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Abstract. In the current paper, we re-examine the concept of strong admissibility, as was originally introduced by Baroni
and Giacomin. We examine the formal properties of strong admissibility, both in its extension-based and in its labelling-
based form, and analyse the computational complexity of the relevant decision problems. Moreover, we show that strong
admissibility plays a vital role in discussion-based proof procedures for grounded semantics. In particular it allows one to
compare the performance of alternative dialectical proof procedures for grounded semantics, and obtain some remarkable
differences between the Standard Grounded Game and the Grounded Discussion Game.
Keywords: Strong admissibility, grounded semantics, argument games

1. Introduction

Admissibility is generally seen as one of the cornerstones of abstract argumentation theory [19], as
it is the basis of various argumentation semantics [1]. Not only does admissibility appeal to common
intuitions [5], it is also one of the key requirements for obtaining a consistent outcome of instantiated
argumentation formalisms [13,22,25].

Slightly less well-known is the principle of strong admissibility, which was originally introduced in
[3]. The original aim of strong admissibility was to characterise the unique properties of the grounded
extension. It turns out, however, that the concept is also useful for comparing the characteristics of the
different dialectical proof procedures that have been stated in the literature. In particular, the Standard
Grounded Game [21,26] and the Grounded Discussion Game [11] prove membership of the grounded
extension essentially by constructing a strongly admissible labelling where the argument in question is
labelled in. However, as we will see, the Grounded Discussion Game is able to do so in a more efficient
way, requiring a number of steps that is linearly related to the in/out-size of the strongly admissible
labelling,1 whereas the Standard Grounded Game can require a number of steps that is exponentially
related to the in/out-size of the strongly admissible labelling.

The remaining part of the current paper is structured as follows. First, in Section 2 we briefly sum-
marise some of the key concepts of abstract argumentation theory, both in its extension and in its la-
belling based form. In Section 3, we then discuss the extension based version of strong admissibility and
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1With the in/out-size of a labelling Lab, we mean |in(Lab) ∪ out(Lab)|.
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examine its formal properties. In Section 4 we introduce the labelling based version of strong admis-
sibility and show how it relates to its extension based version. In Section 5 we examine the computa-
tional complexity of some of the decision problems related to strong admissibility. In Section 6 we then
re-examine the Standard Grounded Game, and the Grounded Persuasion Game, and show that strong
admissibility plays a vital role in describing the relative efficiency of these games. In Section 7 we then
round off with a discussion of our results and some open research issues.2

2. Formal preliminaries

In the current section, we briefly restate some of the key concepts of abstract argumentation theory, in
both its extension based and labelling based form.

Definition 1. An argumentation framework is a pair (Ar, att) where Ar is a finite set of entities, called
arguments, whose internal structure can be left unspecified, and att a binary relation on Ar. For any
A, B ∈ Ar we say that A attacks B iff (A, B) ∈ att.

Definition 2. Let (Ar, att) be an argumentation framework, A ∈ Ar and Args ⊆ Ar. We define A+ as
{B ∈ Ar | A attacks B}, A− as {B ∈ Ar | B attacks A}, Args+ as ∪{A+ | A ∈ Args}, and Args− as⋃{A− | A ∈ Args}. Args is said to be conflict-free iff Args ∩ Args+ = ∅. Args is said to defend A iff
A− ⊆ Args+. The characteristic function F : 2Ar → 2Ar is defined as F(Args) = {A | Args defends A}.
Definition 3. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is said to be:

• an admissible set iff Args is conflict-free and Args ⊆ F(Args)
• a complete extension iff Args is conflict-free and Args = F(Args)
• a grounded extension iff Args is the smallest (w.r.t. ⊆) complete extension
• a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

If Args is a conflict-free set, then its down-admissible set (written as Args↓) is defined as the (unique)
biggest (w.r.t. ⊆) admissible subset of Args.3

The above definitions essentially follow the extension based approach of [19].4 It is also possible to
define the key argumentation concepts in terms of argument labellings [8,15].

Definition 4. Let (Ar, att) be an argumentation framework. An argument labelling is a partial function
Lab : Ar → {in,out,undec}. An argument labelling is called an admissible labelling iff Lab is a
total function and for each A ∈ Ar it holds that:

• if Lab(A) = in then for each B that attacks A it holds that Lab(B) = out
• if Lab(A) = out then there exists a B that attacks A such that Lab(B) = in

2This paper is an extended and thoroughly revised version of work that was presented at COMMA 2014 [10] and TAFA
2015 [11]. In particular, we have rewritten some of the previously unpublished proofs (of Theorem 1, Theorem 2, Theorem
3, Theorem 6 and Theorem 7) to take advantage of a new technical result (Lemma 2). Moreover, we have added results on
computational complexity (Section 5) and we have decided to include the Grounded Discussion Game [11] instead of the
outdated Grounded Discussion Game [18].

3The well-definedness of the down-admissible set follows from [16], where this concept is defined in its labellings form,
together with the equivalence between extensions and labellings [15].

4In [19] a preferred extension is defined as a maximal admissible set, instead of as a maximal complete extension, but it can
be shown that these are equivalent.
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Lab is called a complete labelling iff it is an admissible labelling and for each A ∈ Ar it also holds that:

• if Lab(A) = undec then there is a B that attacks A such that Lab(B) = undec, and for each B

that attacks A such that Lab(B) 
= undec it holds that Lab(B) = out

As a labelling is essentially a function, we sometimes write it as a set of pairs. Also, if Lab is a
labelling, we write in(Lab) for {A ∈ Ar | Lab(A) = in}, out(Lab) for {A ∈ Ar | Lab(A) =
out} and undec(Lab) for {A ∈ Ar | Lab(A) = undec}. As a labelling is also a partition of the
arguments into sets of in-labelled arguments, out-labelled arguments and undec-labelled arguments,
we sometimes write it as a triplet (in(Lab),out(Lab),undec(Lab)).

Definition 5 ([16]). Let Lab and Lab′ be argument labellings of argumentation framework (Ar, att).
We say that Lab � Lab′ iff in(Lab) ⊆ in(Lab′) and out(Lab) ⊆ out(Lab′). Lab 

Lab′ is defined as (in(Lab) ∩ in(Lab′),out(Lab) ∩ out(Lab′), Ar \ ((in(Lab) ∩ in(Lab′)) ∪
(out(Lab) ∩ out(Lab′)))). Lab � Lab′ is defined as ((in(Lab) \ out(Lab′)) ∪ (in(Lab′) \
out(Lab)), (out(Lab)\in(Lab′))∪(out(Lab′)\in(Lab)), (in(Lab)∩out(Lab′)∪(out(Lab)∩
in(Lab′)) ∪ (undec(Lab) ∩ undec(Lab′)))).

We say that Lab1 is a sublabelling of Lab2 (or alternatively, that Lab2 is a superlabelling of Lab2) iff
Lab1 � Lab2. If Lab is a total labelling (i.e. a total function), then its down-admissible labelling [16]
(written as Lab↓) is defined as the (unique) biggest (w.r.t. �) admissible sublabelling of Lab.

Definition 6. Let Lab be a complete labelling of argumentation framework (Ar, att). Lab is said to be

• a grounded labelling iff Lab is the (unique) smallest (w.r.t. �) complete labelling
• a preferred labelling iff Lab is a maximal (w.r.t. �) complete labelling

Given an argumentation framework (Ar, att) we define two functions Args2Lab and Lab2Args (to
translate a conflict-free set of arguments to an argument labelling, and to translate an argument labelling
to a set of arguments, respectively) such that Args2Lab(Args) = (Args,Args+, Ar \ (Args ∪Args+))

and Lab2Args(Lab) = in(Lab). It has been proven [15] that if Args is an admissible set (resp. a
complete, grounded or preferred extension) then Args2Lab(Args) is an admissible labelling (resp. a
complete, grounded or preferred labelling), and that if Lab is an admissible labelling (resp. a complete,
grounded or preferred labelling) then Lab2Args(Lab) is an admissible set (resp. a complete, grounded
or preferred extension). Moreover, when the domain and range of Args2Lab and Lab2Args are re-
stricted to complete extensions and complete labellings they become injective functions and each other’s
reverses, which implies that the complete extensions (resp. the grounded extension and the preferred ex-
tensions) and the complete labellings (resp. the grounded labelling and the preferred labellings) are
one-to-one related [15].

3. Strongly admissible sets

The concept of strong admissibility was first introduced by Baroni and Giacomin [3], using the notion
of strong defence.

Definition 7 ([3]). Let (Ar, att) be an argumentation framework, A ∈ Ar and Args ⊆ Ar be a set
of arguments. A is strongly defended by Args iff each attacker B ∈ Ar of A is attacked by some
C ∈ Args \ {A} such that C is strongly defended by Args \ {A}.
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Fig. 1. An example of an argumentation framework.

Baroni and Giacomin say that a set Args satisfies the strong admissibility property iff it strongly
defends each of its arguments [3]. However, it is also possible to define strong admissibility without
having to refer to strong defence.

