Argument & Computation 9 (2018) 91-119 91
DOI 10.3233/AAC-180039
IOS Press

Representing argumentation schemes with
Constraint Handling Rules (CHR)

Thomas F. Gordon **, Horst Friedrich * and Douglas Walton b

2 Fraunhofer FOKUS, Berlin, Germany
E-mail: horst.friedrich@fokus.fraunhofer.de
b University of Windsor, Windsor, Canada
E-mail: dwalton@uwindsor.ca

Abstract. We present a high-level declarative programming language for representing argumentation schemes, where schemes
represented in this language can be easily validated by domain experts, including developers of argumentation schemes in in-
formal logic and philosophy, and serve as executable specifications for automatically constructing arguments, when applied to a
set of assumptions. Since argumentation schemes are defeasible inference rules, both premises and conclusions of schemes can
be second-order schema variables, i.e. without a fixed predicate symbol. Thus, while particular schemes can be and have been
implemented in computer programs, in general argumentation schemes cannot be represented as executable specifications us-
ing logic programming languages based on first-order logic, such as Prolog. Moreover, even if the conclusion (head) of Prolog
rules could be second-order variables, a depth-first, backward-chaining search strategy, as typically used in logic programming,
would usually cause such programs to not terminate, since every goal would match the head of such a scheme, including all
goals created by instantiating the body of the same scheme. The language for representing argumentation schemes presented
here, for the purpose of automatically constructing arguments, uses Constraint Handling Rules (CHR), a declarative, Turing
complete, forwards-chaining, rule-based programming language introduced by Thom Frithwirth in 1991. CHR is attractive for
representing and implementing argumentation for several reasons, including: 1) Inference rules, rewrite rules, sequents, proof
rules, and logical axioms can be directly written in CHR. 2) The execution of CHR rules can be interrupted and restarted at any
time, with intermediate results approximating the final solution, and 3) Constraints can be input incrementally as they become
known, during rule execution, without requiring recomputation. These three properties of CHR appear attractive for repre-
senting and implementing argumentation schemes. Since argumentation schemes are (defeasible) inference rules, the ability of
CHR to represent inference rules directly would appear to be quite useful. The ability to stop the computation and produce ap-
proximate results is compatible with one objective of argumentation, to provide a principled method for supporting approximate
reasoning with limited resources. Because argumentation typically takes place in dialogs, with evidence and arguments brought
forward and asserted by the participants incrementally, during the course of the dialog, CHR’s ability to handle new informa-
tion, incrementally introduced during the computation, may be useful. This new rule language for representing argumentation
schemes is validated by using it to represent twenty representative argumentation schemes.

Keywords: Argumentation schemes, argument generation, rule-based systems, Constraint Handling Rules, logic programming,
data protection

1. Introduction

Argumentation schemes [25] serve at least two functions:

(1) They provide normative standards for critically evaluating arguments, by matching arguments to
schemes to see if they fit acceptable patterns of argumentation, to identify missing premises, and
to facilitate the asking of critical questions.

*Corresponding author. URL: http://www.tfgordon.de/contact/.

1946-2166/18/$35.00 © 2018 — IOS Press and the authors.

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial Li-
cense (CC BY-NC 4.0).

mailto:horst.friedrich@fokus.fraunhofer.de
mailto:dwalton@uwindsor.ca
http://www.tfgordon.de/contact/

92 T.F. Gordon et al. / Representing argumentation schemes

(2) They provide guidance for making (constructing, inventing, generating) good arguments in the first
place, i.e. arguments that will satisfy the normative standards specified by the schemes.

Computational models of argument can model either or both of these functions of argumentation
schemes. In this paper, we focus on the second function. Whereas some prior work on computational
models of argumentation schemes consists of procedural programs for generating arguments for specific
schemes, e.g [3], our aim is to develop a high-level declarative programming language for representing,
ideally, all argumentation schemes, where schemes represented in this language can be easily validated
by developers of argumentation schemes in informal logic and philosophy and serve as executable spec-
ifications for automatically constructing arguments, when applied to a set of assumptions.

