contraries) into the functions kb, args, and att. We have chosen this way mainly for illustration.
Including rules and contraries into the knowledge base B, and adapting the functions accordingly, poses no barrier to our
approach. In fact, in the definition of ABA [28] one usually includes rules and contraries in a deductive system that can be seen
as part of a knowledge base. With our formalization the enforcement operator we will define presumes that rules and contraries
have to be included in a solution AF, while assumptions are optional. Finally, we note that in the original ABA definition
further arguments are present, namely those that correspond to assumptions without application of rules, e.g., an argument
corresponding only to assumption a without derivation of x. We omitted these arguments, again, for illustration purposes.

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 169

(1) args(B ′) ⊆ A∗ ⊆ args(B)

(2) att(B ′)|A∗ ⊆ R∗ ⊆ att(B)|A∗
(3) (a1 ∈ A∗∧· · ·∧an ∈ A∗) → b ∈ A∗ ∀b ∈ args(kb({a1, . . . , an})) and each {a1, . . . , an} ⊆ args(B)

(4) (a ∈ A∗ ∧ b ∈ A∗) → (a, b) ∈ R∗ for (a, b) ∈ att(B)

In words, we aim to find an AF F ∗ = (A∗, R∗) such that (1) the set of arguments shall be between the
current state, arg(B ′), and the full knowledge base arg(B); similarly (2) specifies that the attacks shall
be between those two extremes, (3) states that whenever an argument b can be constructed from the
components of existing arguments in A∗ it has to be included, and (4) requires that no attack between
arguments may be omitted. We dub the resulting operator structured enforcement. For clarity, the full
formal definition is also given next.

Definition 10. Let B be a knowledge base and B ′ ⊆ B. Let F = (A′, R′) be an AF such that args(B ′) =
A′ and att(B ′) = R′, σ be a semantics, and S ⊆ A′. An AF F ∗ = (A∗, R∗) non-strictly enforces S under
σ if

• ∃S ′ ∈ σ(F ∗) such that S ⊆ S ′,
• the constraints (1)–(4) are satisfied, and
• |R′�R∗| is minimum over all AFs satisfying the previous conditions.

Example 19. Consider again Example 18 and the corresponding knowledge base B. Say we desire to
enforce (via structured enforcement) argument a1 to be part of an admissible set, and the given AF
(current state) is F1 = (A, R) with A = {a1, a2} and R = {(a2, a1)}. In this AF, we have adm(F1) =
{∅, {a2}}. Since we have to include both a1 and a2, achieving a1 being in an admissible set requires
addition of a3 that defeats a2 and defends a1. Note that simple addition of a3 is not allowed, since
a4 ∈ args(kb({a1, a2, a3})), and, thus, we have to satisfy the constraint (a1 ∈ A∗∧a2 ∈ A∗∧a3 ∈ A∗) →
a4 ∈ A∗. One solution is F3, shown in Fig. 7, where we have added both a3 and a4, corresponding to
addition of c to B ′ = {a, b} (the base for F1) in order to get B∗ = {a, b, c}. See also Fig. 7, which shows
all AFs that satisfy the structural constraints. For instance, F4 also has an admissible set containing a,
and is another solution to the instance for the structured enforcement operator (same number of attacks
added).

Next we show that the structured enforcement operator behaves “well” regarding the given knowledge
base. That is, if B is the full knowledge base and F ′ is the current AF, then (i) no elements outside the
knowledge base are invented, (ii) a solution AF F ∗ contains all arguments that can be constructed when
considering its base, and (iii) no attack was omitted.

a1 a2

F1

B1 = {a, b}
a1 a2

a5

F2

B2 = {a, b, d}
a1 a2 a3

a4

F3

B3 = {a, b, c}
a1 a2 a3

a4a5

F4

B4 = {a, b, c, d}

Fig. 7. AFs associated to parts of the knowledge base that contain a and b (Examples 18 and 19). For each AF Fx

(x ∈ {1, . . . , 4}) the corresponding knowledge base Bx is shown above. It holds that kb(Ax) = Bx with Ax the argument
set of Fx .

170 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

Proposition 4. Let B be a knowledge base, F ′ = (args(B ′), att(B ′)) an AF for some B ′ ⊆ B, S ⊆
args(B ′), and σ be a semantics. If F ∗ = (A∗, R∗) non-strictly enforces S under σ for the structured
enforcement operator for F ′, then it holds that

• kb(A∗) ⊆ B,
• args(kb(A∗)) = A∗, and
• if a, b ∈ A∗ holds we have (a, b) ∈ att(B) iff (a, b) ∈ R∗.

Proof. Recall that for any B we assume that kb(arg(B)) ⊆ B holds, and that all functions args, att, and
kb are ⊆-monotone. For the first item, since args(B ′) ⊆ A∗ ⊆ args(B) (by constraint (1)), it follows
that kb(A∗) ⊆ kb(args(B)) ⊆ B. By constraint (3) we get that for any argument b ∈ args(kb(A∗)) the
implication

∧
a∗∈A∗ a∗ ∈ A∗ → b ∈ A∗ must be satisfied. The antecedent of that implication is trivially

satisfied. This implies that b ∈ A∗ for any b ∈ args(kb(A∗)). Equality of item 2 then holds because we
assume A∗ ⊆ args(kb(A∗). Assume that a, b ∈ A∗ holds. If (a, b) ∈ att(B) holds, then by constraint (4)
we get (a, b) ∈ R∗. If (a, b) ∈ R∗ holds, then (a, b) ∈ att(B) follows due to constraints (1) and (2). �

We close this section with some remarks on the structured enforcement operator. First, we note that
there are cases when an AF corresponding to the whole knowledge base does not achieve that a desired
set of arguments is part of an extension, but a subframework might. That is, when interpreting the
structured enforcement as “disclosing” information, in form of AF expansion for part of a knowledge
base, an agent may withhold information in its own knowledge base, but still achieve the enforcement
goal. We exemplify this behavior in a simple example.

Example 20. Assume a knowledge base B with the corresponding AF F = (args(B), att(B)) with
args(B) = {a, b, c, d} and att(B) = {(d, c), (c, b), (b, a)}, i.e., the AF is a simple chain of attacks. Say
the current AF F1 consists only of arguments a and b, and the attack (b, a), say via base B1 ⊂ B. It
holds that a is not part of an admissible set for either F or F1, i.e., is not acceptable, under admissible
semantics, when considering the current state and the full knowledge of base B. However, say, for B ′,
with B1 ⊂ B ′ ⊂ B we have F ′ = (args(B ′), att(B ′)) with args(B ′) = {a, b, c}. In this AF F ′ there is
an admissible set containing a, namely {a, c}, with c defending a against b. Since d is not part of F ′, the
attack from d to c is neglected.

Regarding the optimization statement, we have chosen to use the same optimization statement as
for the (standard) AF enforcement operator, i.e., the number of modified attacks has to be minimum.
Alternatives to that can also be considered, e.g., minimizing the number of added arguments, or the size
of the underlying knowledge base, also possibly with weights attached to elements in the base. The latter
optimization can be interpreted as minimizing what parts of a knowledge base one has to “expose” (if
the setting is a multi-agent setting, for instance), in order to be equipped with the right arguments to utter
in a debate and achieve an enforcement goal.

Further, constraint (3) is arguably not well suited in all cases, particularly when considering computa-
tional properties (there can be exponentially many such constraints). We discuss computational aspects
in Section 7, including a more efficient representation of this constraint.

As a final remark, when the att function is not ⊆-monotone, a constraint of type (4) is not adequate
anymore, since an attack (a, b) has to be present iff this attack is prescribed by att(B∗) for the knowledge
base underlying the solution AF F ∗. Yet, as is the case with preferences in structured argumentation (see
also the discussion at the beginning of this section), it does not hold that B ⊆ B ′ implies att(B) ⊆

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 171

att(B ′) if a preference not present in B, but in B ′, prevents an attack. On a meta-level, one can define an
associated constraint: if (a, b) ∈ att(kb(A∗)) then (a, b) ∈ R∗. This constraint is not directly defined on
arguments and attacks, but on the underlying knowledge base.

7. Computational aspects

In this section we show complexity results for the considered constraints from Section 4, the support
enforcement operator on ADFs from Section 5, and the structured enforcement operator from Section 6.

We make use of standard complexity classes for decision problems, which are problems that are an-
swered either positively or negatively. Concretely, we use the classes P , NP, and coNP. The first class
contains all decision problems that can be decided in deterministic polynomial time and NP contains
all decision problems solvable in non-deterministic polynomial time. The third class, coNP, contains all
complementary problems to problems in NP (i.e., the answers are switched).

7.1. Complexity of satisfaction of the structural constraints

In this section we investigate the feasibility of the constraints. More concretely, we show the complex-
ity of the task of verifying whether a given ADF satisfies certain constraints. This insight is important for
developing dynamic operators that use such constraints. For instance, if we know that a certain constraint
c can be checked in polynomial time, then a dynamic operator that constructs a candidate solution ADF
can verify the constraint in polynomial time. If this algorithm is non-deterministic, then the complex-
ity of the overall algorithm is likely to stay the same even if constraint c has to be considered, since a
non-deterministic algorithm that runs in polynomial time can check a polynomial number of constraints
that can be checked in polynomial time for a non-deterministically guessed object. In Fig. 8, we see a
high-level view of such an algorithm: after parsing the input, a framework, e.g., an AF or ADF, is con-
structed. After that the constructed framework is verified, i.e., checked whether all semantical, structural,
and syntactical constraints are met. If the framework is deemed sufficient, then it is returned in the last
step. If we assume that the framework construction is done non-deterministically, then if all constraints
can be checked in polynomial time, we arrive at an “NP-algorithm”.

There is evidence that dynamic operators in abstract argumentation are likely to be NP hard, e.g.
extension enforcement on AFs is in many cases NP hard [44,102]. That is, for these kind of opera-
tors augmentation with any of the polynomial-time decidable constraints comes at no additional cost
complexity-wise, in case the algorithm follows the workflow shown in Fig. 8. In Section 8, we consider
also experimentally effects on the runtime.