Definition 8. Let (Ar, att) be an argumentation framework. Args ⊆ Ar is strongly admissible iff every
A ∈ Args is defended by some Args′ ⊆ Args \ {A} which in its turn is again strongly admissible.

To illustrate the concept of strong admissibility, consider the argumentation framework of Fig. 1. Here,
the strongly admissible sets are ∅, {A}, {A, C}, {A, C, F }, {D}, {A, D}, {A, C, D}, {D, F }, {A, D, F }
and {A, C, D, F }, the latter also being the grounded extension. As an example, the set {A, C, F } is
strongly admissible as A is defended by ∅, C is defended by {A} and F is defended by {A, C}, each of
which is a strongly admissible subset of {A, C, F } not containing the argument it defends. Please notice
that although the set {A, F } defends argument C in {A, C, F }, it is in its turn not strongly admissible
(unlike {A}). Hence the requirement in Definition 8 for Args′ to be a subset of Args \ {A}. We also
observe that although {C, H } is an admissible set, it is not a strongly admissible set, since no subset of
{C, H } \ {H } defends H .

It can be proved that a set is strongly admissible (in the sense of Definition 8) iff it strongly defends
each of its arguments (in the sense of Definition 7). In order to do so, we need the following two lemmas.

Lemma 1. Let A ∈ Ar and Args1,Args2 ⊆ Ar such that A ∈ Args1 and Args1 ⊆ Args2. If A is
strongly defended by Args1 then A is also strongly defended by Args2.

Proof. By induction over the number of arguments in Args2. Let i = |Args2|.
basis For i = 1 it holds that |Args2| = 1, which together with A ∈ Args1 and Args1 ⊆ Args2 implies

that Args1 = Args2 = {A}. From Args1 = Args2 it trivially holds that if A is strongly defended
by Args1 then A is also strongly defended by Args2.

step Suppose the lemma holds for some i � 1. We now prove it also holds for i + 1. Let A be strongly
defended by Args1. We need to prove that A is also strongly defended by Args2 with |Args2| =
i + 1. According to Definition 7 this would be the case if each attacker B ∈ Ar of A is attacked by
some C ∈ Args2 \ {A} such that C is strongly defended by Args2 \ {A}. The fact that A is strongly
defended by Args1 means that each attacker B ∈ Ar of A is attacked by some C ∈ Args1 \ {A}.
From the fact that Args1 ⊆ Args2 it follows that Args1\{A} ⊆ Args2\{A} so C ∈ Args2\{A}. We
now need to prove that C is strongly defended by Args2 \{A}. From the fact that |Args2 \{A}| = i

we can apply the induction hypothesis to obtain that if C is strongly defended by Args1 \ {A}
(which it is) C is also strongly defended by Args2 \ {A}. �

Lemma 2. Let Args ⊆ Ar. Let H 0 = ∅ and Hi+1 = F(H i)∩Args (i � 0). For each i � 0 it holds that

(1) Hi ⊆ Hi+1

(2) Hi is strongly admissible
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(3) Hi strongly defends each of its arguments

Proof.

(1) Proof by induction over i.

basis For i = 0 it holds that Hi ⊆ Hi+1 because H 0 = ∅ ⊆ H 1.
step Suppose that for some i � 0 it holds that Hi ⊆ Hi+1. From the fact that F is a monotonic

function, it follows that F(H i) ⊆ F(H i+1), from which it follows that F(H i) ∩ Args ⊆
F(H i+1) ∩ Args. That is, Hi+1 ⊆ Hi+2.

(2) Proof by induction over i.

basis For i = 0 it holds that Hi = H 0 = ∅ which is trivially strongly admissible.
step Suppose that for each i � 0 it holds that each Hj (j � i) is strongly admissible. We now

prove that Hi+1 is also strongly admissible. Let A ∈ Hi+1. That is, A ∈ F(H i) ∩ Args. Let
j be the smallest number such that A ∈ Hj (this implies that j � i + 1 and A /∈ Hj−1). The
fact that A ∈ Hj means that A ∈ F(Hj−1) ∩ Args, so A is defended by Hj−1. From point 1
above, it follows that Hj−1 ⊆ Hi+1, which together with the fact that A /∈ Hj−1 implies that
Hj−1 ⊆ Hi+1 \ {A}. This, together with the fact that Hj−1 is strongly admissible (induction
hypothesis), means the conditions of Definition 8 (take Hj−1 for Args′) are satisfied.

(3) Proof by induction over i.

basis For i = 0 it holds that Hi = H 0 = ∅ which trivially strongly defends each of its arguments.
step Suppose that for some i � 0 it holds that each Hj (j � i) strongly defends each of its

arguments. We now prove that Hi+1 also strongly defends each of its arguments. Let A ∈
Hi+1. Let j be the smallest number such that A ∈ Hj (this implies that j � i + 1 and
A /∈ Hj−1). From A ∈ Hj it follows that A ∈ F(Hj−1) ∩ Args, so each attacker B of A is
attacked by some C ∈ Hj−1 such that C is strongly defended by Hj−1 (induction hypothesis).
From point 1 above, it follows that Hj−1 ⊆ Hi+1, which together with A /∈ Hj−1 implies that
Hj−1 ⊆ Hi+1 \{A}. So from the fact that each attacker B of A is attacked by some C ∈ Hj−1

such that C is strongly defended by Hj−1, it follows that each attacker B of A is attacked by
some C ∈ Hi+1 (as Hj−1 ⊆ Hi+1) such that C is strongly defended by Hi+1\{A} (Lemma 1,
together with Hj−1 ⊆ Hi+1 \ {A}). �

Theorem 1. Let Args ⊆ Ar and let Hi (i � 0) be as in Lemma 2. Args is strongly admissible iff⋃∞
i=0 Hi = Args.

Proof.
“⇒”:
Suppose Args is strongly admissible. We need to show that

(1)
⋃∞

i=0 Hi ⊆ Args. This follows directly from the definition of H 0 and Hi+1.
(2) Args ⊆ ⋃∞

i=0 Hi . Let Args1 = Args. Suppose towards a contradiction that Args1 �
⋃∞

i=0 Hi .
This means there is an A1 ∈ Args1 such that A1 /∈ ⋃∞

i=0 Hi . The fact that Args1 is strongly
admissible implies that A1 is defended by some Args2 ⊆ Args1 \ {A1} which in its turn is again
strongly admissible. Can it be the case that Args2 ⊆ ⋃∞

i=0 Hi? If so, there must be an i such that
Args2 ⊆ Hi . But as Args2 defends A1, it would follow that A1 ∈ F(H i), which together with
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the fact that A1 ∈ Args implies that A1 ∈ F(H i) ∩ Args, so A1 ∈ Hi+1 so A1 ∈ ⋃∞
i=0 Hi .

Contradiction. So Args2 �
⋃∞

i=0 Hi .
This means there is an A2 ∈ Args2 such that A2 /∈ ⋃∞

i=0 Hi . The fact that Args2 is strongly
admissible implies that A2 is defended by some Args3 ⊆ Args2 \ {A2} which in its turn is again
strongly admissible. Can it be the case that Args3 ⊆ ⋃∞

i=0 Hi? If so, there must be an i such that
Args3 ⊆ Hi . But as Args3 defends A2, it would follow that A2 ∈ F(H i) which together with
the fact that A2 ∈ Args implies that A2 ∈ F(H i) ∩ Args, so A2 ∈ Hi+1 so A2 ∈ ⋃∞

i=0 Hi .
Contradiction. So Args3 �

⋃∞
i=1 Hi .

Using similar reasoning as in the above two paragraphs, we observe that there exists a sequence
Args1,Args2, . . . ,Argsn and a sequence A1, A2, . . . , An where

(a) for each j ∈ {1 . . . n − 1} Argsj+1 � Argsj (because Argsj+1 ⊆ Argsj \ {Aj })
(b) for each j ∈ {1 . . . n} Argsj �

⋃∞
i=0 Hi

(c) Args1 = Args
(d) Argsn = ∅ (because Args1 = Args is finite, and we lose at least one argument when going

from Argsj to Argsj+1 as shown in point 2a)

From 2b and 2d it follows that Argsn = ∅ �
⋃∞

i=0 Hi . Contradiction. Therefore Args ⊆ ⋃∞
i=0 Hi .

“⇐”:
Suppose

⋃∞
i=0 Hi = Args. Lemma 2 states that each Hi (i � 0) is strongly admissible. Therefore⋃∞

i=0 Hi is also strongly admissible. As
⋃∞

i=0 Hi = Args it directly follows that Args is strongly
admissible. �

Theorem 2. Let Args ⊆ Ar and let Hi (i � 1) be as in Lemma 2. Args strongly defends each of its
arguments iff

⋃∞
i=0 Hi = Args.