Argumentation schemes [25] are defeasible inference rules. Most, like argument from expert opinion,
are to some extent domain-dependent, because they include predicates intended to be interpreted in a
particular, domain-dependent way. Some, like defeasible modus ponens, are more generic. Let’s take a
closer look at these two schemes.

First, here is a simplified version of the scheme for argument from expert witness testimony, which
is the prototypical argumentation scheme most often used to introduce the concept of argumentation
schemes.

1.1. Argument from expert witness testimony

Premises

e FE is an expert
e [asserts P

Conclusions

e P

The expert witness scheme makes use of two domain-dependent predicates:

e is-an-expert/1
e asserts/2

The numbers indicate the arity of each predicate. In the presentation of the scheme, the predicates are
shown using an infix notation close to natural language.

In the scheme, E and P are scheme variables. P is a second-order variable, ranging over propositions.
Notice that the conclusion of the scheme is P. The conclusion does not mention a particular predicate.
When the scheme is applied, P is instantiated with a particular proposition, with a particular predicate,
and an argument for the proposition P is constructed. The argument constructed can be attacked in the
usual ways, with a rebuttal (an argument for some proposition which cannot be accepted if P is accepted,
for example —P), an undercutter (an argument against the applicability of this argument, for example
an argument for £ being biased), or a premise defeater (an argument for some proposition contrary to a
premise, for example an argument con “E is an expert.”).

The second argumentation scheme we want to discuss is defeasible modus ponens.

T.F. Gordon et al. / Representing argumentation schemes 93
1.2. Defeasible modus ponens

Premises:

e if P then Q
o P

Conclusions

e (Presumably) Q

Defeasible modus ponens has the same form as modus ponens, except that the conclusion is only pre-
sumably true, rather than necessarily true. (The modality, “presumably”, is made explicit in the example
only for emphasis. The conclusions of all argumentation schemes are presumably true.) An argument
constructed by instantiating this scheme can be attacked in the usual ways, for example by a rebuttal, an
argument for —Q.

Notice that the major premise of defeasible modus ponens, “if P then Q.’, is not an atomic propo-
sition, but rather a compound proposition built by connecting two propositions, P and Q, using an
“if-then” (implication) operator. Thus, P and Q here are once again second-order variables ranging over
propositions. The conclusion of the defeasible modus ponens scheme is also a second-order variable,
as is the conclusion of the expert witness testimony scheme. In addition, the defeasible modus ponens
scheme has a minor premise, P, which is a second-order variable.

Argumentation schemes like these, with second-order variables, are quite common. It is particularly
common for the conclusion of schemes to be a second-order variable, as in both of these examples. Other
examples include schemes for argument from abduction, analogy, established rule, ethos, ignorance,
position to know, and precedent.

We are aware of no computational models of argumentation schemes which are capable of automat-
ically constructing (inventing, generating, deriving) arguments by instantiating second-order schemes
such as these. Prior computational models of argumentation schemes are more limited. Either they are
used to check whether existing arguments match the form of a given scheme, as in Aracauria [18], are
restricted to propositional (fully instantiated) schemes, as in ArguMed [21], are not defined in sufficient
detail to know whether second-order variables are supported, e.g. Pollock’s OSCAR system [16], are
mathematical models which leave too many details unspecified to be sufficient as a specification for
implementing an inference engine, such as ASPIC+' [17], or are based on logic programming methods
enabling only first-order argumentation schemes to be used to automatically construct arguments, such
as Assumption-Based Argumentation (ABA) [8] and earlier versions of Carneades [10].2

To understand more clearly the difficulties in representing argumentation schemes using Horn clause
logic, the subset of first-order logic used by logic programming languages such as Prolog, let us see how
far we can get in representing the scheme for arguments from expert witness testimony in Prolog. Let us
first represent, as Prolog “facts”, the following assumptions about a case:

expert (john) .
asserts(john, caused_by(global_warming, humans)).

I'The TOAST implementation of ASPIC+ [19] is propositional. Its rules are fully instantiated axioms, with no variables.

2These earlier versions of Carneades allowed argumentation schemes with second-order variables to be represented and used
to manually construct arguments, by filling in forms, and to check whether arguments correctly instantiate schemes, but not to
automatically construct arguments from a set of assumptions.