A further benefit of having polynomial-time decidable constraints is that they can, usually, be incor-
porated more easily in implementations that make direct use of constraint languages, such as Boolean

Fig. 8. High-level view on dynamic algorithms.

172 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

logic. In fact, many modern implementations of AF reasoning (dynamic or static) make use of solvers
on Boolean logic, or variants thereof [37,38].

We begin analyzing the basic constraints, where polynomial-time decidability is immediate. For con-
straints of type (L4), the following results holds when the graph class is verifiable in polynomial time.
We consider here directed acyclic graphs and bipartite graphs, as examples.

Proposition 5. Verifying whether a given ADF satisfies constraints of type

• (G1), (G2),
• (A1),
• (L1), (L4),
• (C1), or (C3)

is decidable in polynomial time.

Proof. Complexity of these constraints follows directly: checking constraints (G1), (G2), (A1), (L1)
amount to check membership in a given set, checking constraint (L4) requires verifying whether the
graph structure of the ADF is acyclic or bipartite (both can be decided in polynomial time), checking
constraint (C1) amounts to evaluating a Boolean formula under a two-valued interpretation, and checking
constraint (C3) requires checking equal syntax of two Boolean formulas. �

We proceed to more sophisticated constraints. By (C2) we refer to cases where we ask for satisfiability
(refutability) and by (C2)′ to the cases asking for tautology (unsatisfiability).

Proposition 6. Verifying whether a given ADF satisfies

• a constraint of type (C2) is NP-complete,
• and a constraint of type (L2), (L3), (C2)′, (C4), or (Char) is coNP-complete.

Proof. We show each constraint separately.

• (C2): for membership note that checking whether a (partially evaluated) formula is satisfi-
able/refutable is in NP; Hardness follows from considering ϕ[Iu] = ϕ by a reduction from checking
satisfiability (refutability) of a Boolean formula ϕ.

• (L2) and (L3): follows from [61,99] (checking whether a link is attacking/supporting is coNP-
complete);

• (C2)′: analogously as for (C2), but for tautological or unsatisfiable formulas;
• (C4): immediate, since checking equivalence of (partially evaluated) formulas is an archetypical

coNP-complete problem;
• (Char): let D∗ = (A∗, L∗, C∗), ϕa, ϕb ∈ C∗, and v, v′ ∈ {t, f, u} be an arbitrary instance of this

problem. Consider the complementary problem, i.e., checking whether there is an I s.t. �D(I)(a) =
v and �D(I)(b) �= v′. We look at the sub cases individually for the truth values, and argue that in
each sub case a constant number of witnesses (interpretations) are sufficient to witness that the
instance is a yes instance, and that they can be checked in polynomial time (implying that the
complementary problem is in coNP).

∗ v ∈ {t, f} and v′ ∈ {t, f}: consider the case that both are equal to t (analogous for other combi-
nations of t and f). Assume that there is an I s.t. �D(I)(a) = t and �D(I)(b) �= t. Then, for all

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 173

completions J of I we have J |= ϕa . Further, there is a completion J ′ of I s.t. J ′ �|= ϕb (since
ϕb[I] is not tautological). Then J ′ is a witness for �D(J ′)(a) = t and �D(J ′)(b) �= t, since
I �i J ′. Concretely, J ′ is two-valued and J ′ |= ϕa and J ′ �|= ϕb;

∗ v ∈ {t, f} and v′ = u: assume that there is an I s.t. �D(I)(a) = t and �D(I)(b) �= u. Then,
ϕb[I] is either tautological or unsatisfiable. Any completion J of I can be used as a witness for
�D(I)(a) = t and �D(I)(b) �= u;

∗ v = u and v′ ∈ {t, f}: assume that there is an I s.t. �D(I)(a) = u and �D(I)(b) �= t. Then
this is witnessed by three completions of I : one that satisfies ϕa one that refutes ϕa and one that
refutes ϕb.

∗ v = u and v′ = u: assume that there is an I s.t. �D(I)(a) = u and �D(I)(b) �= u. Then, ϕb[I]
is either tautological or unsatisfiable. There are two witnesses for �D(I)(a) = u: J and J ′, with
the former satisfying ϕa and the latter refuting ϕa . There exist such witnesses that differ only in
assignment to one variable (otherwise the formula ϕa[I] would be tautological or unsatisfiable).
Now take I ′ instead of I that assigns all variables as J and J ′, except where they differ. We claim
that I ′ is also a witness, i.e., that �D(I ′)(a) = u and �D(I ′)(b) �= u holds. It holds that there
are still two witnesses for the first statement (via J and J ′), and ϕb[I ′] is also tautological or
unsatisfiable (one just needs to check two completions of I ′ for ϕb).

Thus, one can always find a constant number of interpretations that witness the property. This means
the problem is in NP, and the original problem for (Char) in coNP.
For hardness: consider the problem of checking whether a formula ϕ is tautological. Then
�D(I)(a) = t and �D(I)(b) �= t checks this property if ϕa = ϕ, ϕb = ⊥, and I = Iu. �

While some of these useful constraints have relatively high complexity, if we restrict an output ADF
D∗ to be a bipolar ADF with known link types, we can infer the following.

Proposition 7. Verifying whether a BADF with known link types satisfies

• a constraint of type (L2), (L3), or (C2) is decidable in P , and
• a constraint of type (C4) is coNP-complete.

Proof. For (L2) and (L3) the claim is immediate (the link types are given). For (C2), the claim follows
directly from [99]. For (C4), hardness follows from taking ϕs = ⊥ ∧ ψ for some ψ containing all
variables from a given ϕ; then checking whether Iu(ϕs) ≡ ϕ directly corresponds to checking whether
ϕ is unsatisfiable. �

If one imposes the condition that each argument has at most k parents, for a given and fixed k (i.e.
k is a constant), we can infer that all constraints can be checked in polynomial time, except for the
optimization constraints.

Proposition 8. Let k be a constant integer. Satisfaction of any constraint defined in Section 4, except
(O1) and (O2), for a given ADF where each argument has at most k parents, is decidable in polynomial
time.

Proof. Membership follows, since under the restrictions it holds that one can construct the whole truth
table in polynomial time (since we have a bounded number of variables in the conditions). Then one can
check each property in polynomial time. �

174 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

7.2. Complexity of support enforcement under admissible semantics

We now show that the novel enforcement operator defined in Section 5 has the same complexity as the
non-strict extension enforcement operator on AFs, under certain restrictions. We investigate the decision
problem of the new enforcement operator, where we ask whether there exists a solution ADF such that
its cost is at most a given integer (which is a standard way to investigate complexity of optimization
problems). As a further condition we require the number of parents and A′ to be bounded by a constant.

Proposition 9. Support enforcement under admissible semantics on ADFs is NP-complete, if both the
number of parents of each argument and the set of expanded arguments are bounded by a constant.

Proof. Membership follows from constructing the truth table for each argument’s acceptance condition,
guessing new links from the expanded arguments, and guessing new entries in expanded truth tables.
That is, for an argument a, construct the whole truth table for the original acceptance condition ϕa , which
is exponential in the number of variables of a. If a new link is guessed as an incoming link to a, expand
the truth table by the new incoming links as new variables. For each new entry in the expanded truth
table, assign the guessed truth value. Since both the number of original parents of a and the expanded
arguments are bounded by a constant, say k, the overall size of the expanded truth table is bounded from
above by 22·k.

Finally, non-deterministically construct a three-valued interpretation I and check whether I is admis-
sible in the expanded ADF, and whether the given interpretation J is less informative, i.e., that J �i I .
Checking admissibility can be done in polynomial time if the truth tables are computed. To see this con-
sider Definition 5. Checking whether ϕa[I] is tautological or unsatisfiable amounts to consulting rows
in the truth table.

For hardness, we show hardness holds already for AFs. Concretely, we adapt an existing proof for
checking whether an argument is part of an admissible set of a given AF, which is an NP-complete
problem. Let ϕ = c1 ∧ · · · ∧ cn be a Boolean formula in conjunctive normal form with at most three
literals per clause over vocabulary X and clauses C = {c1, . . . , cn}. Construct AF F = (A, R) with

A = X ∪ {x | x ∈ X} ∪ C ∪ {
c′ | c ∈ C

}

R = {
(x, x), (x, x) | x ∈ X

}

∪ {
(x, c) | c ∈ C, x ∈ c

}

∪ {
(x, c) | c ∈ C, ¬x ∈ c

}

∪ {
(c, c′ | c ∈ C

}

Note that each argument has at most three parents: arguments x, x, and c′ have exactly one parent, and
since each clause c = l1 ∨ l2 ∨ l3 has at most three literals per assumption, also each c has at most three
parents.

We claim that E = {c′ | c ∈ C} is part of an admissible set of F iff ϕ is satisfiable. It holds that

ϕ is satisfiable

iff ∃I, I |= ϕ

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 175

iff ∃I, I |= c ∀c ∈ C

iff ∃I and there is an l ∈ c s.t. I (l) = t ∀c ∈ C

iff ∃S ⊆ X ∪ {x | x ∈ X} s.t. �
(
y, y ′) ∈ R for each

{
y, y ′} ⊆ S and ∃z ∈ S

with (z, c) ∈ R ∀c ∈ C

iff ∃E′ ∈ adm(F) s.t. E ⊆ E′.

We complete the hardness proof by ϕ is satisfiable iff one can enforce, for the support enforcement
operator, E with 0 changes and arguments to expand {d} (a dummy argument). �

We note that any constraint defined in Section 4, except for optimization statements, can be added
to the support enforcement operator, with the mentioned restrictions, without increased complexity. On
the other hand, our proofs for these results exhibit exponentiality in running times w.r.t. the number
of parents and expanded arguments. The same observation holds for our implementation presented in
Section 8.1. Coping with large values for these parameters requires further work.

7.3. Complexity of structured enforcement under admissible semantics

Before looking at the complexity of the structured enforcement operator, we first consider the sizes of
the knowledge base B, the “full” AF F = (args(B), att(B)), and the number of constraints K described
in Section 6.