Proof.
“⇒”:
Suppose Args strongly defends each of its arguments. We need to show that

(1)
⋃∞

i=0 Hi ⊆ Args. This follows directly from the definition of H 0 and Hi+1.
(2) Args ⊆ ⋃∞

i=0 Hi . Suppose towards a contradiction that Args �
⋃∞

i=0 Hi . This means there is
an A1 ∈ Args such that A1 /∈ ⋃∞

i=0 Hi . As Args strongly defends each of its arguments, Args
strongly defends A1.
The fact that Args strongly defends A1 means that each attacker B1 of A1 is attacked by some
A2 ∈ Args \ {A1} such that A2 is strongly defended by Args \ {A1}. If each such A2 were an
element of

⋃∞
i=0 Hi (so of some Hj ) then A1 would be defended by Hj , so A1 ∈ Hj+1, so

A1 ∈ ⋃∞
i=0 Hi . Therefore, A2 /∈ ⋃∞

i=0 Hi for at least one A2 ∈ Args \ {A1}.
The fact that Args \ {A1} strongly defends A2 means that each attacker B2 of A2 is attacked by
some A3 ∈ Args \ {A1, A2} such that A3 is strongly defended by Args \ {A1, A2}. If each such A3

were an element of
⋃∞

i=0 Hi (so of some Hj ) then A2 would be defended by Hj , so A2 ∈ Hj+1,
so A2 ∈ ⋃∞

i=0 Hi . Therefore, A3 /∈ ⋃∞
i=0 Hi for at least one A3 ∈ Args \ {A1, A2}.

Using similar reasoning as in the above two paragraphs, one can identify an infinite sequence
of different arguments A1, A2, A3, . . . such that for each Ai (i � 1) it holds that Ai ∈ Args \
{A1 . . . Ai−1}. However, since Args contains only a finite number of arguments, this cannot be the
case. Contradiction.
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“⇐”:
Suppose that

⋃∞
i=0 Hi = Args. Lemma 2 states that each Hi (i � 0) strongly defends each of its

arguments. Therefore
⋃∞

i=0 Hi strongly defends each of its arguments. As
⋃∞

i=0 Hi = Args it directly
follows that Args strongly defends each of its arguments. �

Theorem 3. Let (Ar, att) be an argumentation framework and Args ⊆ Ar. Args is a strongly admissible
set (in the sense of Definition 8) iff each A ∈ Args is strongly defended by Args (in the sense of
Definition 7).

Proof. This follows directly from Theorem 1 and Theorem 2. �

Now that the equivalence between the two ways of defining strongly admissible sets has been proven,
the next step is to examine some of the formal properties of strong admissibility. We start with conflict-
freeness and admissibility.

Theorem 4. Let (Ar, att) be an argumentation framework and let Args ⊆ Ar be a strongly admissible
set. It holds that:

• Args is conflict-free
• Args is admissible

Proof. Conflict-freeness follows from [3, Proposition 51], together with Theorem 3. Admissibility fol-
lows from conflict-freeness, together with the fact that every strongly admissible set defends each of its
arguments. �

Baroni and Giacomin prove that the grounded extension is the unique biggest (w.r.t. ⊆) strongly ad-
missible set [3].5 However, it can additionally be proved that the strongly admissible sets form a lattice,
of which the grounded extension is the top element and the empty set is the bottom element. To do so,
we need two lemmas.

Lemma 3. If Args1 and Args2 are strongly admissible sets, then Args1 ∪ Args2 is also a strongly
admissible set.

Proof. Let Args1 and Args2 be strongly admissible sets. Let A ∈ Args1 ∪ Args2. If A ∈ Args1 then A

is defended by some Args′
1 ⊆ Args1 \ {A} which in its turn is strongly admissible. If A ∈ Args2 then

A is defended by some Args′
2 ⊆ Args2 \ {A} which in its turn is strongly admissible. In both cases, we

have that A is defended by some Args′ ⊆ (Args1 ∪Args2)\ {A} which in its turn is strongly admissible.
Therefore, Args1 ∪ Args2 is a strongly admissible set in the sense of Definition 8. �

Lemma 4. Each admissible set has a unique biggest (w.r.t. ⊆) strongly admissible subset.

Proof. We first observe that each admissible set Args has at least one strongly admissible subset: the
empty set. As we consider only finite argumentation frameworks, this implies that there exists at least

5Hence, each strongly admissible set is an admissible set that is contained in the grounded extension. The converse, however,
does not hold. For instance, in Fig. 1, {F } is an admissible set that is contained in the grounded extension, but it is not a strongly
admissible set.
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one maximal (w.r.t. ⊆) strongly admissible subset of Args. We now proceed to show that this maximal
strongly admissible subset is unique. Let Args1 and Args2 be maximal strongly admissible subsets of
Args. Now consider Args1 ∪ Args2. From Lemma 3 it follows that this is again a strongly admissible
set. From the fact that Args1 and Args2 are maximal strongly admissible subsets, it follows that if
Args1 ⊆ Args1 ∪ Args2 then Args1 = Args1 ∪ Args2, and that if Args2 ⊆ Args1 ∪ Args2 then
Args2 = Args1 ∪ Args2, so we obtain that Args1 = Args1 ∪ Args2 and Args2 = Args1 ∪ Args2 so
Args1 = Args2. �

If Args is an admissible set, we write Args⇓ for its biggest (w.r.t. ⊆) strongly admissible subset.
It turns out that the strongly admissible sets of an argumentation framework form a lattice.6

Theorem 5. Let (Ar, att) be an argumentation framework. The strongly admissible sets of this frame-
work form a lattice (w.r.t. ⊆).

Proof. We need to prove that each two strongly admissible sets have a supremum (a least upper bound)
and a infimum (a greatest lower bound).

supremum Let Args1 and Args2 be two strongly admissible sets. From Lemma 3 it follows that Args1∪
Args2 is again a strongly admissible set. Since, by definition, Args1 ⊆ Args1∪Args2 and Args2 ⊆
Args1 ∪Args2, it follows that Args1 ∪Args2 is an upper bound. Moreover, it is also a least upper
bound, since any proper subset of Args1 ∪ Args2 will not be a superset of Args1 and Args2.

infimum Let Args1 and Args2 be two strongly admissible sets. Let Args3 be Args1 ∩ Args2. From the
fact that Args3 is conflict-free, it follows that it has a (unique) biggest admissible subset, which
we will refer to as Args′

3. From Lemma 4 it follows that Args′
3 has a (unique) biggest strongly

admissible subset, which we will refer to as Args′′
3. We now prove that Args′′

3 is an infimum of
Args1 and Args2.

lower bound From the fact that Args′′
3 ⊆ Args′

3 ⊆ Args3 = Args1 ∩ Args2 it follows that
Args′′

3 ⊆ Args1 and Args′′
3 ⊆ Args2.

greatest lower bound Let Args′′′
3 be a strongly admissible admissible set such that Args′′′

3 ⊆
Args1 and Args′′′

3 ⊆ Args2. Then, by definition, Args′′′
3 ⊆ Args3. Since Args′′′

3 is admissible,
it follows that Args′′′

3 ⊆ Args′
3 (since Args′

3 is the biggest admissible subset of Args3). Since
Args′′′

3 is a strongly admissible subset of Args′
3 it follows that Args′′′

3 ⊆ Args′′
3 (since Args′′

3
is the biggest strongly admissible subset of Args′

3). �

In essence, if Args1 and Args2 are strongly admissible sets, then Args1∪Args2 is their supremum, and
(Args1 ∩Args2)↓⇓ is their infimum. By forming a lattice, with the empty set as its bottom element and
the grounded extension as its top element, the strongly admissible sets differ from the admissible sets,
which form a semi-lattice with the empty set as its bottom element, and the preferred extensions as its
top elements [19]. It also distinguishes the strongly admissible sets from the complete extensions, which
form a semi-lattice with the grounded extension as its bottom element and the preferred extensions as its
top elements [19].

As an example, a Hasse diagram of the strongly admissible sets of the argumentation framerwork of
Fig. 1 is shown in Fig. 2. Notice that (as specified by Theorem 5) the strongly admissible sets form a

6We recall that a lattice is a partial order such that each two elements have both a greatest lower bound and a least upper
bound. For an ordering to be a semi-lattice only one of these two conditions needs to be met.
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Fig. 2. The strongly admissible sets of the argumentation framework of Fig. 1.

Fig. 3. The complete extensions of the argumentation framework of Fig. 1.

lattice with the empty set as its bottom element and the grounded extension as its top element. A Hasse
diagram of the complete extensions of the argumentation framework of Fig. 1 is shown in Fig. 3. Notice
that (as indicated in [19]) the complete extensions form a semi-lattice with the grounded extension as its
bottom element and the preferred extensions as its top elements.

4. Strongly admissible labellings

Argument labellings [8,15] have become a popular approach for purposes such as argumentation al-
gorithms [9,21,23], argument-based judgment aggregation [16,17] and issues of measuring distance of
opinion [6]. In the current section, we develop a labelling account of strong admissibility, which will
subsequently be used to analyse some of the existing discussion games for grounded semantics.