94 T.F. Gordon et al. / Representing argumentation schemes

Given these facts, the challenge is to represent the expert witness scheme as a single Prolog rule (Horn
clause), in such a way that the following query can be proven by Prolog, answering yes:

?- caused_by(global_warming, humans).

The above representation of the assumptions already shows how one hurdle can be overcome. Al-
though Horn clause logic is a subset of first-order logic, it is possible to represent second-order propo-
sitions about atomic formulas, such as global warming being caused by humans here, by reifying such
atomic formulas as terms. So far, so good.

But how can the expert witness scheme be represented? Here is one approach, suggested to me by
Trevor Bench-Capon but also used by ABA [8, 200-201]:

holds(P) :- asserts(E,P), expert(E).

The idea here is to represent the second-order conclusion, P, of the scheme with a first-order atomic
formula, holds (P), by introducing a unary holds predicate. This approach attempts to reduce gen-
eral inference rules, with premises and second-order variables, to first-order axioms, i.e. inference rules
with no premises and only first-order variables in the conclusion. That is, strictly speaking there are
no premises in this Horn clause representation of the inference rule, because a Horn clause is a first-
order formula. The : - symbol in the clause represents the material conditional logical connective, not a
deducibility relation.

While axioms can be viewed as a basic form of inference rule, the attempt to represent more general
inference rules using a holds predicate like this has severe limitations. Since we will want to be able
to chain arguments together, by using argumentation schemes to construct arguments for the premises
of other arguments, we need some way to convert atoms of the form holds (P) to P, so that premises
can be matched (unified) with P. It may seem that one way to achieve this would be to add an additional
rule for each predicate, as in the following examples:

expert (P) :- holds (expert(P)).
asserts(E,P) :- holds(asserts(E,P)).
caused_by (X,Y) :- holds(caused_ by (X,Y)).

From a knowledge-representation point of view, this seems rather verbose and cumbersome, but pre-
sumably these additional rules could be generated automatically, using some kind of preprocessor. How-
ever this approach suffers from a more serious problem: Such a rule would need to be generated for
every predicate in the application domain, and thus every goal would match the conclusion of every
argumentation scheme with a second-order variable as its conclusion, due to Prolog’s goal-directed,
backwards-chaining control strategy, causing the search space to become infinite. Thus many (not all)
queries will cause the inference engine to enter an endless loop and fail to terminate, depending on the
order of facts and rules. Suppose, for example, the Prolog program consists only of the following rules,
without any facts:

holds(P) :- asserts(E,P),expert(E).
expert (E) :- holds (expert(E)).
asserts(E,P) :- holds(asserts(E,P)).

caused_by (X,M) :- holds(caused_ by (X,M)).

T.F. Gordon et al. / Representing argumentation schemes 95
With these clauses, the following query causes an endless loop and runs out of stack space:

?- caused_by (global_warming, humans) .
ERROR: Out of local stack

It is clear why this happens: The query causes an endless loop between the holds and asserts
rules:

(1) caused_by (global_warming, humans)

(2) holds (caused_by(global_warming, humans))

(3) asserts (E, caused_by (global_warming, humans))

(4) holds (asserts (E, caused_by (global_warming, ...)))

o) ..

Since this encoding of argumentation schemes requires the definition of every predicate to have an
additional holds rule, many queries will not terminate in this way, making this encoding useless in
combination with Prolog’s simple depth-first, backwards-chaining control strategy. Notice that the ex-
ample query will not terminate no matter how the clauses of the program are ordered, because the
program contains no facts. While the program can be made to terminate for this particular goal (query)
by adding sufficient facts before the rules, this would not be a general solution to the control problem,
not even for other queries using the same rules, because one cannot assume that there are sufficient facts
to answer every query affirmatively.

The event calculus [14] uses a holds predicate for a similar but more limited purpose, for reasoning
about the effects of actions using Prolog. It does not suffer from the control issues discussed here,
because the holds predicate is used in a more focused way only for a subset of the predicates, called
fluents, which are state-dependent in the domain model. These fluents are queried only using the holds
predicate. They are never mapped to object-level predicates in the way suggested above.