Regarding the AF, we remark that many current approaches to AF instantiation in structured argu-
mentation may produce large AFs, i.e., AFs whose number of arguments is not polynomially bounded
by the size of the knowledge base. Studying approaches to more efficient AF generation is a current
topic of research [76,103]. In this paper we make no concrete assumption on the size, but we do assume
that both the knowledge base B and the full AF F = (args(B), att(B)) are given, and, further, based
on these two given structures that one can in polynomial time check whether an argument (attack) is
part of the function args(B) or att(B), and similarly for kb. We note that, if the knowledge base and
the full instantiated AF are given, then poly-time decidable functions args, att, and kb are plausible: this
can amount to checking already instantiated arguments and attacks. Nevertheless, a concrete algorithm’s
performance for structured enforcement hinges on the size metrics of the partial AF given as the current
state and the full AF, since, in the worst case, all arguments and attacks have to be added to achieve an
enforcement goal.

The structural constraints we utilized to define the structured enforcement operator are in number poly-
nomial to the size of the AF F , except for (3). However, these constraints can be represented differently.
Let F ∗ = (A∗, R∗) be a candidate AF to be checked. Define the following constraint:

a ∈ args
(
kb

(
A∗)) → a ∈ A∗ for each a ∈ args(B).

This constraint does not fall into the constraints we have defined in Section 4, since a ∈ args(kb(A∗))
does not refer directly to components of an AF/ADF, however representing the set of constraints of (3)
in this way saves space. Concretely, there are at most |A| many such constraints. Similarly as before,
these constraints can be checked solely based on the given input: the base B and a candidate AF F ∗.

We now investigate the complexity of the structured enforcement operator that is given as input a
knowledge base B, represented as a set, an initial AF F0 = (args(B0), att(B0)), corresponding to some

176 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

B0 ⊆ B, the full AF F = (args(B), att(B)), and a set of arguments S ⊆ args(B0). For the semantics,
we again consider the admissible semantics. We again consider the optimization variant and its decision
problem, i.e., we ask whether enforcement is possible with at most k changes to the attacks.

Proposition 10. The structured enforcement operator under admissible semantics is NP-complete, if
functions args, att, and kb can be computed in polynomial time.

Proof. For membership, consider a non-deterministic guess of an expanded AF. Checking each con-
straint can be done, under the stated assumptions, in polynomial time. Hardness, as before for support
enforcement, follows from checking whether an AF without any changes has an admissible set contain-
ing a particular argument (this problem is NP-complete). For a given arbitrary AF, construct a knowledge
base B such that its instantiated AF is exactly the given AF. �

8. Empirical evaluation of an answer set programming approach to support enforcement

In this section we give details to an answer set programming implementation of support enforcement
(see Section 5), and an experimental evaluation of the resulting prototype.

8.1. Implementing support enforcement in ASP for admissible semantics

We have implemented support enforcement in answer set programming (ASP), based on goDiamond
[62,63,98] v0.6.6, a solver for ADF reasoning tasks via ASP. In light of Proposition 3, we fixed, in our
implementation, the set of expanded arguments to be a singleton set (since an enforcement using several
expanded arguments can be straightforwardly transformed to using only one). We have applied all con-
straints we have defined Section 5, i.e., we have implemented the operation we call support enforcement.

High-level description. We begin with a high-level view on the operation we implemented, and a high-
level view on how we implemented this operation. We have implemented support enforcement, as de-
fined in Section 5, including all constraints defined for that operation, yet allowing only for one expanded
argument. That is, our implementation takes as input an ADF and a three-valued interpretation (with the
format specified below). The output is a modified ADF, including an expanded argument e, such that
there is an admissible interpretation that is more informative than the given one (thereby enforcing the
given interpretation). Further, only the following modifications are permitted: new links only from the
expanded argument onto original arguments, all new links supporting, for each original argument a with
original acceptance condition ϕa it holds that the modified acceptance condition satisfies ϕ′

a[Iu|ef] ≡ ϕa

(when the expanded argument is false the modified acceptance condition is equivalent to the original
one). Finally, ϕe ≡ �.

Our implementation approach, from a high-level viewpoint, works as follows. Let the input be the
given ADF D, a three-valued interpretation I , and expanded argument e. Assume that the existing argu-
ments are A = {a1, . . . , an}. We non-deterministically guess whether a new link is to be added or not,
i.e., for each ai whether to add (e, ai) or not (other links are not allowed in strong expansions). In case
no link was added onto ai , that argument’s acceptance condition ϕai

remains unmodified. Otherwise,
in case (e, ai) was added, condition ϕai

is modified. Due to the constraints, we can infer that the new
condition can be represented by (ϕai

∧ ¬e) ∨ (ϕ′
ai

∧ e), i.e., whenever e is assigned false no modifi-
cation must have been taken place, otherwise the condition can be modified (ϕ′

ai
may not be logically

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 177

parD(ai)

p1 · · · pl value
f · · · f v1

...
...

t · · · t vm︸ ︷︷ ︸
all combinations

parD∗(ai)

p1 · · · pl e value
f · · · f f v1

...
...

t · · · t f vm

f · · · f t g1
...

...

t · · · t t gm

unmodified

guessed values

Fig. 9. Constructing a truth table with guessed entries.

equivalent to ϕai
). In order to find ϕ′

ai
, we expand the formula to a full truth table. Say the parents of

ai are parD(ai) = {p1, . . . , pl}. An illustration of the truth table is shown in Fig. 9. For each truth
value combination of the parents we have an entry for a resulting truth value. For instance, under the
interpretation assigning all arguments to false, ϕai

evaluates to v1 ∈ {t, f}. We construct a modified truth
table (corresponding to ϕ′

ai
) by adding a new parent e, copying values v1 to vm from the original truth

table to the cases where e is false, and assigning guessed entries g1, . . . , gm to the remaining rows. Since
the new link must be supporting, we ensure that, for all i with 1 � i � m, we have vi = t implies
gi = t (otherwise the link would not be supporting). Finally, under the modified acceptance condition,
we non-deterministically construct a three-valued interpretation and verify that there is an admissible
interpretation J such that I �i J (i.e., the enforcement is successful).

ASP background. We recall briefly ASP background [29,71,88]. We fix a countable set U of constants.
An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n � 0 and each term ti is either
a variable or an element from U . An atom is ground if it is free of variables. BU denotes the set of all
ground atoms over U . A rule r is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm

with m � k � 0, where a, b1, . . . , bm are atoms, and “not” stands for default negation. The head of r is
the set head(r) = {a} and the body of r is body(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,
body+(r) = {b1, . . . , bk} and body−(r) = {bk+1, . . . , bm}. A rule r is ground if r does not contain
variables. A program is a finite set of rules. If each rule in a program is ground, we call the program
ground.

For any program π , let UP be the set of all constants appearing in π . Define GP as the set of rules rσ

obtained by applying, to each rule r ∈ π , all possible substitutions σ from the variables in r to elements
of UP. An interpretation I ⊆ BU satisfies a ground rule r iff head(r) ∩ I �= ∅ whenever body+(r) ⊆ I

and body−(r)∩ I = ∅. I satisfies a ground program π , if each r ∈ π is satisfied by I . A non-ground rule
r (resp., a program π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp., GP). An
interpretation I ⊆ BU is an answer set of π if it is a subset-minimal set satisfying the Gelfond–Lifschitz
reduct πI = {head(r) ← body+(r) | I ∩ body−(r) = ∅, r ∈ GP}.

In this work we also consider optimization programs (following definitions from [33]), in particular
programs with weak constraints of the form

�b1, . . . , bn.[w, t1, . . . , tm],

178 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

with each bi an atom, each tj a term, and w an integer. Towards optimal answer sets we define
weak(π, I) = {(w, t1, . . . , tm) | �b1, . . . , bn.[w, t1, . . . , tm] ∈ GP and {b1, . . . , bn} ⊆ I }, for an
answer set I . In words, in weak(π, I) we collect all weak constraints satisfied by I (terms ti can be
used to distinguish different sources with the same weight in the set weak(π, I)). The cost of I is then∑

(w,t1,...,tm)∈weak(π,I) w, i.e., the sum of weights of each satisfied weak constraint. An answer set I is
optimal if there is no answer set J that has strictly lower cost than I .

Notation 1. By convention, constants in ASP are written with a beginning lower case letter and vari-
ables are written with a beginning upper case letter. That is, “a” is a constant and “A” is a variable. In
the subsequent encoding, we denote by A variables intended for arguments, by V we denote variables
intended for valuations (interpretations in the terminology of the ASP modules we make use of), and F

for variables that refer to identifiers for (Boolean) formulas.

Implementing support enforcement in diamond. In (go)Diamond, an ADF is represented via ASP facts,
as follows. Let D = (A, L, C) be an ADF, its representation as ASP facts is defined as

πADF(D) = {
s(a). | a ∈ A

}

∪ {
ac

(
a, t(ϕa)

)
. | ϕa ∈ C

}},
with t(ϕ) a straightforward prefix notation of ϕ. For instance, ϕ = a ∧ (b ∨ ¬c) is translated to t(ϕ) =
and(a, or(b, neg(c))). A three-valued interpretation I (on A) to be enforced is represented by

πenf (I) ={
enf(a, v). | I (a) = v ∈ {t, f}}.

That is, we represent all arguments enforced to be true or false as ASP facts (arguments assigned unde-
cided are not constrained in an enforcement).

In (go)Diamond, several derived predicates are then provided, in particular for several ADF semantics.
We utilize the encodings for admissible semantics. We only recall predicates relevant for our approach,
for details we refer to the original references and the code. In (go)Diamond, for each argument a, the
acceptance condition ϕa is expanded to a truth table. Each entry in the truth table is assigned a number,
represented by n_v(A, V), which indicates that, for argument A, the two-valued interpretation (truth
table entry) with number V . For instance, if ϕa has 3 variables, there are 23 = 8 such entries. With
the auxiliary predicate true(A, V, F) it is derived whether entry V evaluates (sub)formula F to be
true, or not, for argument A (i.e., F is a subformula of ϕa). Building upon true, the two predicates
model(A, V) and nomodel(A, V) state that V is a model or not a model of ϕa . Finally, regarding
predicates of importance for us, there are t(A), f(A), and u(A), stating that an argument A is assigned t,
f, or u, respectively.