To define a strongly admissible labelling, we first have to introduce the concept of a min–max num-
bering.7

7The intuition behind the min–max number of an argument is that of the game-theoretic length of the path (consisting of
alternately in and out labelled arguments) from the argument back to an unattacked ancestor argument. The player selecting
the in labelled arguments aims to make the path as short as possible whereas the player selecting the out labelled arguments
aims to make the path as long as possible.
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Definition 9. Let Lab be an admissible labelling of argumentation framework (Ar, att). A min–max
numbering is a total function MMLab : in(Lab) ∪ out(Lab) → N ∪ {∞} such that for each A ∈
in(Lab) ∪ out(Lab) it holds that:

• if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and Lab(B) = out}) + 1
(with max(∅) defined as 0)

• if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A and Lab(B) = in}) + 1
(with min(∅) defined as ∞)

To illustrate the concept of a min–max numbering, consider again the argumentation framework of
Fig. 1. Here, the admissible labelling Lab1 = ({A, C, F, G}, {B, E, H }, {D}) has min–max numbering
{(A : 1), (B : 2), (C : 3), (E : 4), (F : 5), (G : ∞), (H : ∞)}, and the admissible labelling Lab2 =
({A, C, D, F }, {B, E}, {G, H }) has min–max numbering {(A : 1), (B : 2), (C : 3), (D : 1), (E :
2), (F : 3)}.
Theorem 6. Every admissible labelling has a unique min–max numbering.

Proof. Let Lab be an admissible labelling, and let Args = Lab2Args(Lab). Now consider the se-
quence H 0, H 1, H 2, . . . as defined in Lemma 2. For each A ∈ in(Lab) we define MMLab(A) as{

2i − 1, where i is the lowest number such that A ∈ Hi if
⋃∞

i=0 Hi contains A

∞ if
⋃∞

i=0 Hi does not contain A

For each A ∈ out(Lab) we define MMLab(A) as{
2i, where i is the lowest number such that Hi attacks A if

⋃∞
i=0 Hi attacks A

∞ if
⋃∞

i=0 Hi does not attack A

We first prove that MMLab is a correct min–max numbering. For this, we need to prove the following
two properties from Definition 9:

• if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and Lab(B) = out}) + 1
Let A ∈ Ar such that Lab(A) = in. We distinguish two cases:

(1) A ∈ ⋃∞
i=0 Hi

In that case, MMLab(A) = 2i − 1, where i is the lowest number such that A ∈ Hi . We
first observe that i � 1 (otherwise A /∈ Hi = H 0 = ∅). In case i = 1 it holds that A ∈
F(H 0) ∩Args, so A is defended by ∅ so A does not have any attackers, so max(MMLab(B) |
B attacks A and Lab(B) = out}) + 1 = 0 + 1 = 1, which is indeed equal to 2i − 1 for i = 1.
In the remaining part of this proof we will therefore focus on the case where i � 2. In that case
A ∈ F(H i−1) ∩ Args so A is defended by Hi−1, which means that each B that attacks A is
attacked by some C ∈ Hi−1, so Hi−1 attacks B. As B is labelled out (as Lab is an admissible
labelling) from the fact that Hi−1 attacks B it follows that each out labelled attacker of A has a
min–max number of at most 2(i−1). However, the fact that A /∈ Hi−1 (as i is the lowest number
such that A ∈ Hi) implies that there exists at least one out labelled attacker of A with min–
max number of exactly 2(i − 1). Therefore max({MMLab(B) | B attacks A and Lab(B) =
out}) + 1 = 2(i − 1) + 1 = 2i − 1 so A is numbered correctly.
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(2) A /∈ ⋃∞
i=0 Hi

In that case, MMLab(A) = ∞. From the fact that A /∈ ⋃∞
i=0 Hi it follows that A /∈ Hi

for any i � 1, which means that A /∈ F(H i−1) ∩ Args. As A ∈ Args, it follows that A /∈
F(H i−1) for any i � 1. This means that there exists a B that attacks A and is not attacked
by Hi−1 (for any i). So B is not attacked by

⋃∞
i=0 Hi . It also holds that B is labelled out,

as Lab is an admissible labelling. Hence, B is numbered ∞. Therefore max({MMLab(B) |
B attacks A and Lab(B) = out}) + 1 = ∞ + 1 = ∞ so A is numbered correctly.

• if Lab(A) = out then MMLab(A) = min({MMLab(A) | B attacks A and Lab(B) = in}) + 1
Let A ∈ Ar such that Lab(A) = out. We distinguish two cases:

(1)
⋃∞

i=0 Hi attacks A

In that case, MMLab(A) = 2i, where i is the lowest number such that Hi attacks A. We
first observe that i � 1 (otherwise i = 0 so Hi = H 0 = ∅ which would not be able to
attack A). The fact that Hi attacks A means that there is some B ∈ Hi that attacks A such
that Lab(B) = in (as B ∈ Args because Hi = F(H i−1) ∩ Args). From this, it follows
that the min–max number of B is at most 2i − 1. The fact that Hi−1 does not attack A (as
i is the lowest number such that Hi attacks A) means there is no B ∈ Hi−1 that attacks A

such that Lab(B) = in. Therefore, it follows that no in labelled attacker of A can have
a min–max number of 2(i − 1) − 1 = 2i − 3 or lower, which together with the fact that
the min–max number of any in labelled argument has to be odd means that any in labelled
attacker of A has to be at least 2i − 1. This implies that the min–max number of B is precisely
2i − 1. We have therefore obtained that there is at least one in labelled attacker of A that is
numbered 2i−1, and that every in labelled attacker of A is numbered at least 2i−1. Therefore,
MMLab(A) = min({MMLab(A) | B attacks A and Lab(B) = in})+1 = (2i −1)+1 = 2i

so A is numbered correctly.
(2)

⋃∞
i=0 Hi does not attack A

In that case, MMLab(A) = ∞. From the fact that
⋃∞

i=0 Hi does not attack A it follows
that for each attacker B of A it holds that B /∈ ⋃∞

i=0 Hi . This implies that each in labelled
attacker B of A has a min–max number of ∞. Also, A has at least one such in labelled at-
tacker (as Lab is an admissible labelling). Therefore MMLab(A) = min({MMLab(A) |
B attacks A and Lab(B) = in}) + 1 = ∞ so A is numbered correctly.

Now that we have proved that each admissible labelling has a min–max numbering, the next thing to
prove is that this min–max numbering is unique. Let MM1

Lab and MM2
Lab be two min–max number-

ings of the same admissible labelling Lab. We now prove, by strong induction over i � 1, that for each
A ∈ Ar, MM1

Lab = i iff MM2
Lab = i.

basis i = 1
“⇒”: Let MM1

Lab = 1. This can only be the case if A is labelled in and does not have any
attackers. This means that MM2

Lab is also 1.
“⇐”: Similar to “⇒”.

step Suppose that for each j ∈ {1 . . . i} it holds that MM1
Lab(A) = j iff MM2

Lab(A) = j .
“⇒”: Let MM1

Lab(A) = i + 1. We distinguish two cases:

(1) Lab(A) = in. In that case, i + 1 = MM1
Lab(A) = max({MM1

Lab(B) | B attacks A and
Lab(B) = out}) + 1 so i = max({MM1

Lab(B) | B attacks A and Lab(B) = out}). This
implies that for each out labelled attacker B of A, it holds that MM1

Lab(B) is at most i.
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Hence, we can apply the induction hypothesis and infer that MM2
Lab(B) = MM1

Lab(B).
Therefore, MM2

Lab(A) = max{MM2
Lab | B attacks A and Lab(B) = out}) + 1 =

max{MM1
Lab | B attacks A and Lab(B) = out} + 1 = i + 1.

(2) Lab(A) = out. In that case i + 1 = MM1
Lab(A) = min({MM1

Lab(B) | B attacks A and
Lab(B) = in}) + 1 so i = min{MM1

Lab(B) | B attacks A and Lab(B) = in}). This
means there is at least one in labelled B that attacks A such that MM1

Lab(B) = i. From
the induction hypothesis we infer that MM2

Lab(B) = i. Furthermore, for each j < i

the induction hypothesis tells us that MM1
Lab(C) = j iff MM2

Lab(C) = j . There-
fore, from the fact that no in labelled attacker of A is numbered less than i by MM1

Lab

it follows that also no in labelled attacker of A is numbered less than i by MM2
Lab.

Therefore, MM2
Lab(A) = min({MM2

Lab(B) | B attacks A and Lab(B) = in}) + 1 =
min{MM1

Lab(B) | B attacks A and Lab(B) = in}) + 1 = i + 1.

“⇐”: Similar to “⇒”.

From the thus proved fact that for each 1 � 1, MM1
Lab(A) = i iff MM2

Lab(A) = i, together with the
fact that each min–max number has to be in (N \ {0}) ∪ {∞} it follows that also MM1

Lab(A) = ∞ iff
MM2

Lab(A) = ∞. Hence, we have that for each A ∈ Ar, MM1
Lab(A) = MM2

Lab(A), so MM1
Lab =

MM2
Lab. �

Using the concept of a min–max numbering, we can proceed to define the concept of a strongly
admissible labelling.