There is one final and fatal problem with representing argumentation schemes directly in Prolog this
way that is important to mention: no arguments are constructed! Thus there is no way to resolve conflicts
among arguments, to balance arguments or to use the arguments to help understand or explain the results,
for example using argument diagrams.

All of these problems might be overcome by writing a meta-interpreter for argumentation schemes in
Prolog, but this would be using Prolog in its capacity as a general-purpose programming language, rather
than as an inference engine for Horn clause logic. Some expert system shells, in particular APES [13],
were implemented as meta-interpreters in Prolog. APES was able to generate explanations which can be
viewed as arguments from the traces of rule applications [4]. However rules in APES were Horn clauses
and could not represent argumentation schemes with second-order variables, for the reasons discussed
above, and also did not generate counterarguments or use a structured model of argument to resolve
attack relations among arguments. The alternative approach we investigate in this paper, using Constraint
Handling Rules to represent argumentation schemes, can also use Prolog as an implementation language.
Indeed several implementations of Constraint Handling Rules in Prolog exist and we make use of the
one provided by SWI Prolog.

As suggested in the previous paragraph, this paper explores the idea of representing argumentation
schemes using another kind of rule-based programming, Constraint Handling Rules, introduced by
Thom Friithwirth in 1991 [9], to overcome all of the problems identified above by meeting the following
requirements:

96 T.F. Gordon et al. / Representing argumentation schemes

Allow second-order variables in the premises and conclusions of schemes

Not require additional rules for bringing second-order propositions down to the object-level.
Generate arguments as output

Guarantee termination

The rest of this article is organized as follows. Section 2 introduces Constraint Handling Rules, includ-
ing examples. Section 3 shows one way to represent argumentation schemes using Constraint Handling
Rules, in such as way as to generate arguments and overcome the other problems identified in this
introduction. The section also briefly describes two implementations of this approach, one using the
Constraint Handling Rules interpreter provided as a library by SWI Prolog and the second based on
our custom implementation of Constraint Handling Rules in the Go programming language. Section 4
validates the rule language by demonstrating how to use it to represent twenty argumentation schemes,
selected by Douglas Walton as being representative and widely used. Finally, Section 5 presents our
conclusions and summarizes the main results.

2. Constraint handling rules

Constraint Handling Rules (CHR) is a declarative, forwards-chaining rule language originally devel-
oped by Thom Friihwirth in 1991 [9].> Forwards-chaining rule engines, based on production rules, have
been used from the beginning in expert systems [5,6]. Production rules are condition-action rules, where
the conditions of rules are matched against data structures in working memory, a conflict-resolution
strategy is used to select a matching rule, and then the action of the selected rule is executed, possi-
bly modifying the working memory and performing side effects, such as outputting data to a file. This
process is then repeated until no rule matches the state of the working memory.

While production rule systems have been widely and successfully used for expert systems and imple-
menting so-called “business rules”, they do not have a declarative semantics. Declarative programming
languages are used to describe what the problem is, rather than a procedure or algorithm stating how
to solve the problem. Declarative programming languages, or rather interpreters or compilers for these
languages, are clever enough to figure out how to solve the problem on their own, from a description
of the problem. Declarative programming languages are typically based on well-founded theories of
mathematical functions and/or logic. Prolog [7], based on the Horn clause subset of first-order logic, is
perhaps the most prominent of these declarative languages.

One of the achievements of CHR is to realize a forwards-chaining rule language, similar to production
rule languages, but with a declarative semantics. CHR is so-named, because the language was initially
intended to be used to implement constraint solvers. A constraint solver takes as input a set of relation-
ships among variables, called constraints, and derives further information about these variables. Early
constraint solvers were for particular domains, for example propositional constraints over Boolean vari-
ables, or equations and inequalities over integers. CHR is more general purpose. It enables constraint
solvers for a variety of domains to be specified, using rules.

To make this clearer, let us take a look at the standard example used to illustrate CHR, which defines
rules for partial orderings:

reflexivity @ X leg X <=> true.

3See also the CHR homepage at https://dtai.cs.kuleuven.be/CHR/.

https://dtai.cs.kuleuven.be/CHR/

T.F. Gordon et al. / Representing argumentation schemes 97

antisymmetry @ X leq Y, Y leg X <=> X = Y.
transitivity @ X leq Y, Y leq Z ==> X leqg Z.
idempotence @ X leg Y \ X leg Y <=> true.