We adapted goDiamond’s encoding, as follows, see also Listing 1. The first two lines represent a
(standard) guess in ASP whether a link is to be added onto argument A (note that the origin is clear:
the link comes from a distinguished expanded argument). Next, as illustrated in Fig. 9, we construct an
expanded truth table. Since we are “copying” the entries when the expanded argument is false, and also
can assume (see Proposition 3) that the new argument is assigned true, we only need to represent the
guessed values (g1, . . . , gm) for a number of interpretations equal to the number of the original truth
table. In the ASP encoding, we represent this via guessing either model(A, V) or nomodel(A, V) for
each n_v(A, V), whenever a link was actually added onto A. Since the new link has to be supporting,

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 179

% guess new links
newlink(A) ← not nonewlink(A), s(A).
nonewlink(A) ← not newlink(A), s(A).
% guess entries for truth table
model(A, V) ← n_v(A, V), newlink(A), not nomodel(A,V).
nomodel(A, V) ← n_v(A, V), newlink(A), not model(A,V).
% ensure that guessed entries correspond to support
← ac(A, F), true(A, V, F), newlink(A), nomodel(A,V).
% ensure that enforcement goals are met
← s(A), enf(A,f), t(A).
← s(A), enf(A,f), u(A).
← s(A), enf(A,t), f(A).
← s(A), enf(A,t), u(A).
% weak constraint for optimization of link addition
�newlink(S). [1,A]

% derive difference to original acceptance condition
changedmodel(A,V) ← ac(A, F), true(A, V, F), nomodel(A,V).
changedmodel(A,V) ← ac(A, F), not true(A, V, F), model(A,V).

Listing 1. Partial ASP encoding for support enforcement

we apply the next constraint that ensures that when originally we evaluated to true (true holds) we are
not allowed to guess nomodel. The next four constraints specify that the enforcement goals are to be
met: e.g., if A is an argument, it was assigned true (t(A)), then the enforcement goal cannot be false
(enf(A, f)). The weak constraint specifies unit weight (cost) to each added link. Finally, in order to be
able to compute the modified acceptance condition, we derive each change of entries in a truth table.
That is, changedmodel(a, i) indicates that vi �= gi . In this way, the full truth table can be inferred for
the modified ϕ∗

a = (ϕa ∧ ¬e) ∨ (ϕ′
a ∧ e), i.e., ϕ′

a is fully specified in this way.
The full ASP encodings are available at

https://www.dbai.tuwien.ac.at/research/project/embarg/supp-enf/

which, derived from (go)Diamond, are distributed under the GPL license.

Example 21. We show an example of support enforcement, which is taken from a part, and simplified
form, of an instance ADF that has 216 arguments that was used in the experiments shown in the next sec-
tion. For our illustration, nine arguments are relevant, which have the following unmodified acceptance
conditions:

ϕa1 = ¬a2 ∨ a3

ϕa2 = ¬a1

ϕa3 = ¬a4 ∧ ¬a1

ϕa4 = a5 ∨ a3

ϕa5 = ¬a6

ϕa6 = ψ

https://www.dbai.tuwien.ac.at/research/project/embarg/supp-enf/

180 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

ϕa7 = (a8 ↔ a2)

ϕa8 = �

with ψ a formula with at least one variable (for our example the exact form of this condition is not
relevant). Say we want to enforce a7 to be true (other arguments are not constrained). When using
the ASP encoding above (together with the Diamond encodings), we extracted a solution as follows.
Consider the three-valued interpretation I = {a1
→ f, a2
→ t, a3
→ f, a4
→ t, a5
→ t, a6
→ u, a7
→
t, a8
→ t}. The interpretation I is not admissible in the unmodified ADF: ϕa5[I] = ϕa5 = ¬a6, but
I (a5) = t. We now expand the ADF with argument e and add link (e, a5) and adapt the acceptance
condition to ϕ∗

a5
= (¬a6 ∧¬e)∨ (�∧e). This corresponds to having changedmodel(a5, 1) in an answer

set: there are two entries in the truth table of ϕa5 , with the one identified with 0 being the one where a6 is
assigned false and the one with ID 1 the one where a6 is true. Then, changedmodel(a5, 1) indicates that
the new acceptance condition, with e true, has still a model where a6 is false, but the previous non-model
where a6 is true shall become a model. Then, under ϕ∗

a5
, it holds that I is admissible, when expanded

with e
→ t, and a7 is true in I , thus, a7 is enforced to be true in the expansion. In other words, support
enforcement identified that a link from e to a5 that states that acceptance of e is sufficient to accept a5

leads to acceptance of a7, since this leads to a chain of changes of acceptance: due to acceptance of a5,
we can accept a4, which, in turn, leads to rejection of a3 if a1 is likewise rejected. The argument a1 can
be rejected if a2 is accepted and a3 is rejected. By accepting a2 we arrive at the situation that both a2 and
a8 are accepted, implying that a8 ↔ a2 evaluates to true, and a7 can be accepted.

8.2. Experiments

We report on an experimental evaluation of the support enforcement operator implemented in ASP.

Instances and experimental setup. We performed experiments using instances from www.dbai.tuwien.
ac.at/proj/adf/yadf/, which are ADFs that were generated from the AFs of domains ABA2AF, Plan-
ning2AF, and Traffic from ICCMA 2017 [66,67]. The generation procedure is described in [49, Sec-
tion 5]. Briefly put, the generator transforms an undirected graph (from the AF competition) into cyclic
or acyclic ADFs, by inheriting the graph structure (for acyclic ADFs, by a topological ordering, inducing
an acyclic directed graph). Acceptance conditions are constructed by considering the parents (as given
by the graph generation), and grouping parents into five classes: attack, group-attack, support, group-
support, or XOR, which represent different types of generated Boolean subformulas, which are then
connected via logical conjunction and disjunction.

We analyzed characteristics of the ADF instances. We list statistics of each domain in Table 3. Overall,
the benchmark set contains 600 ADFs, which vary in several statistics. For instance, the maximum
number of parents of arguments (i.e., the maximum in-degree of the graph) varies from at most 2 to at
most 131. For the calculation of (number of) parents we excluded self-loops. We computed polarity of
each ADF, and found that, from the whole set, 48 are bipolar, 547 are not bipolar, and 5 instances could
not be checked (note that it is coNP-complete to check whether a link is supporting or attacking [61]).
All bipolar ADFs have at most 12 parents for each argument.

For each ADF we created three enforcement requests, i.e., interpretations to enforce, as follows. We
selected, at random, a subset of the arguments in the ADF with probability p ∈ { 1

5 ,
1

10 ,
1
20} to include

an argument. For each such subset, we selected, again randomly, which argument shall be enforced
to be true and which to be false, with a probability of 1

5 that an argument is false. Thus having more

http://www.dbai.tuwien.ac.at/proj/adf/yadf/
http://www.dbai.tuwien.ac.at/proj/adf/yadf/

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 181

Table 3

Statistics of ADFs used in the experimentation. For each group of instances we list the total number of ADFs, the average
number of arguments in the ADFs, the interval of maximum number of parents in the ADFs (excluding self-loops), the number
of cyclic ADFs, and the number of bipolar ADFs

Planning Number of ADFs 200
Average number of arguments 202.64
Interval of maximum number of parents 6–19
Number of ADFs with cyclic dependency graph 100
Number of bipolar ADFs 0

Traffic Number of ADFs 200
Average number of arguments 111.81
Interval of maximum number of parents 2–19
Number of ADFs with cyclic dependency graph 100
Number of bipolar ADFs 35

ABA2AF Number of ADFs 200
Average number of arguments 43.83
Interval of maximum number of parents 3–131
Number of ADFs with cyclic dependency graph 100
Number of bipolar ADFs 13

Overall Number of ADFs 600
Average number of arguments 119.427
Interval of maximum number of parents 2–131
Number of ADFs with cyclic dependency graph 300
Number of bipolar ADFs 48

arguments to be enforced to be true, since arguments enforced to be false can lead to a no solution
instance in contrast to arguments enforced to be true, which motivates this choice. This was also observed
empirically, see below. This resulted in 600 enforcements per domain, and 1800 enforcements overall.

All experiments were run on a machine with two AMD Opteron Processors 6308, 12 × 16 GB RAM,
and Debian 8. We used a timeout of 900 seconds on each individual instance (query), i.e., for each pair
of ADF and enforcement. Furthermore, we restricted memory consumption (virtual memory) to at most
8 GB. In order to enforce these limits, and to have more logging information, we utilized the runsolver
v3.4.0 tool3 by Olivier Roussel, which was also used in several competitions. For the ASP solver, we
used clingo v5.3.0 [70].

Results and interpretations. The results are summarized in Table 4. The rows show the instances
grouped by domain, number of queries, number of successful computations (i.e., where clingo termi-
nated with the result within the limits), number of instances where an optima was found, number of
instances with optimum cost 0, number of instances where clingo reported unsatisfiability, number of
timeouts, and the median runtimes in seconds. In the following, we interpret the results in more detail.