Definition 10. A strongly admissible labelling is an admissible labelling whose min–max numbering
yields natural numbers only (so no argument is numbered ∞).

From Definition 10 it directly follows that every strongly admissible labelling is also an admissible
labelling. Also, there exists a clear connection between strongly admissible labellings and strongly ad-
missible sets, as one can be converted into the other.

Theorem 7. Let (Ar, att) be an argumentation framework.

• for every strongly admissible set Args ⊆ Ar, it holds that Args2Lab(Args) is a strongly admissi-
ble labelling

• for every strongly admissible labelling Lab, it holds that Lab2Args(Lab) is a strongly admissible
set

Proof.

• Let Args be a strongly admissible set. This means that
⋃∞

i=0 Hi = Args. The procedure specified
in the proof of Theorem 6 makes sure that every argument in Hi (i � 0) is numbered with a
natural number (note: each such argument is labelled in). As

⋃∞
i=0 Hi = Args it follows that

each argument in Args (that is, each in labelled argument) is numbered with a natural number. It
then follows (from Definition 9) that also each out labelled argument is numbered with a natural
number. This means that no argument is numbered ∞, thus satisfying the condition of Definition 10.

• Let Lab be a strongly admissible labelling. This means that each in or out labelled argument
is numbered with a natural number. As the min–max number of Lab can be constructed using
the procedure explained in the proof of Theorem 6, the fact that each in labelled argument A is
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assigned a natural number means that for each A ∈ Args there is an i such that A ∈ Hi . This
means that Args ⊆ ⋃∞

i=0 Hi . This, together with the fact that Hi ⊆ Args for each i � 0, implies
that Args = ⋃∞

i=0 Hi which means that Args is a strongly admissible set. �

Please notice that strongly admissible labellings and strongly admissible sets are not one-to-
one related; instead, they are many-to-one related. As an example, in the argumentation frame-
work of Fig. 1 the strongly admissible set {A, C} is related to two strongly admissible labellings:
({A, C}, {B, E}, {D, F, G, H }) and ({A, C}, {B}, {D, E, F, G, H }).

The fact that strongly admissible sets and strongly admissibe labellings are not one-to-one related
unfortunately means that some of the results for strongly admissible sets (for instance Theorem 5) do
not automatically carry over to strongly admissible labellings. Instead, they need to be proved separately.

Lemma 5. If Lab1 and Lab2 are strongly admissible labellings, then Lab1 � Lab2 is also a strongly
admissible labelling.

Proof. Let Args1 = Lab2Args(Lab1) and Args2 = Lab2Args(Lab2). From Theorem 7 it then
follows that Args1 and Args2 are strongly admissible sets, hence (Lemma 3) Args1 ∪ Args2 is also a
strongly admissible set. Let Lab3 = Args2Lab(Args1 ∪Args2). From Theorem 7 it follows that Lab3

is a strongly admissible labelling. Let MMLab3 be the min–max numbering of this strongly admissible
labelling. How does Lab3 compare with Lab′

3 = Lab1 �Lab2? We start with making the following thee
observations.

• Lab3 is an admissible labelling.
This is because Lab3 is a strongly admissible labelling.

• Lab′
3 is an admissible labelling.

From the fact that Args1 ∪ Args2 is a strongly admissible set, it follows that Args1 ∪ Args2
is conflict-free, so Args1 and Args2 do not attack each other. This implies that in(Lab1) ∩
out(Lab2) = ∅ and in(Lab2)∩out(Lab1) = ∅, which means that Lab1 �Lab2 = (in(Lab1)∪
in(Lab2),out(Lab1) ∪ out(Lab2),undec(Lab1) ∩ undec(Lab2)). That is, we obtain that
in(Lab′

3) = in(Lab1) ∪ in(Lab2) and that out(Lab′
3) = out(Lab1) ∪ out(Lab2). Hence,

each argument that is labelled in by Lab′
3 has all its attackers labelled out by Lab′

3 (this folows
from the fact that Lab1 and Lab2 are admissible labellings) and each argument that is labelled out
by Lab′

3 has an attacker that is labelled in by Lab′
3 (which again follows from the fact that Lab1

and Lab2 are admissible labellings). This means that Lab′
3 is an admissible labelling.

• in(Lab3) = in(Lab′
3).

In the previous point, it was observed that in(Lab′
3) = in(Lab1) ∪ in(Lab2). As we have

that in(Lab1) = Args1 (as Args1 = Lab2Args(Lab1)) and in(Lab2) = Args2 (as Args2 =
Lab2Args(Lab2)) it holds that in(Lab′

3) = Args1 ∪ Args2 (as in(Lab′
3) = in(Lab1) ∪

in(Lab2) as observed in the previous point). As in(Lab3) = Args1 ∪ Args2 (as Lab3 =
Args2Lab(Args1 ∪ Args2)) we obtain that in(Lab3) = in(Lab′

3).

We define the min–max numbering MMLab′
3

of Lab′
3 such that MMLab′

3
(A) = MMLab3(A) for each

A ∈ in(Lab′
3) ∪ out(Lab′

3). We now prove that MMLab′
3

is a correct min–max numbering. For this,
we need to show two things:

• if Lab′
3(A) = in then MMLab′

3
(A) = max({MMLab′

3
(B) | B attacks A and Lab′

3(B) =
out}) + 1
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As Lab′
3 and Lab3 are both admissible labellings, it holds that all attackers of an in labelled

argument are labelled out. This implies that argument A, which is labelled in by Lab′
3 and

is therefore also labelled in by Lab3 (as in(Lab3) = in(Lab′
3)) has the same out la-

belled attackers in both Lab′
3 and Lab3. As the out labelled attackers of A are numbered the

same by MMLab′
3

as by MMLab3 we have that {MMLab′
3
(B) | B attacks A and Lab′

3(B) =
out} = {MMLab3(B) | B attacks A and Lab3(B) = out}. This, together with the fact that
MMLab3(A) = max({MMLab3(B) | B attacks A and Lab3(B) = out}) + 1 (as MMLab3

is a correct min–max numbering) and the fact that MMLab′
3
(A) = MMLab3(A) implies that

MMLab′
3
(A) = max({MMLab′

3
(B) | B attacks A and Lab′

3(B) = out}) + 1.
• if Lab′

3(A) = out then MMLab′
3
(A) = min({MMLab′

3
(B) | B attacks A and Lab′

3(B) =
in}) + 1
As in(Lab3) = in(Lab′

3) it holds that the out labelled argument A has the same in la-
belled attackers in both Lab3 and Lab′

3. As the in labelled attackers of A are numbered the
same by MMLab′

3
as by MMLab3 we have that {MMLab′

3
(B) | B attacks A and Lab′

3(B) =
in} = {MMLab3(B) | B attacks A and Lab3(B) = in}. This, together with the fact that
MMLab3(A) = min({MMLab3(B) | B attacks A and Lab3(B) = in}) + 1 (as MMLab3

is a correct min–max numbering) and the fact that MMLab′
3
(A) = MMLab3(A) implies that

MMLab′
3
(A) = min({MMLab′

3
(B) | B attacks A and Lab′

3(B) = in}) + 1.

Hence, we have established that MMLab′
3

is a correct min–max numbering of Lab′
3, one that numbers

each argument that is labelled in or out by Lab′
3 the same as MMLab3 . As MMLab3 does not number

any argument with ∞ (as Lab3 is a strongly admissible labelling) it follows that MMLab′
3

also does not
number any argument with ∞. Hence, Lab′

3 is a strongly admissible labelling. �

Lemma 6. Each admissible labelling Lab has a unique biggest (w.r.t. �) strongly admissible subla-
belling.

Proof. Similar to the proof of Lemma 4, but with Args, Args1 and Args2 replaced by Lab, Lab1 and
Lab2, with ⊆ and ∩ replaced by � and 
 and Lemma 3 replaced by Lemma 5. �

If Lab is an admissible labelling, then we write Lab ⇓ for its biggest (w.r.t. �) strongly admissible
sublabelling.

Theorem 8. Let (Ar, att) be an argumentation framework. The strongly admissible labellings of this
framework form a lattice (w.r.t. �).

Proof. Similar to the proof of Theorem 5, with Args1, Args2, Args3, Args′
3, Args′′

3 and Args′′′
3 replaced

by Lab1, Lab2, Lab3, Lab′
3, Lab′′

3 and Lab′′′
3 , ⊆, ∪ and ∩ replaced by �, � and 
, and Lemma 4

replaced by Lemma 6. ⊆ replaced by �, ∪ replaced by � and ∩ replaced by 
. �

5. Computational complexity

Regarding the issue of computational complexity, one can distinguish the standard decision problems
of credulous acceptance, sceptical acceptance and verification.