The predicate 1eq is intended to mean “less than or equal to”. The words to the left of the @ sym-
bol in these four rules are identifiers, naming the rules. The reflexivity, antisymmetry, and
transitivity rules specify the axioms of partial orderings, in a form close to their usual expression
in mathematics. The first rule, for reflexivity, states that for all x, x = x. The idempotence rule
allows the second instance of X leq Y to be deleted from the constraint store, since it is redundant.

There are three kinds of rules in CHR: simplification, propagation and “simpagation’ rules, where
simpagation rules are a hybrid kind of rule combining the features of simplification and propagation
rules. All three kinds of rules are illustrated in the example. The reflexivity and antisymmetry rules are
simplification rules; the transitivity rule is a propagation rule; and the idempotence rule is a simpagation
rule.

Operationally, CHR rules are applied to a multiset of constraints (similar to Prolog facts) in a data
structure called the constraint store, which serves the same function as the working memory in produc-
tion rule systems. Since the constraint store is a multiset, the same fact may occur multiple times in the
store.

When simplification rules, such as the reflexivity and antisymmetry rules, are applied (“fired”), the
constraints matching the patterns on the left-hand side of the <=> symbol, called the head of the rule,
are replaced by the constraints on the right-hand side, called the body of the rule. For people familiar with
Prolog, this terminology may be somewhat confusing, because in Prolog the head of a rule represents its
conclusion and the body its antecedents, opposite the convention of CHR. (Moreover, unlike Prolog, a
CHR rule may have multiple conclusions.) But CHR’s use of the terms “head” and “body” is nonetheless
consistent with how these terms are used in Prolog, because in both languages atoms are matched against
patterns in the head and, if the match is successful, replaced by atoms on the right. The difference is that
Prolog is a goal-directed, backwards-chaining language, which reduces a goal by replacing it with new
goals, whereas CHR, on the other hand, as a forwards-chaining rule language, applies rules to derive
constraints, adding them to the constraint store.

Simplification and simpagation rules also delete constraints from the constraint store. Simplification
rules replace the constraints matching the head of the rule with the constraints matching the body of the
rule. Simpagation rules, similarly, replace the constraints to the right of the backslash symbol, \, in the
head of the rule, with the constraints on the right. The matching constraints to the left of the backslash
symbol in the head are not deleted.

It might seem counterintuitive at first that a declarative language is allowed to delete constraints from
the store. But in CHR this is done in principled way, in a way which does not change the meaning of
the constraints in the store. Simplification rules and simpagation rules are used to simplify constraints,
as their names suggest, by replacing constraints matching the head with fewer constraints having the
same meaning. Consider the idempotence rule, for example. Since the constraint store is a multiset, it
may contain duplicate, redundant constraints. The idempotence rule simplifies the constraint store by
removing duplicate constraints of the form X leqg Y.

In addition to heads and bodies, CHR rules may also include, in so-called “guards”, further built-in
constraints. Which built-in constraints are available depends on the particular implementation of CHR.
Guards are not illustrated here.

98 T.F. Gordon et al. / Representing argumentation schemes

To get an idea of how the CHR inference engine works, let us see what CHR derives when applying
the rules defining partial orderings above to the following “query”, i.e. giving the initial state of the
constraint store:

leg (A, B)
leg(B,C)
leg(C,An)

First, the transitivity propagation rule is fired and adds leqg (A, C) to the store. Next, the antisym-
metry simplification rule is fired, causing 1leqg (A, C) and leg(C, A) to be removed and replaced by
A=C. CHR has built-in support for equality reasoning, which is then used to derive leq(C, B) from
leg (A, B). Now the antisymmetry simplification rule is applied to 1eqg (C, B) and 1leg (B, C), caus-
ing these constraints to be replaced with B=C. No further rules can be applied, so the process terminates
and returns the constraint store with A=C and B=C. Thus, CHR was able to infer that all three variables
are equal.

In addition to supporting forwards-chaining, CHR has some other properties which may be desirable,
depending on the application:

Turing completeness: Any computable function can be represented using CHR rules.