We first discuss successful and not successful runs. A run is deemed successful when clingo returned
either with an optimal solution or reported unsatisfiability. In our experiments, we encountered four
reasons for clingo not reporting successfully. The first is that the time limit was reached, which occurred
rarely: only 8 runs timed out. In its current version, clingo does not support very high integers. Since in
the ASP encoding used by us (and by Diamond), a truth table is constructed, and each entry is assigned

3http://www.cril.univ-artois.fr/~roussel/

http://www.cril.univ-artois.fr/~roussel/

182 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

Table 4

Summary of experimental results

Domain # #successful Opt. found 0-cost Unsat. Timeout Median time (sec) of succ. runs
Planning 600 586 211 4 375 8 2.442
Traffic 600 591 341 49 250 0 0.188
ABA2AF 600 267 220 57 47 0 0.612

All 1800 1444 772 110 672 8 0.862

an integer (an ID), we naturally have to deal with large integers. For instance, if the maximum number
of parents is n, then an integer 2n is required by the ASP encoding. We noted that 6 runs failed due to
such high integers. The third reason is that the memory limit of 8 GB was reached, which happened for
63 runs. Finally, we encountered 279 runs where clingo could not solve the instance, but stayed with
the limits and did not report an issue with large integers. We inspected these runs, and found that in all
cases a large portion of memory was used: at least 6 GB, but in most cases almost 8 GB. While, strictly
speaking, the memory limit was not reached, we interpret all these instances as failing due to the high
memory consumption. Overall, out of 1800 runs, 1444 were successful and 356 were not. We looked
at the maximum number of parents of the failed runs, and, except for the timed out runs, all failed runs
had to cope with ADFs with a maximum number of parents of at least 15 and up to 131. In contrast, the
successful runs had maximum number of parents between 2 and 16. We hypothesize that this is inherent
to our method of transforming Boolean formulas by truth table expansion: the method was able to cope
with instances up to 16 parents, but not more. Nevertheless, all instances with at most 14 parents (except
for the 8 time outs) were solved successfully by clingo.

We move on to running time behavior of the successful runs. Table 4 summarizes that the median
of these runs was (quite) low. Since, as observed above, the maximum number of parents seems to be
a crucial parameter for difficulty, we detail running times for this parameter in Fig. 10. In the figure,
the successfully solved instances are grouped by maximum number of parents (with the sample size in
brackets) shown along the horizontal axis. As can be seen, there is a clear increase in running times when
increasing the maximum number of parents, as expected. Nevertheless, even for a maximum number of
parents of 16, running times were reasonable, e.g., below 200 seconds for most runs. We also looked
at running time differences when considering cyclicity. As observed theoretically [77], acyclic ADFs
have milder complexity. Within the successful runs, 726 were on acyclic ADFs and 718 were on cyclic
ADFs. The cumulative running time (i.e., summing up all running times) were 5391.5 and 18112.7,
respectively. While ADFs and enforcement requests are different for acyclic and cyclic instances, this
result suggests that the difference in complexity was also observed empirically, in our experiments.
Regarding bipolarity, the picture is not clear, since (recall description above) all bipolar ADFs have a
low number of maximum number of parents (up to 12). Looking at the corresponding running times in
Fig. 10 reveals that those runs were all solved quickly, independent of polarity. Such low running times
do not give clear results of divergence of running times on bipolar or non-bipolar ADFs.

We now consider the three parameters for enforcement generation. When looking at those runs with
the lowest number of arguments to be enforced to false (p = 1

20), we have 335 runs where clingo reported
an optimal solution and 145 runs which were deemed unsatisfiable. For p = 1

10 , we have 261 optimal
solutions and 219 unsatisfiable queries. For p = 1

5 , we encountered 176 optimal solutions and 308
unsatisfiable queries. This is in line with Proposition 2, i.e., that arguments enforced to be true always
have a solution, while arguments enforced to be false may not have a solution. Further, we noticed
an increase of costs for the three groups: the average costs were 2.8, 4.1, and 5.1, respectively, which

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 183

Fig. 10. Whisker plot for all successful runs of support enforcement. In the vertical axis running times (sec) are shown, and in
the horizontal axis instances are grouped by maximum number of parents (with size of the group in parentheses). The box shows
the lower quartile and upper quartile (the 25th and 75th percentiles), the median in bold, and the lines denote the “whiskers“,
i.e., these extend from the quartiles to the farthest points up to 1.5 times the interquartile range (range from lower and upper
quartile) from upper/lower quartiles. Outliers are denoted as circles. Instances with a maximum number of parents less than
seven are omitted (both their minimum and maximum running times are close to zero).

reflects the increasing number of arguments enforced. Regarding costs, in, overall, 110 runs an optimal
solution had 0 costs. This indicates that the enforcement request was already met without any change
(i.e., when enforcing I to be admissible, there already is an admissible J with I �i J). Compared to
1444 successful runs, the number of trivial instances (w.r.t. costs) is low.

Summarizing our results, with the ASP approach, we could solve 1444 out of 1800 instances, most of
these within (rather) low running times. Non-solvability was mostly due to high memory consumption,
which is to be expected as a natural barrier for our approach. Nevertheless, ADFs with at most 16
maximum number of parents were solved regularly.

9. Constraints for further operations

In this section we give a brief overview on further operators that fit into our three-layered approach,
and for which structural constraints can be applied. Concretely, we look at revision of AFs, merging
(aggregation) of AFs, and synthesis (learning) of AFs. Each of these operations result in a (modified) AF
that has to satisfy certain semantical constraints. In addition some of these operators allow for structural
constraints. These operators can be augmented with structural constraints we looked at in Section 4.
For instance, in any of these operations one can fix certain parts of the AF, or impose implications (e.g.
presence of one attack implies further attacks), or add further optimizations.

Revision of argumentation frameworks. Revision of knowledge has a long tradition in AI [1,69,74],
and revision of semantics of AFs [42,43,48] and ADFs [79] has been studied recently. From a high-
level perspective, these operators revise a given framework and return a modified framework. Many of
these revision operators specify the semantics of the modified framework, and some, but not all, give
constraints on the structure. In this regard, in our three-layered point of view, these operators specify
semantical constraints, in the form of exact semantics a modified AF shall have, and sometimes further
constraints such as optimizations. Our structural constraints can support further development of such
revision operators by stating how an AF may evolve structurally, in addition to the semantics or existing
structural constraints.

184 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

Merging of argumentation frameworks. Similar to revision, merging or aggregation of (logical) struc-
tures has received interest in the AI community [75]. Aggregation, or merging, of AFs has recently found
attention in the argumentation community [26,41]. As an example for a semantical merging operator,
consider an operator studied in [47], which, given a tuple of AFs, merges the tuple into an AF, or a set of
AFs. For simplicity we look at those operators returning a single AF.4 Operators from this family specify
the semantics of the output (i.e., specify a semantical constraint), and structural constraints that optimize
the modifications of attacks. To such operators, similarly as for the revision operators, structural con-
straints can be added to further constrain the candidate solutions, e.g., to respect more interconnections
between arguments and attacks.

Synthesis of argumentation frameworks. Broadly speaking, generation of structures from given infor-
mation, also sometimes called learning, acquisition, or synthesis, has initiated several research directions
within AI [20,24,46,100]. Focusing on the construction of argumentative structures [89,96,97], we re-
call the synthesis operation from [89], where our structural constraints can be applied. Simply put, the
task in AF synthesis is to find an AF such that certain given examples of sets of arguments are (or are
not) σ -extensions. An additional optimization criterion specifies that as many such examples as possible
are satisfied. In its current form, AF synthesis incorporates structural constraints specifying that certain
attacks have to part of the returned AF, or must be omitted. In addition, our structural constraints can
specify, e.g., implications that specify that sets of attacks may be added as whole, or not at all.

10. Related work

A recent survey [52] gives an interesting overview over many approaches to dynamics of argumenta-
tion, constraints, and changes. In the following, we discuss relations of our work to several related works
(including, but not restricting, to content of the survey).

Logical languages for dynamics and constraints. Several works considered constraints (in argumen-
tation dynamics) specified in a logical language, which naturally relate to our work. In [50] control
argumentation frameworks were proposed, where one can specify known, unknown, and controllable
arguments by an agent, the last category being those arguments the agent can use in a debate. In [51,58]
logical languages are proposed and used, in order to specify allowed changes to an argumentation frame-
work. In contrast, we look ADFs (AFs in their works) and at particular families of constraints, consider
their use cases, properties, computational aspects, and applied them in two case studies. Some of our
constraints are already present in earlier works: limits of arguments and attacks, and mandatory (non-)
presence of certain arguments and attacks is discussed, e.g., in [44,89,102]; similarly in enforcement and
revision [42,43] optimization of modified attacks is part of the problem definition. We consider more
general families of constraints. Constraints on presence of attacks is also, although in a quite different
form, part of incorporation of preferences in structured argumentation, e.g., in [84], where a preference
relation can make certain attacks not applicable. That is, a preference relation can be seen as a constraint
on attacks.

4The assumption that the merging operators of [47] return a single AF does not hold in general for all input tuples of AFs;
in fact they show that when considering operators satisfying certain properties there is none that always returns a single AF.
Nevertheless, our structural constraints can be straightforwardly applied to a tuple (set) of AFs.

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 185

Realizability and expressivity of argumentation frameworks. While our work focuses on structural
constraints, semantical constraints are likewise important. A recent research direction is to study the sig-
nature of AFs, also called realizability [12,57,78]. That is, these studies reveal which sets of arguments
can be, e.g., a part of the preferred semantics of an AF. In this way, limits to semantical constraints are
given. Such constraints are also useful for incorporation of structural constraints, as seen by Example 10:
when restricting an ADF structurally to be part of a particular sub family of ADFs (e.g., bipolar ADFs)
the signature of the semantics changes and can directly lead to unsatisfiability of semantical constraints.
Further, similar to this work, in [57] complexity results were shown for checking whether a semantical
structure is part of the signature. While the realizability problem requires that an AF has exactly a certain
semantics, in the synthesis problem [89] this is generalized to allow also for partial semantics specifi-
cations. Similarly, insights from AF synthesis can help to understand which constraints (semantical and
structural) lead to a set of constraints that is satisfiable.