The formal statement of these decision problems (which are defined for any extension based argumen-
tation semantics σ ) is presented in Table 1. In this, we use σ to described an arbitrary semantics, e.g. any



M. Caminada and P. Dunne / Strong admissibility revisited 291

Table 1

Decision problems in argumentation semantics

Problem Instance Question Formal statement
CA 〈Ar, att〉, x ∈ Ar Is x credulously accepted? ∃S ⊆ Ar : x ∈ S and S ∈ Eσ (〈Ar, att〉)?
SA 〈Ar, att〉, x ∈ Ar Is x sceptically accepted? ∀S ⊆ Ar : S ∈ Eσ (〈Ar, att〉) ⇒ x ∈ S?
VER 〈Ar, att〉 S ⊆ Ar Does S satisfy the criteria of σ? S ∈ Eσ (〈Ar, att〉)?

Algorithm 1 Verification of Args as a strongly admissible set
1: Input: argumentation framework (Ar, att) and Args ⊆ Ar.
2: Output: true if Args is strongly admissible; false otherwise.
3: H 0 = ∅; Args0 = H 0; i = 0;
4: repeat
5: Hi+1 = F(H i) ∩ Args; /* with F being the characteristic function */
6: Argsi+1 = Argsi ∪ Hi+1;
7: i++;
8: until Argsi = Argsi−1

9: if Args = Argsi then return true else return false

of the cases given in Definition 3, although our principal interest will be the case of σ being the class of
strongly-admissible sets; Eσ for the set of all subsets of arguments within a framework that satisfy the
criteria given by σ , e.g. Eadm(〈Ar, att〉) is the set of all admissible sets in the framework 〈Ar, att〉.

The credulous acceptance problem for strong admissibility reduces to deciding if the given argument,
x, is in the grounded extension, as the grounded extension is the (unique) biggest (w.r.t. ⊆) strongly
admissible set [3]. Hence, the credulous acceptance problem of strong admissibility is of polynomial
complexity.

As for sceptical acceptance, the issue is to determine whether a particular argument is in every strongly
admissible set. However, as the empty set is always strongly admissible, this decision problem is trivial
as the answer is always negative.

The verification problem is more interesting in that it is not simply a matter of testing if S is a subset
of the grounded extension, i.e. although S being such a subset is a necessary condition for strong-
admissibility it is not a sufficient condition. In determining if a set S is strongly admissible one could
use Algorithm 1.

The correctness of Algorithm 1 follows from Theorem 1 and Lemma 2. To see this, notice that the
algorithm accumulates a subset of Ar (in Argsi) stopping when there is no change to the existing subset
(i.e. that forming Argsi−1) and using the final set to compare with the candidate subset Args. The set(s)
Argi are formed by the adding the intersection of the characteristic function of Hi with the set, Args,
being tested. This set, Hi starts (i = 0) from the empty set. Overall the process of computing successive
subsets Hi and the concomitant changes to Argsi mimics exactly the stages applied in the proof of
Theorem 1 using the result of Lemma 2 as support.

As we only consider finite argumentation frameworks, the algorithm is guaranteed to terminate.
The maximal number of loop iterations is of the order |Ar| because at each iteration there will be

at least one argument added (this must be the case for otherwise we would have Argsi = Argsi−1

resulting in the loop terminating at line 8) until the loop terminates. As for the set operations of union and
intersection, it holds that S1 ∪S2 and S1 ∩S2 each require the order of |S1|+|S2| operations, provided that
appropriate data structures are being used. For the above algorithm, this would be |F(H i)| + |Args| +
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|Argsi | + |Hi+1|, so no more than 4 · |Ar| for each loop iteration. As there are no more than |Ar|
loop iterations, this implies the maximal number of steps for doing the set operations is in the order of
|Ar| · |Ar|.

As for determining the number of operations of the F -operator, the easiest way to do this is to consider
the total number of operations, throughout all loop iterations. Calculating F(S) can be done basically
by removing the arguments of S+ from the argumentation framework (together with the attacks from
and to S+) and then examining which arguments have no attackers (this is one standard approach used
in computing the grounded extension). Point 1 of Lemma 2 implies that this can be done in an iterative
way when it comes to calculating each Hi+1. As no more than |att| edges can be removed from the
graph, there can be at most |att| edges relevant to any Hi . Note that the maximum number of attacks that
could be present in any framework satisfies |att| � |Ar| · |Ar|, so it holds that the number of operations
is at most |Ar| · |Ar| for computing the outcome of the characteristic functions. This, together with the
number of operations required for computing the union and intersection (which is also |Ar| · |Ar|) means
the total number of required operations is in the order of |Ar| · |Ar|, so of polynomial complexity.

As an aside, please notice that in order to simplify the above discussion, we have formulated Algorithm
1 in a way that is closely aligned to Lemma 2 and Theorem 1. However, it can be observed that for every
i it holds that Argsi = Hi (this is because of point 1 of Lemma 2). Hence, it would be possible to do
away with Argsi in the above algorithm, and only use Hi instead. We observe that this does not affect
the overall complexity of the algorithm, which remains in the order of |Ar| · |Ar|.

6. Strong admissibility and argument games

Now that some of the formal properties of strong admissibility have been examined, the next step is
to study some of its applications. In particular, it turns out that strong admissibility is one of the corner
stones of the discussion games for grounded semantics.

6.1. The standard grounded game

As far as we are know, the Standard Grounded Game [7,21,26] was the first dialectical proof procedure
to determine whether a particular argument is in the grounded extension.

Definition 11. A discussion in the Standard Grounded Game is a finite sequence [A1, . . . , An] (n � 1)
of arguments (sometimes called moves), of which the odd moves are called P-moves (Proponent moves)
and the even moves are called O-moves (Opponent moves), such that:

(1) every O-move is an attacker of the preceding P-move (that is, every Ai where i is even and 2 �
i � n attacks Ai−1)

(2) every P-move except the first one is an attacker of the preceding O-move (that is, every Ai where i

is odd and 3 � i � n attacks Ai−1)
(3) P-moves are not repeated (that is, for every odd i, j ∈ {1, . . . , n} it holds that if i 
= j then

Ai 
= Aj )

A discussion is called terminated iff there is no An+1 such that [A1, . . . , An, An+1] is a discussion.
A terminated discussion is said to be won by the player making the last move.

An argument tree is a tree of which each node (n) is labelled with an argument (Arg(n)). The level of
a node is the number of nodes in the path to the root.



M. Caminada and P. Dunne / Strong admissibility revisited 293

Definition 12. A winning strategy of the Standard Grounded Game for argument A is an argument tree,
where the root is labelled with A, such that

(1) for each path from the root (nroot) to a leaf node (nleaf ) it holds that the arguments on this path form
a terminated discussion won by P

(2) for each node at odd level nP it holds that {Arg(nchild) | nchild is a child of nP } = {B |
B attacks Arg(nP )} and the number of children of nP is equal to the number of attackers of Arg(nP )

(3) each node of even level nO has precisely one child nchild, and Arg(nchild) attacks Arg(nO)

The soundness and completeness of the Standard Grounded Game depends on the presence of a win-
ning strategy. That is, an argument A is in the grounded extension iff there exists a winning strategy
for A. Interesting enough, it turns out that such a winning strategy defines a strongly admissible set
containing A.

Theorem 9. The set of all proponent moves in a winning strategy of the Standard Grounded Game is
strongly admissible.

Proof. We prove this by induction over the depth (i) of the winning strategy game tree.

basis i = 0. In that case, the winning strategy consists of a single argument (say, A). This means that A

has no attackers. Hence, {A} is a strongly admissible set.
step Suppose that every winning strategy of depth less or equal than i has its proponent moves constitut-

ing a strongly admissible set. We need to prove that also every winning strategy of depth i + 2 has
its proponent moves constituting a strongly admissible set. Let WS be a winning strategy of depth
i + 2. Let A be the argument at the root of the tree. Let WS′

1, . . . , WS′
n be the subtrees whose roots

are at distance 2 of the root of WS. The induction hypothesis states that for each of these subtrees
(WS′

j ), their set of proponent moves Args′
j constitutes a strongly admissible set. Therefore (by

Lemma 3) the set Args′ = ⋃n
j=1 Args′

j is strongly admissible. Also, A /∈ Args′ (this is because
the proponent is not allowed to repeat his moves). Let B be an arbitrary argument in Args (the set
of all proponent moves in the winning strategy). We distinguish two cases:

(1) B ∈ Args′. Then, since Args′ is a strongly admissible set, there exists an Args′′ ⊆ Args′ \
{B} that defends B and is itself strongly admissible. Since Args′ ⊆ Args, it also holds that
Args′′ ⊆ Args \ {B}.

(2) B /∈ Args′. Then B = A (the root of the tree WS). The structure of the WS tree is such that
B is defended by the roots of WS′

1, . . . , WS′
n. So B is defended by the strongly admissible set

Args′. Also B /∈ Args′, so Args′ ⊆ Args \ {B}, therefore satisfying Definition 8. �

It can also be observed that a winning strategy defines a strongly admissible labelling.