Every algorithm can be implemented in CHR with the best known time and space complexity [20].

CHR rules can be executed concurrently [15].

The execution of CHR rules can be interrupted and restarted at any time, with intermediate results

approximating the final solution.

e Constraints can be input incrementally as they become known, during rule execution, without re-
quiring recomputation.

e Inference rules, rewrite rules, sequents, proof rules, and logical axioms can be directly written in

CHR [1].

The last three properties, in particular, appear attractive for representing and implementing argumen-
tation schemes. Argumentation typically takes place in dialogs, with evidence and arguments brought
forward and asserted by the participants incrementally, during the course of the dialog. It would be use-
ful if CHR could be used to incrementally and efficiently construct arguments from evidence during
dialogs. Moreover, since argumentation schemes are (defeasible) inference rules, the ability of CHR to
represent inference rules directly would appear to be quite useful.

3. Representation and implementation of argumentation schemes

In this section we show how to represent argumentation schemes using CHR rules, and present an
overview of the implementation of the component for generating arguments with argumentation schemes
represented using CHR in this way, provided by Version 4 of the Carneades argumentation system.*

First we need a notation for argumentation schemes. Let us use the syntax for schemes we have
developed for Carneades 4, which is based on the YAML markup language,’ which in turn is syntactic

“https://carneades.github.io/Carneades/
Shttp://yaml.org/

https://carneades.github.io/Carneades/
http://yaml.org/

T.F. Gordon et al. / Representing argumentation schemes 99

sugar for JSON,® to make it easier to read and write. Here is a version of the scheme for arguments from
expert opinion using this concrete syntax:

id: expert_opinion
meta:
title: Argument from Expert Opinion
source: >
Douglas Walton, Appeal to Expert Opinion,
The Pennsylvania University Press,
University Park, Albany, 1997, p.211-225.
variables: [E,D,P]
premises:
- expert (E,D)
- in_domain (P, D)
- asserts(E,P)
exceptions:
- untrustworthy (E)
- inconsistent_with_ other_experts (P)
assumptions:
- based_on_evidence(asserts(E,P))
conclusions:
- P

This representation of argumentation schemes is, we claim, very high level and quite close to the usual
way schemes are represented in informal logic. In our experience, informal logicians are able to read,
understand and validate schemes represented in this form.

There are a few things to notice about this syntax. First, the schema variables are declared explic-
itly. This may seem burdensome, but is useful for checking for misspelled variables in schemes, among
other purposes. Second, as proposed in [11], the two types of critical questions are represented by ex-
ceptions and assumptions. Thirdly, argumentation schemes may now have more than one conclusion,
though there is only one in this example. This change was motivated by the desire to support the full
CHR rule language. There can be multiple conclusions in the body of CHR rules. But it has the further
advantage of reducing the number of schemes required when several conclusions can be derived from
the same premises. Fourthly, note that this rule is an example of a scheme having a second-order vari-
able as its conclusion, S here. Finally, the example shows how arbitrary metadata about the scheme can
be expressed. The various metadata properties, such as title and source in this example, are not
predefined and can be freely selected.

We now show, by way of this example, how argumentation schemes are translated into CHR rules.
The expert opinion scheme is translated into the following rule:

expert_opinion @
expert (W, D),
in_domain (S, D),
asserts (W, S)

Ohttp://json.org/

http://json.org/

100 T.F. Gordon et al. / Representing argumentation schemes

based_on_evidence (asserts (W, S)),
argument (expert_opinion, [W,D,S]).

As illustrated here, each argumentation scheme is translated into a single CHR rule, in this ex-
ample a propagation rule, with the same name (identifier). The premises of the scheme are trans-
lated into constraints in the head of the rule. The conclusions of the scheme are translated into con-
straints in the body of the rule. Moreover, each of the assumptions of the scheme are also added to
the body of the CHR rule, allowing them to be used to derive further information by applying other
rules. (The assumptions can be questioned and retracted later, when evaluating the arguments con-
structed.) Finally, an additional constraint is added to the end of the body of the rule, of the form
argument (<id>, [<variable>, ...]), to keep a record of the argument to be generated when
applying the scheme.