Dialogues, strategic argumentation, and incomplete AFs. Enforcement under structural constraints,
as studied in this work, relates to some approaches in the literature. Incomplete AFs [13–17] are AFs
where some attacks or arguments are fixed, while others can be modified. A task is then to see whether
a set of arguments is an extension in all completions of the incomplete AFs. Bounds such as these, can
be represented by the constraints considered in this work. In strategic argumentation, e.g., in [80–82],
one can desire to look for an AF among many choices of AFs that satisfy a certain strategic goal (such
as acceptance of an argument when adding arguments/attacks). Enforcement naturally shares this goal.
Also, our structural constraints can be utilized to specify which AFs one may choose from. For our
structured enforcement operator, dialogues, as studied in [64], have a similar motivation. In their work,
a goal is to “reveal” (through a dialogue) parts of a knowledge base, in order to have parts revealed
that make up a framework satisfying certain (strategic) goals. Similarly, structured enforcement aims
to find an expansion satisfying an enforcement goal that also reflects contents of a knowledge base.
Furthermore, different to the three directions, we work with general ADFs, consider several families
of constraints, look at complexity of such families, and allow for rather fine-grained constraints (e.g.,
not allowing all completions). Further, our structured enforcement operator differs from the dialogue
approach by working on expansion of AFs that reflect (general) structured formalisms in contrast to
engaging in a dialogue that utters parts of a knowledge base, and include optimizations on such AFs.

11. Conclusions

In this article we have proposed to extend current (and future) dynamic operators on frameworks in
argumentation in AI with constraints that, e.g., suit conditions “abstracted away” during instantiation,
or ensure other desirable properties. More concretely, we proposed a set of constraints to be used for
such operators, exemplified several use cases, and properties, of such constraints, investigated in more
detail two concrete case studies developing an enforcement operator for ADFs based on supports and
an enforcement operator for structured argumentation. The two case studies witness that our constraints
can be utilized to extend operators, such as enforcement, in two ways: adapt them to more general
abstract frameworks (e.g., ADFs), and adapt them to respect structural information from instantiation.
Furthermore, we looked at the computational properties of constraints and the two novel enforcement
operators. We implemented support enforcement in ASP, and presented an empirical evaluation of the
resulting prototype. Our findings, from the case studies, are that several constraints can be applied to

186 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

diverse scenarios, and our prototype implementation shows reasonable performance even when faced
with complex optimization problems.

Directions for future work include, in particular, extending work on enforcement to complex con-
texts. For instance, our case study for a structural enforcement operator can be extended to one of the
formalisms available in the field of structured argumentation (such as ABA and ASPIC+). However,
such an endeavor requires care when instantiating: a large number of arguments (relations) should be
avoided. We think that more efficient ways of instantiation, for which we already have seen early work
[76,103], is a fruitful direction, since both dynamic operators we studied here, and static operators in
argumentation can benefit from such efficiency gains.

Acknowledgements

We thank the anonymous reviewers of the preliminary conference version [101] and this version of the
paper and Thomas Linsbichler for their useful comments. This work has been supported by the Austrian
Science Fund (FWF): P30168 and I2854.

References

[1] C.E. Alchourrón, P. Gärdenfors and D. Makinson, On the logic of theory change: Partial meet contraction and revision
functions, Journal of Symbolic Logic 50(2) (1985), 510–530. doi:10.2307/2274239.

[2] L. Amgoud and C. Cayrol, A reasoning model based on the production of acceptable arguments, Annals of Mathematics
and Artificial Intelligence 34(1–3) (2002), 197–215. doi:10.1023/A:1014490210693.

[3] L. Amgoud, C. Cayrol, M. Lagasquie-Schiex and P. Livet, On bipolarity in argumentation frameworks, International
Journal of Intelligent Systems 23(10) (2008), 1062–1093. doi:10.1002/int.20307.

[4] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G.R. Simari, M. Thimm and S. Villata, Towards
artificial argumentation, AI Magazine 38(3) (2017), 25–36. doi:10.1609/aimag.v38i3.2704.

[5] P. Baroni, M. Caminada and M. Giacomin, An introduction to argumentation semantics, Knowledge Engineering Review
26(4) (2011), 365–410. doi:10.1017/S0269888911000166.

[6] P. Baroni, F. Cerutti, M. Giacomin and G. Guida, AFRA: Argumentation framework with recursive attacks, International
Journal of Approximate Reasoning 52(1) (2011), 19–37. doi:10.1016/j.ijar.2010.05.004.

[7] P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre (eds), Handbook of Formal Argumentation, College Publica-
tions, 2018.

[8] R. Baumann, Normal and strong expansion equivalence for argumentation frameworks, Artificial Intelligence 193 (2012),
18–44. doi:10.1016/j.artint.2012.08.004.

[9] R. Baumann, What does it take to enforce an argument? Minimal change in abstract argumentation, in: Proc. ECAI, L. De
Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz and P.J.F. Lucas, eds, Frontiers in Artificial Intelligence
and Applications, Vol. 242, IOS Press, 2012, pp. 127–132.

[10] R. Baumann and G. Brewka, Expanding argumentation frameworks: Enforcing and monotonicity results, in: Proc.
COMMA, P. Baroni, F. Cerutti, M. Giacomin and G.R. Simari, eds, Frontiers in Artificial Intelligence and Applications,
Vol. 216, IOS Press, 2010, pp. 75–86.

[11] R. Baumann and G. Brewka, Extension removal in abstract argumentation – an axiomatic approach, in: Proc. AAAI, P.
Van Hentenryck and Z.-H. Zhou, eds, AAAI Press, 2019, pp. 2670–2677.

[12] R. Baumann, W. Dvořák, T. Linsbichler, H. Strass and S. Woltran, Compact argumentation frameworks, in: Proc. ECAI,
T. Schaub, G. Friedrich and B. O’Sullivan, eds, Frontiers in Artificial Intelligence and Applications, Vol. 263, IOS Press,
2014, pp. 69–74.

[13] D. Baumeister, D. Neugebauer and J. Rothe, Verification in attack-incomplete argumentation frameworks, in: Proc. ADT,
T. Walsh, ed., Lecture Notes in Computer Science, Vol. 9346, Springer, 2015, pp. 341–358.

[14] D. Baumeister, D. Neugebauer and J. Rothe, Credulous and skeptical acceptance in incomplete argumentation frame-
works, in: Proc. COMMA, S. Modgil, K. Budzynska and J. Lawrence, eds, Frontiers in Artificial Intelligence and Appli-
cations, Vol. 305, IOS Press, 2018, pp. 181–192.

[15] D. Baumeister, D. Neugebauer, J. Rothe and H. Schadrack, Complexity of verification in incomplete argumentation
frameworks, in: Proc. AAAI, S.A. McIlraith and K.Q. Weinberger, eds, AAAI Press, 2018, pp. 1753–1760.

https://doi.org/10.2307/2274239
https://doi.org/10.1023/A:1014490210693
https://doi.org/10.1002/int.20307
https://doi.org/10.1609/aimag.v38i3.2704
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1016/j.ijar.2010.05.004
https://doi.org/10.1016/j.artint.2012.08.004

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 187

[16] D. Baumeister, D. Neugebauer, J. Rothe and H. Schadrack, Verification in incomplete argumentation frameworks, Arti-
ficial Intelligence 264 (2018), 1–26. doi:10.1016/j.artint.2018.08.001.

[17] D. Baumeister, J. Rothe and H. Schadrack, Verification in argument-incomplete argumentation frameworks, in: Proc.
ADT, T. Walsh, ed., Lecture Notes in Computer Science, Vol. 9346, Springer, 2015, pp. 359–376.

[18] T.J.M. Bench-Capon, Persuasion in practical argument using value-based argumentation frameworks, Journal of Logic
and Computation 13(3) (2003), 429–448. doi:10.1093/logcom/13.3.429.

[19] T.J.M. Bench-Capon and P.E. Dunne, Argumentation in artificial intelligence, Artificial Intelligence 171(10–15) (2007),
619–641. doi:10.1016/j.artint.2007.05.001.

[20] F. Bergadano and D. Gunetti, Inductive Logic Programming – from Machine Learning to Software Engineering, MIT
Press, 1996.

[21] P. Besnard, A.J. García, A. Hunter, S. Modgil, H. Prakken, G.R. Simari and F. Toni, Introduction to structured argumen-
tation, Argument & Computation 5(1) (2014), 1–4. doi:10.1080/19462166.2013.869764.

[22] P. Besnard and A. Hunter, Elements of Argumentation, MIT Press, 2008.
[23] P. Besnard and A. Hunter, A review of argumentation based on deductive arguments, in: Handbook of Formal Argu-

mentation, P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre, eds, College Publications, 2018, pp. 437–484,
Chap. 9.

[24] C. Bessiere, F. Koriche, N. Lazaar and B. O’Sullivan, Constraint acquisition, Artificial Intelligence 244 (2017), 315–342.
doi:10.1016/j.artint.2015.08.001.

[25] P. Bisquert, C. Cayrol, F. Dupin de Saint-Cyr and M. Lagasquie-Schiex, Enforcement in argumentation is a kind of
update, in: Proc. SUM, W. Liu, V.S. Subrahmanian and J. Wijsen, eds, Lecture Notes in Computer Science, Vol. 8078,
Springer, 2013, pp. 30–43.

[26] G.A. Bodanza, F. Tohmé and M. Auday, Collective argumentation: A survey of aggregation issues around argumentation
frameworks, Argument & Computation 8(1) (2017), 1–34. doi:10.3233/AAC-160014.

[27] G. Boella, D.M. Gabbay, L.W.N. van der Torre and S. Villata, Support in abstract argumentation, in: Proc. COMMA,
P. Baroni, F. Cerutti, M. Giacomin and G.R. Simari, eds, Frontiers in Artificial Intelligence and Applications, Vol. 216,
IOS Press, 2010, pp. 111–122.

[28] A. Bondarenko, P.M. Dung, R.A. Kowalski and F. Toni, An abstract, argumentation-theoretic approach to default rea-
soning, Artificial Intelligence 93 (1997), 63–101. doi:10.1016/S0004-3702(97)00015-5.

[29] G. Brewka, T. Eiter and M. Truszczynski, Answer set programming at a glance, Communications of the ACM 54(12)
(2011), 92–103. doi:10.1145/2043174.2043195.