Theorem 10. Let ArgsP be the set of proponent moves and ArgsO be the set of opponent moves of a par-
ticular winning strategy given an argumentation framework (Ar, att). It holds that (ArgsP ,ArgsO, Ar \
(ArgsP ∪ ArgsO)) is a strongly admissible labelling.

Proof. Given that ArgsP is strongly admissible (Theorem 9) it then follows from Theorem 7 that
LabPP+ = (ArgsP ,Args+

P , Ar \ (ArgsP ∪ Args+
P )) is a strongly admissible labelling. Now consider

LabPO = (ArgsP ,ArgsO, Ar \ (ArgsP ∪ ArgsO)). Notice that Args−
P ⊆ Args+

P , otherwise ArgsP
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would not be an admissible set. Also, from the structure of a winning strategy (with the Opponent play-
ing all possible attackers of each Proponent move as its children) it follows that ArgsO = Args−

P . Hence,
ArgsO ⊆ Args+

P . LabPO has the same min–max numbering as LabPP+ (minus the arguments that are
no longer out in LabPO , since out(LabPO) ⊆ out(LabPP+), as ArgsO ⊆ Args+

P ). This is because
the out-labelled arguments in Args+

P \ArgsO do not influence the min–max numbers of the in-labelled
arguments in ArgsP . It then follows that the min–max numbers of the out-labelled arguments in LabPO

also stay the same. Hence, the min–max numbering of LabPO is essentially a restricted version (with
a smaller domain) of the min–max numbering of LabPP+ . So from the fact that LabPP+ is a strongly
admissible labelling (not yielding ∞) it directly follows that LabPO is a strongly admissible labelling
(not yielding ∞). �

Hence, given a winning strategy of the Standard Grounded Game, the set of all proponent moves and
the set of all opponent moves essentially define a strongly admissible labelling.

6.2. The grounded discussion game

Like the Standard Grounded Game, the Grounded Discussion Game [11] is a proof procedure to
determine whether a particular argument is a member of the grounded extension. The game has two
players (proponent and opponent) and is based on four different moves, each of which has an argument
as a parameter.

HTB(A) (“A has to be the case”)
With this move, the proponent claims that argument A has to be labelled in by every complete
labelling (and hence also has to be labelled in by the grounded labelling).

CB(B) (“B can be the case, or at least cannot be ruled out”)
With this move, the opponent claims that argument B does not have to be labelled out by every
complete labelling. That is, the opponent claims there exists at least one complete labelling where
B is labelled in or undec, and that B is therefore not labelled out by the grounded labelling.

CONCEDE(A) (“Fair enough, I agree that A has to be the case”)
With this move, the opponent indicates that he now agrees with the proponent (who previously
did a HTB(A) move) that A has to be the case (labelled in by every complete labelling, including
the grounded labelling).

RETRACT(B) (“Fair enough, I give up that B can be the case”)
With this move, the opponent indicates that he no longer beliefs that argument B can be in or
undec. That is, the opponent acknowledges that B has to be labelled out by every complete
labelling, including the grounded labelling.

One of the key ideas of the discussion game is that the proponent has burden of proof. He has to
establish the acceptance of the main argument. The opponent merely has to cast sufficient doubts. Also,
the proponent has to make sure that the discussion does not go around in circles.

The game starts with the proponent uttering a HTB statement. After each HTB statement (either the
first one or a subsequent one) the opponent utters a sequence of one or more CB, CONCEDE and
RETRACT statements, after which the proponent again utters an HTB statement, etc. In the argumenta-
tion framework of Fig. 1 the discussion could go as follows.

(1) P: HTB(C) (4) O: CONCEDE(A)

(2) O: CB(B) (5) O: RETRACT(B)

(3) P: HTB(A) (6) O: CONCEDE(C)
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In the above discussion, C is called the main argument (the argument the discussion starts with). The
discussion ends with the main argument being conceded by the opponent, which means the proponent
wins the discussion.

As an example of a discussion that is lost by the proponent, it can be illustrative to examine what
happens if, still in the argumentation framework of Fig. 1, the proponent claims that B has to be the
case.

(1) P: HTB(B) (2) O: CB(A)

After the second move, the discussion is terminated, as the proponent cannot move anymore, since A

does not have any attackers. This brings us to the precise preconditions of the discussion moves.

HTB(A) This is either the first move, or the previous move was CB(B), where A attacks B, and no
CONCEDE or RETRACT move is applicable.

CB(A) A is an attacker of the last HTB(B) statement that is not yet conceded, the directly preceding
move was not a CB statement, argument A has not yet been retracted, and no CONCEDE or
RETRACT move is applicable.

CONCEDE(A) There has been a HTB(A) statement in the past, of which every attacker has been re-
tracted, and CONCEDE(A) has not yet been moved.

RETRACT(A) There has been a CB(A) statement in the past, of which there exists an attacker that has
been conceded, and RETRACT(A) has not yet been moved.

Apart from the preconditions mentioned above, all four statements also have the additional precon-
dition that no HTB-CB repeats have occurred. That is, there should be no argument for which HTB has
been uttered more than once, CB has been uttered more than once, or both HTB and CB have been ut-
tered. In the first and second case, the discussion is going around in circles (which the proponent has to
prevent, since he has burden of proof). In the third case, the proponent has been contradicting himself,
as his statements are not conflict-free. In each of these three cases, the discussion comes to an end with
no move being applicable anymore.

The above conditions are made formal in the following definition.

Definition 13. Let (Ar, att) be an argumentation framework. A grounded discussion is a sequence of
discussion moves constructed by applying the following principles.

BASIS (HTB) If A ∈ Ar then [HTB(A)] is a grounded discussion.

STEP (HTB) If [M1, . . . ,Mn] (n � 1) is a grounded discussion without HTB-CB repeats,8 and no
CONCEDE or RETRACT move is applicable,9 and Mn = CB(A) and B is an attacker of A then
[M1, . . . , Mn, HTB(B)] is also a grounded discussion.

8We say that there is a HTB-CB repeat iff ∃i, j ∈ {1, . . . , n} ∃A ∈ Ar : (Mi = HTB(A) ∨ Mi = CB(A)) ∧ (Mj =
HTB(A) ∨ Mj = CB(A)) ∧ i 
= j .

9A move CONCEDE(B) is applicable iff the discussion contains a move HTB(A) and for every attacker A of B the discussion
contains a move RETRACT(B), and the discussion does not already contain a move CONCEDE(B). A move RETRACT(B) is
applicable iff the discussion contains a move CB(B) and there is an attacker A of B such that the discussion contains a move
CONCEDE(A), and the discussion does not already contain a move RETRACT(B).
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STEP (CB) If [M1, . . . , Mn] (n � 1) is a grounded discussion without HTB-CB repeats, and no
CONCEDE or RETRACT move is applicable, and Mn is not a CB move, and there is a move
Mi = HTB(A) (i ∈ {1 . . . n}) such that the discussion does not contain CONCEDE(A), and
for each move Mj = HTB(A′) (j > i) the discussion contains a move CONCEDE(A′), and
B is an attacker of A such that the discussion does not contain a move RETRACT(B), then
[M1, . . . , Mn, CB(B)] is a grounded discussion.

STEP (CONCEDE) If [M1, . . . ,Mn] (n � 1) is a grounded discussion without HTB-CB repeats, and
CONCEDE(B) is applicable then [M1, . . . ,Mn, CONCEDE(B)] is a grounded discussion.

STEP (RETRACT) If [M1, . . . ,Mn] (n � 1) is a grounded discussion without HTB-CB repeats, and
RETRACT(B) is applicable then [M1, . . . , Mn, RETRACT(B)] is a grounded discussion.

It can be observed that the preconditions of the moves are such that a proponent move (HTB) can
never be applicable at the same moment as an opponent move (CB, CONCEDE or RETRACT). That is,
proponent and opponent essentially take turns in which each proponent turn consists of a single HTB
statement, and every opponent turn consists of a sequence of CONCEDE, RETRACT and CB moves.

Definition 14. A grounded discussion [M1, M2, . . . , Mn] is called terminated iff there exists no move
Mn+1 such that [M1, M2, . . . ,Mn, Mn+1] is a grounded discussion. A terminated grounded discus-
sion (with M1 being HTB(A) for some A ∈ Ar) is won by the proponent iff the discussion contains
CONCEDE(A), otherwise it is won by the opponent.

To illustrate why the discussion has to be terminated after the occurrence of a HTB-CB repeat, consider
the following discussion in the argumentation framework of Fig. 1.

(1) P: HTB(G) (3) P: HTB(G)

(2) O: CB(H)

After the third move, an HTB-CB repeat occurs and the discussion is terminated (opponent wins).
Hence, termination after a HTB-CB repeat is necessary to prevent the discussion from going on perpet-
ually.