[30] G. Brewka, S. Ellmauthaler, H. Strass, J.P. Wallner and S. Woltran, Abstract dialectical frameworks, in: Handbook of
Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre, eds, College Publications, 2018, pp.
237–285, Chap. 5.

[31] G. Brewka, S. Polberg and S. Woltran, Generalizations of Dung frameworks and their role in formal argumentation,
IEEE Intelligent Systems 29(1) (2014), 30–38. doi:10.1109/MIS.2013.122.

[32] G. Brewka and S. Woltran, Abstract dialectical frameworks, in: Proc. KR, AAAI Press, 2010, pp. 102–111.
[33] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca and T. Schaub, ASP-Core-2

Input Language Format, 2012. https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf.
[34] C. Cayrol, F. Dupin de Saint-Cyr and M. Lagasquie-Schiex, Change in abstract argumentation frameworks: Adding an

argument, Journal of Artificial Intelligence Research 38 (2010), 49–84. doi:10.1613/jair.2965.
[35] C. Cayrol, J. Fandinno, L.F. del Cerro and M. Lagasquie-Schiex, Valid attacks in argumentation frameworks with recur-

sive attacks, in: Proc. COMMONSENSE, A.S. Gordon, R. Miller and G. Turán, eds, CEUR Workshop Proceedings, Vol.
2052, CEUR-WS.org, 2017.

[36] C. Cayrol and M.-C. Lagasquie-Schiex, Bipolarity in argumentation graphs: Towards a better understanding, Interna-
tional Journal of Approximate Reasoning 54(7) (2013), 876–899. doi:10.1016/j.ijar.2013.03.001.

[37] F. Cerutti, S.A. Gaggl, M. Thimm and J.P. Wallner, Foundations of implementations for formal argumentation, in: Hand-
book of Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre, eds, College Publications,
2018, pp. 688–767, Chap. 15.

[38] G. Charwat, W. Dvořák, S.A. Gaggl, J.P. Wallner and S. Woltran, Methods for solving reasoning problems in abstract
argumentation – a survey, Artificial Intelligence 220 (2015), 28–63. doi:10.1016/j.artint.2014.11.008.

[39] A. Cohen, S. Gottifredi, A.J. García and G.R. Simari, A survey of different approaches to support in argumentation
systems, Knowledge Engineering Review 29(5) (2014), 513–550. doi:10.1017/S0269888913000325.

[40] A. Cohen, S. Gottifredi, A.J. García and G.R. Simari, An approach to abstract argumentation with recursive attack and
support, Journal of Applied Logic 13(4) (2015), 509–533. doi:10.1016/j.jal.2014.12.001.

[41] S. Coste-Marquis, C. Devred, S. Konieczny, M. Lagasquie-Schiex and P. Marquis, On the merging of Dung’s argumen-
tation systems, Artificial Intelligence 171(10–15) (2007), 730–753. doi:10.1016/j.artint.2007.04.012.

[42] S. Coste-Marquis, S. Konieczny, J. Mailly and P. Marquis, On the revision of argumentation systems: Minimal change
of arguments statuses, in: Proc. KR, C. Baral, G.D. Giacomo and T. Eiter, eds, AAAI Press, 2014, pp. 52–61.

https://doi.org/10.1016/j.artint.2018.08.001
https://doi.org/10.1093/logcom/13.3.429
https://doi.org/10.1016/j.artint.2007.05.001
https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.3233/AAC-160014
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1109/MIS.2013.122
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf
https://doi.org/10.1613/jair.2965
https://doi.org/10.1016/j.ijar.2013.03.001
https://doi.org/10.1016/j.artint.2014.11.008
https://doi.org/10.1017/S0269888913000325
https://doi.org/10.1016/j.jal.2014.12.001
https://doi.org/10.1016/j.artint.2007.04.012

188 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

[43] S. Coste-Marquis, S. Konieczny, J. Mailly and P. Marquis, A translation-based approach for revision of argumentation
frameworks, in: Proc. JELIA, E. Fermé and J. Leite, eds, Lecture Notes in Computer Science, Vol. 8761, Springer, 2014,
pp. 397–411.

[44] S. Coste-Marquis, S. Konieczny, J. Mailly and P. Marquis, Extension enforcement in abstract argumentation as an opti-
mization problem, in: Proc. IJCAI, Q. Yang and M. Wooldridge, eds, AAAI Press, 2015, pp. 2876–2882.

[45] K. Cyras, X. Fan, C. Schulz and F. Toni, Assumption-based argumentation: Disputes, explanations, preferences, in:
Handbook of Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre, eds, College Publications,
2018, pp. 365–408, Chap. 7.

[46] J. Davis and J. Ramon (eds), Proc. ILP 2014, Revised Selected Papers, Lecture Notes in Computer Science, Vol. 9046,
Springer, 2015.

[47] J. Delobelle, A. Haret, S. Konieczny, J. Mailly, J. Rossit and S. Woltran, Merging of abstract argumentation frameworks,
in: Proc. KR, C. Baral, J.P. Delgrande and F. Wolter, eds, AAAI Press, 2016, pp. 33–42.

[48] M. Diller, A. Haret, T. Linsbichler, S. Rümmele and S. Woltran, An extension-based approach to belief revision in
abstract argumentation, International Journal of Approximate Reasoning 93 (2018), 395–423. doi:10.1016/j.ijar.2017.
11.013.

[49] M. Diller, A. Keshavarzi Zafarghandi, T. Linsbichler and S. Woltran, Investigating subclasses of abstract dialectical
frameworks, in: Proc. COMMA, S. Modgil, K. Budzynska and J. Lawrence, eds, Frontiers in Artificial Intelligence and
Applications, Vol. 305, IOS Press, 2018, pp. 61–72.

[50] Y. Dimopoulos, J. Mailly and P. Moraitis, Control argumentation frameworks, in: Proc. AAAI, S.A. McIlraith and K.Q.
Weinberger, eds, AAAI Press, 2018, pp. 4678–4685.

[51] S. Doutre, A. Herzig and L. Perrussel, A dynamic logic framework for abstract argumentation, in: Proc. KR, C. Baral,
G.D. Giacomo and T. Eiter, eds, AAAI Press, 2014, pp. 62–71.

[52] S. Doutre and J. Mailly, Constraints and changes: A survey of abstract argumentation dynamics, Argument & Computa-
tion 9(3) (2018), 223–248. doi:10.3233/AAC-180425.

[53] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artificial Intelligence 77(2) (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.

[54] P.M. Dung, An axiomatic analysis of structured argumentation with priorities, Artificial Intelligence 231 (2016), 107–
150. doi:10.1016/j.artint.2015.10.005.

[55] P.M. Dung and P.M. Thang, Representing the semantics of abstract dialectical frameworks based on arguments and
attacks, Argument & Computation 9(3) (2018), 249–267. doi:10.3233/AAC-180427.

[56] P.E. Dunne, Computational properties of argument systems satisfying graph-theoretic constraints, Artificial Intelligence
171(10–15) (2007), 701–729. doi:10.1016/j.artint.2007.03.006.

[57] P.E. Dunne, W. Dvořák, T. Linsbichler and S. Woltran, Characteristics of multiple viewpoints in abstract argumentation,
Artificial Intelligence 228 (2015), 153–178. doi:10.1016/j.artint.2015.07.006.

[58] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol and M. Lagasquie-Schiex, Argumentation update in YALLA (yet another
logic language for argumentation), International Journal of Approximate Reasoning 75 (2016), 57–92. doi:10.1016/j.
ijar.2016.04.003.

[59] W. Dvořák and P.E. Dunne, Computational problems in formal argumentation and their complexity, in: Handbook of
Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin and L. van der Torre, eds, College Publications, 2018, pp.
631–688, Chap. 13.

[60] W. Dvořák, S. Ordyniak and S. Szeider, Augmenting tractable fragments of abstract argumentation, Artificial Intelligence
186 (2012), 157–173. doi:10.1016/j.artint.2012.03.002.

[61] S. Ellmauthaler, Abstract Dialectical Frameworks: Properties, Complexity, and Implementation, Master’s thesis, Tech-
nische Universität Wien, Institut für Informationssysteme, 2012.

[62] S. Ellmauthaler and H. Strass, The DIAMOND system for computing with abstract dialectical frameworks, in: Proc.
COMMA, S. Parsons, N. Oren, C. Reed and F. Cerutti, eds, Frontiers in Artificial Intelligence and Applications, Vol.
266, IOS Press, 2014, pp. 233–240.

[63] S. Ellmauthaler and H. Strass, DIAMOND 3.0 – a native C++ implementation of DIAMOND, in: Proc. COMMA,
Frontiers in Artificial Intelligence and Applications, Vol. 287, IOS Press, 2016, pp. 471–472.

[64] X. Fan and F. Toni, A general framework for sound assumption-based argumentation dialogues, Artificial Intelligence
216 (2014), 20–54. doi:10.1016/j.artint.2014.06.001.

[65] D.M. Gabbay, Semantics for higher level attacks in extended argumentation frames part 1: Overview, Studia Logica
93(2–3) (2009), 357–381. doi:10.1007/s11225-009-9211-4.

[66] S.A. Gaggl, T. Linsbichler, M. Maratea and S. Woltran, Introducing the second international competition on computa-
tional models of argumentation, in: Proc. SAFA, M. Thimm, F. Cerutti, H. Strass and M. Vallati, eds, CEUR Workshop
Proceedings, Vol. 1672, CEUR-WS.org, 2016, pp. 4–9.

[67] S.A. Gaggl, T. Linsbichler, M. Maratea and S. Woltran, Summary report of the second international competition on
computational models of argumentation, AI Magazine 39(4) (2018), 77–79. doi:10.1609/aimag.v39i4.2781.

https://doi.org/10.1016/j.ijar.2017.11.013
https://doi.org/10.1016/j.ijar.2017.11.013
https://doi.org/10.3233/AAC-180425
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2015.10.005
https://doi.org/10.3233/AAC-180427
https://doi.org/10.1016/j.artint.2007.03.006
https://doi.org/10.1016/j.artint.2015.07.006
https://doi.org/10.1016/j.ijar.2016.04.003
https://doi.org/10.1016/j.ijar.2016.04.003
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2014.06.001
https://doi.org/10.1007/s11225-009-9211-4
https://doi.org/10.1609/aimag.v39i4.2781

J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation 189

[68] A.J. García and G.R. Simari, Defeasible logic programming: An argumentative approach, Theory and Practice of Logic
Programming 4(1–2) (2004), 95–138. doi:10.1017/S1471068403001674.

[69] P. Gärdenfors, Knowledge in Flux: Modelling the Dynamics of Epistemic States, The MIT Press, Cambridge, MA, 1988.
[70] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub and P. Wanko, Theory solving made easy with clingo

5, in: Technical Communications of ICLP, 2016, pp. 2–1215.
[71] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. ICLP/SLP, MIT Press, 1988,

pp. 1070–1080.
[72] T.F. Gordon, H. Prakken and D. Walton, The Carneades model of argument and burden of proof, Artificial Intelligence

171(10–15) (2007), 875–896. doi:10.1016/j.artint.2007.04.010.
[73] A. Haret, J.P. Wallner and S. Woltran, Two sides of the same coin: Belief revision and enforcing arguments, in: Proc.

IJCAI, J. Lang, ed., ijcai.org, 2018, pp. 1854–1860.
[74] H. Katsuno and A.O. Mendelzon, On the difference between updating a knowledge base and revising it, in: Proc. KR,

Morgan Kaufmann, 1991, pp. 387–394.
[75] S. Konieczny and R. Pino Pérez, Merging information under constraints: A logical framework, Journal of Logic and

Computation 12(5) (2002), 773–808. doi:10.1093/logcom/12.5.773.
[76] T. Lehtonen, J.P. Wallner and M. Järvisalo, From structured to abstract argumentation: Assumption-based acceptance via

AF reasoning, in: Proc. ECSQARU, A. Antonucci, L. Cholvy and O. Papini, eds, Lecture Notes in Computer Science,
Vol. 10369, Springer, 2017, pp. 57–68.

[77] T. Linsbichler, M. Maratea, A. Niskanen, J.P. Wallner and S. Woltran, Novel algorithms for abstract dialectical frame-
works based on complexity analysis of subclasses and SAT solving, in: Proc. IJCAI, J. Lang, ed., ijcai.org, 2018, pp.
1905–1911.

[78] T. Linsbichler, J. Pührer and H. Strass, A uniform account of realizability in abstract argumentation, in: Proc. ECAI, G.A.
Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum and F. van Harmelen, eds, Frontiers in Artificial
Intelligence and Applications, Vol. 285, IOS Press, 2016, pp. 252–260.

[79] T. Linsbichler and S. Woltran, Revision of abstract dialectical frameworks: Preliminary report, in: Proc. Arg-LPNMR,
S.A. Gaggl, J.C. Nieves and H. Strass, eds, 2016, proceedings available at: http://arxiv.org/abs/1611.02439.

[80] M.J. Maher, Corrupt strategic argumentation: The ideal and the naive, in: Proc. 29th Australasian Joint Conference on
Artificial Intelligence, B.H. Kang and Q. Bai, eds, Lecture Notes in Computer Science, Vol. 9992, Springer, 2016, pp.
17–28.

[81] M.J. Maher, Resistance to corruption of general strategic argumentation, in: Proc. PRIMA, M. Baldoni, A.K. Chopra,
T.C. Son, K. Hirayama and P. Torroni, eds, Lecture Notes in Computer Science, Vol. 9862, Springer, 2016, pp. 61–75.

[82] M.J. Maher, Resistance to corruption of strategic argumentation, in: Proc. AAAI, D. Schuurmans and M.P. Wellman, eds,
AAAI Press, 2016, pp. 1030–1036.

[83] S. Modgil, Reasoning about preferences in argumentation frameworks, Artificial Intelligence 173(9–10) (2009), 901–
934. doi:10.1016/j.artint.2009.02.001.

[84] S. Modgil and H. Prakken, Resolutions in structured argumentation, in: Proc. COMMA, B. Verheij, S. Szeider and S.
Woltran, eds, Frontiers in Artificial Intelligence and Applications, Vol. 245, IOS Press, 2012, pp. 310–321.

[85] S. Modgil and H. Prakken, A general account of argumentation with preferences, Artificial Intelligence 195 (2013),
361–397. doi:10.1016/j.artint.2012.10.008.

[86] S. Modgil and H. Prakken, Abstract rule-based argumentation, in: Handbook of Formal Argumentation, P. Baroni, D.
Gabbay, M. Giacomin and L. van der Torre, eds, College Publications, 2018, pp. 287–364, Chap. 6.

[87] S. Nielsen and S. Parsons, A generalization of Dung’s abstract framework for argumentation: Arguing with sets of
attacking arguments, in: Proc. ArgMAS, N. Maudet, S. Parsons and I. Rahwan, eds, Lecture Notes in Computer Science,
Vol. 4766, Springer, 2007, pp. 54–73.

[88] I. Niemelä, Logic programs with stable model semantics as a constraint programming paradigm, Annals of Mathematics
and Artificial Intelligence 25(3–4) (1999), 241–273. doi:10.1023/A:1018930122475.

[89] A. Niskanen, J.P. Wallner and M. Järvisalo, Synthesizing argumentation frameworks from examples, in: Proc. ECAI,
G.A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum and F. van Harmelen, eds, Frontiers in
Artificial Intelligence and Applications, Vol. 285, IOS Press, 2016, pp. 551–559.

[90] A. Niskanen, J.P. Wallner and M. Järvisalo, Extension enforcement under grounded semantics in abstract argumentation,
in: Proc. KR, M. Thielscher, F. Toni and F. Wolter, eds, AAAI Press, 2018, pp. 178–183.

[91] F. Nouioua and V. Risch, Bipolar argumentation frameworks with specialized supports, in: Proc. ICTAI, IEEE Computer
Society, 2010, pp. 215–218.

[92] F. Nouioua and V. Risch, Argumentation frameworks with necessities, in: Proc. SUM, S. Benferhat and J. Grant, eds,
Lecture Notes in Computer Science, Vol. 6929, Springer, 2011, pp. 163–176.

[93] N. Oren and T.J. Norman, Semantics for evidence-based argumentation, in: Proc. COMMA, P. Besnard, S. Doutre and
A. Hunter, eds, Frontiers in Artificial Intelligence and Applications, Vol. 172, IOS Press, 2008, pp. 276–284.

https://doi.org/10.1017/S1471068403001674
https://doi.org/10.1016/j.artint.2007.04.010
https://doi.org/10.1093/logcom/12.5.773
http://arxiv.org/abs/1611.02439
https://doi.org/10.1016/j.artint.2009.02.001
https://doi.org/10.1016/j.artint.2012.10.008
https://doi.org/10.1023/A:1018930122475

190 J.P. Wallner / Structural constraints for dynamic operators in abstract argumentation

[94] N. Oren, C. Reed and M. Luck, Moving between argumentation frameworks, in: Proc. COMMA, P. Baroni, F. Cerutti,
M. Giacomin and G.R. Simari, eds, Frontiers in Artificial Intelligence and Applications, Vol. 216, IOS Press, 2010, pp.
379–390.

[95] S. Polberg, Understanding the abstract dialectical framework, in: Proc. JELIA, L. Michael and A.C. Kakas, eds, Lecture
Notes in Computer Science, Vol. 10021, Springer, 2016, pp. 430–446.

[96] R. Riveret, On learning abstract argumentation graphs from bivalent statement labellings, in: Proc. ICTAI, IEEE Com-
puter Society, 2016, pp. 190–195.

[97] R. Riveret and G. Governatori, On learning attacks in probabilistic abstract argumentation, in: Proc. AAMAS, C.M.
Jonker, S. Marsella, J. Thangarajah and K. Tuyls, eds, ACM, 2016, pp. 653–661.

[98] H. Strass and S. Ellmauthaler, goDiamond 0.6.6 ICCMA 2017 System Description, 2017.
[99] H. Strass and J.P. Wallner, Analyzing the computational complexity of abstract dialectical frameworks via approximation

fixpoint theory, Artificial Intelligence 226 (2015), 34–74. doi:10.1016/j.artint.2015.05.003.
[100] L.G. Valiant, A theory of the learnable, Communications of the ACM 27(11) (1984), 1134–1142. doi:10.1145/1968.1972.
[101] J.P. Wallner, Structural constraints for dynamic operators in abstract argumentation, in: Proc. COMMA, S. Modgil, K.

Budzynska and J. Lawrence, eds, Frontiers in Artificial Intelligence and Applications, Vol. 305, IOS Press, 2018, pp.
73–84.

[102] J.P. Wallner, A. Niskanen and M. Järvisalo, Complexity results and algorithms for extension enforcement in abstract
argumentation, Journal of Artificial Intelligence Research 60 (2017), 1–40. doi:10.1613/jair.5415.

[103] B. Yun, S. Vesic and M. Croitoru, Toward a more efficient generation of structured argumentation graphs, in: Proc.
COMMA, S. Modgil, K. Budzynska and J. Lawrence, eds, Frontiers in Artificial Intelligence and Applications, Vol. 305,
IOS Press, 2018, pp. 205–212.

https://doi.org/10.1016/j.artint.2015.05.003
https://doi.org/10.1145/1968.1972
https://doi.org/10.1613/jair.5415

	Introduction
	Abstract argumentation frameworks
	Argumentation frameworks
	Abstract dialectical frameworks

	Enforcement on argumentation frameworks
	Structural constraints for dynamic operators
	Case study: An enforcement operator for ADFs based on supports
	Case study: An enforcement operator for structured argumentation
	Computational aspects
	Complexity of satisfaction of the structural constraints
	Complexity of support enforcement under admissible semantics
	Complexity of structured enforcement under admissible semantics

	Empirical evaluation of an answer set programming approach to support enforcement
	Implementing support enforcement in ASP for admissible semantics
	Experiments

	Constraints for further operations
	Related work
	Conclusions
	Acknowledgements
	References