It has been proved [11,12] that the Grounded Discussion Game is a sound and complete proof proce-
dure for determining whether an argument is in the grounded extension. More specifically,

(soundness) if a discussion for a particular argument has been won by the proponent, then the argument
is in the grounded extension, and

(completeness) if an argument is in the grounded extension, then the proponent is able to win the game
for the argument (that is, the proponent has a winning strategy)

As for the first point (soundness) it can be observed that if one would label the arguments of
CONCEDE moves in, the arguments of RETRACT moves out and all other arguments undec, the
result is a strongly admissible labelling at each state of the discussion game. If this game is ultimately
won by the proponent, then the main argument has been CONCEDEd. Hence, the result is a strongly
admissible labelling where the main argument is labelled in. This means the main argument is in the
grounded extension.

As for the second point (completeness) it can be observed that the grounded labelling, together with
its associated min–max numbering, serves as a roadmap that allows the proponent to win the game. In
essence, the proponent does this by using only in labelled arguments to select the HTB moves, and to
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select the in labelled argument with a lowest min–max number whenever there is a choice. We refer to
[11,12] for details.

6.3. The Standard Grounded Game (SGG) vs. the Grounded Discussion Game (GDG)

So far, we have seen that both the SGG and the GPG show membership of the grounded extension
essentially by building a strongly admissible labelling where the argument in question is labelled in.10

This raises the question of how many steps each of these games requires for doing so. Consider the
argumentation framework of Fig. 4 (top left). The winning strategy of the SGG is in the same figure
(top right). Now consider what would happen if one would start to extend the argumentation framework
by duplicating the middle part. That is, suppose we have arguments B1, . . . , Bn and C1, . . . , Cn (with n

being an odd number), as well as arguments A and D. Suppose that for every i ∈ {1, . . . , n − 1} Bi+1

attacks Bi , and Ci+1 attacks Ci , and that for each even i ∈ {2, . . . , n − 1} Bi+1 attacks Ci , and Ci+1

attacks Bi , and that B1 and C1 attack A, and that D attacks Bn and Cn. In that case, the branches in the
SGG winning strategy would split at every O-move. So for n = 3 (as is the case in Fig. 4) the number
of branches is four, for n = 5 it is eight, etc. In general, the number of branches in the SGG winning
strategy is 2(n+1)/2, with the number of nodes in the SGG winning strategy being 1 + 2

∑(n+1)/2
i=1 2i .

Hence, the number of steps needed in a winning strategy of the SGG can be exponential in relation to
the in/out-size11 of the strongly admissible labelling that the SGG winning strategy is constructing.12

As for the Grounded Discussion Game, the situation is different. It can be proven [11,12] that
the proponent always has a strategy for the game that results in the total number of moves being
2 · |in(Lab)| + 2 · |out(Lab)| where Lab the strongly admissible labelling that is built up during the
discussion game. This labelling is such that in(Lab) consists of all arguments that have been subject
to a CONCEDE move and out(Lab) consists of all arguments that have been subject to a RETRACT
move. An example of a game that results from such a strategy is provided in Fig. 4.

Overall, we observe that both the Standard Grounded Game and the Grounded Discussion Game
prove that an argument is in the grounded extension by building a strongly admissible labelling around
it. However, where the Standard Grounded Game can require a number of moves that is exponential
in relation to the in/out-size of the strongly admissible labelling, the Grounded Discussion game re-
quires a number of moves that is always linear in relation to the in/out-size of the strongly admissible
labelling.

7. Discussion and future research

In the current paper, we have re-examined the concept of strong admissibility, from both theoretical
and practical perspectives. From theoretical perspective, we have observed that the strongly admissible
sets form a lattice with the empty set as bottom element and the grounded extension as top element. Also,
we have developed the concept of a strongly admissible labelling, and shown how it relates to the concept
of a strongly admissible set. From practical perspective, we have examined how strongly admissible
labellings lie at the basis of both the Standard Grounded Game [21] and the Grounded Discussion Game

10Similarly, it can be observed that for instance the credulous preferred game [14,27] shows membership of a preferred
extension essentially by building an admissible labelling around the argument in question.

11We recall that with the in/out-size of a labelling Lab we mean |in(Lab) ∪ out(Lab)|.
12We thank Mikołaj Podlaszewski for this example.
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Fig. 4. The Standard Grounded Game (SGG) versus the Grounded Discussion Game (GDG).

[11,12]. Although both essentially construct a strongly admissible labelling around the argument in
question, the Grounded Discussion Game does so using a linear number of steps, whereas the Standard
Grounded Game can require an exponential number of steps.

An alternative definition of a strongly admissible set is given by Baumann et al. [4]. Basically, the idea
is that a set of Args is strongly admissible iff there are finitely many and pairwise disjoint sets A1, . . . , An

such that (1) Args = ⋃n
i=1 Ai , (2) A1 ⊆ F(∅), and (3)

⋃j

i=1 Ai defends Aj+1 (1 � j < n). Baumann et
al. [4] prove that their definition is equivalent with Definition 8 of the current paper (which first appeared
in [10]). One particular issue with their definition is that they do not specify how to actually obtain the
sequence A1, . . . , An. However, we observe that it is fairly easy to convert the sequence H 0, H 1, H 2, . . .

as specified in Lemma 2 to a corresponding sequence A1, . . . , An. This can be done by first identifying
n to be the lowest number such that Hn = Hn+1 (which implies that Hm = Hn for each m � n) and
then taking A1 = H 1 and Ai+i = Hi+1 \ Hi (1 � i < n).

The idea of numbering arguments (such as is done in a min–max numbering) can be traced back to the
work of Pollock [24], who gives an iterative procedure (basically for computing the grounded extension,
as is explained by Dung [19]) in which arguments become in and out at different levels during the
algorithm [24, Algorithm 2]. It has to be mentioned, however, that Pollock’s algorithm (the ideas of
which have also been applied in [2]) computes the entire grounded extension (in a way that is similar to
what is done in [21]) and is not applicable to the concept of a strongly admissible set (or labelling) in
general.
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One of the things to be examined in the future is how the concept of strong admissibility can be
useful in identifying the shortest discussion that shows an argument (A) is in the grounded extension.
For instance, we conjecture that for each minimal (w.r.t. �) strongly admissible labelling that labels A

in, there exists a discussion under the Grounded Persuasion Game for argument A that builds precisely
this labelling. However, there can be more than one such labelling. For argument F in Fig. 1, for in-
stance, both ({A, C, F }, {B, E}, {D, G, H }) and ({D, F }, {E}, {A, B, C, G, H }) are minimal (w.r.t. �)
strongly admissible labellings that label F in, but the in/out-size of the second labelling is smaller
than that of the first labelling, thus yielding a shorter discussion. How to precisely obtain such a strongly
admissible labelling with minimal size is a topic for further investigation.

Finally there are a number of questions that would merit further consideration with respect to complex-
ity issues. For example, although the canonical decision problems (credulous and sceptical acceptance,
verification) for the strong admissibility semantics are tractable having polynomial-time sequential al-
gorithms, it seems unlikely that verification would have efficient parallel algorithms. The notion of “effi-
cient parallel algorithm” being one that can be realised using a logarithmic depth Boolean combinational
circuit. A formal demonstration that such is indeed the case would be achieved by showing the verifi-
cation problem to be P-complete. In view of the supporting technical detail that would be required in
exploring this question we have not pursued it in the current article.

A question of some considerable interest whose status is far from clear concerns the following:
given two argumentation frameworks (Ar, att1) and (Ar, att2) (that is with identical arguments but
not necessarily identical attacks), do their strongly admissible sets coincide? That is, is the case that
Esa(〈Ar, att1〉) = Esa(〈Ar, att2〉)? Alternatively we could examine if |Esa(〈Ar, att1〉)| = |Esa(〈Ar, att2〉)|.
It is worth noting that the “equivalence by set equality” is only one such definition, but there are alter-
natives: we could also ask about the existence of a relabelling of arguments so that the two frameworks
become identical. It is worth noting two further aspects of this question: firstly, unlike previously stud-
ied and superficially similar problems, e.g. coincidence of stable and preferred semantics from [20]
the question involves more than a single framework (although given an appropriate semantics, σ , the
question Eσ (〈Ar, att〉) = Esa(〈Ar, att〉) may also be non-trivial: while some instances, e.g. preferred se-
mantics, reduce to known cases since Epr(〈Ar, att〉) = Esa(〈Ar, att〉) if and only if Epr(〈Ar, att〉) = {∅}
others are less so). A second point is the how much “obvious” necessary conditions can be exploited,
e.g. “in order for Esa(〈Ar, att1〉) = Esa(〈Ar, att2〉) to hold the number of unattacked arguments in each
must be equal” (otherwise there will be different single argument strongly admissible sets in the two).
While conditions such as these suggest a natural way of progressing from single to two to k argument
set comparisons, there is potentially an exponential increase in the number of sets being compared as
the process continues. Such further algorithmic and complexity issues are the topic of continuing work.
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