Notice that the exceptions of a scheme are not translated and do not appear in the resulting CHR rule.
To understand how exceptions are handled, we first need to explain the steps in the process for generating
and evaluating arguments:

(1) The argumentation schemes are translated into CHR rules, as illustrated above.

(2) A set of assumptions, represented as ground atomic formulas, are translated into CHR constraints
and added to the initial state of the constraint store.

(3) The CHR inference engine is run, repeatedly applying the rules to the constraint store until no rules
match or until the fail constraint, signaling failure, is derived.

(4) The argument constraints in the store, i.e. the constraints of the form

argument (<id>, [<variable>, ... 1)

are then translated into Carneades arguments and added to the argument graph.

(5) Assumptions of arguments are added to the assumptions of the argument graph.

(6) For each argument constructed by translating an argument constraint, undercutting arguments are
constructed and also added to the argument graph for any exceptions of the applied scheme. The
appropriate scheme is retrieved using the identifier of the scheme in the argument constraint.

(7) Finally, the arguments are evaluated, using the formal model of structured argument in [12], to
weigh and balance the arguments, resolve attack relations among arguments and label the state-
ments in the argument graph in, out, or undecided.

In addition to supporting multiple conclusions in schemes, we have extended argumentation schemes
in further ways, in order to support the full expressiveness of Constraint Handling Rules. To illustrate
one of these extensions, supporting simplification, here is a reconstruction of the CHR rules for partial
orders, represented as argumentation schemes:

- id: reflexivity
variables: [X]
deletions:

- leg(X,X)
conclusions:
- true

T.F. Gordon et al. / Representing argumentation schemes 101

- id: antisymmetry
variables: [X,Y]
deletions:
- leg(X,Y)
- leg(Y,X)

conclusions:
- X=Y

- 1d: transitivity
variables: [X,Y,Z]
premises:

- leqg(X,Y)
- leqg(Y,z)
conclusions:
- leg(X,2)

- id: idempotence
variables: [X,Y]
premises:

- leg(X,Y)
deletions:

- leg(X,Y)
conclusions:

- true

All of the premises which are to be deleted from the constraint store when the scheme is applied are
listed in a deletions block of the scheme. Thus, similar to CHR simpagation rules, argumentation
schemes here combine the features of CHR simplification and propagation rules.

One caveat is order: Although all CHR rules can be expressed in Carneades, it is not possible in
Carneades to formulate the query needed to reproduce the example presented in Section 2. This is be-
cause CHR queries are represented by Carneades assumptions and assumptions are restricted to ground
atomic formulas. This restriction assures that all arguments are fully instantiated. That is all premises,
conclusions, exceptions and assumptions of arguments are assured to be ground atomic formulas.

Carneades can be configured to use one of two different implementations of CHR for generating ar-
guments from argumentation schemes using the method presented above: the implementation of CHR
which comes pre-installed with SWI Prolog,” and a new implementation of CHR in the Go program-
ming language, by the second author of this paper.® This new implementation of CHR is still under
development but nearing completion. While we do not expect it to have the performance and maturity of
the SWI Prolog implementation, it offers several advantages for Carneades: it eliminates a dependency
on another system, making it easier to install and administer a Carneades server, and it enables us to
experiment with CHR extensions. Two extensions have already been implemented:

http://www.swi-prolog.org/
8https://github.com/hfried/GoCHR

http://www.swi-prolog.org/
https://github.com/hfried/GoCHR

102 T.F. Gordon et al. / Representing argumentation schemes

(1) Since CHR is Turing complete, termination of CHR programs cannot in general be guaranteed.
Our implementation of CHR allows the user to set a maximum number of rule firings, to assure
termination within roughly predictable time limits, and returns the arguments constructed before
the limit was reached. The engine can be restarted to generate further arguments. This is very much
in line with the purpose and spirit of argumentation, as a rational method for problem solving and
decision-making when information is inconsistent or incomplete.

(2) The second example argumentation scheme in the introduction, for defeasible modus ponens, can-
not be implemented using the SWI Prolog version of CHR. While it allows second-order variables
in the body (conclusion) of rules, it does not allow them in the head (premises). We are not sure
whether this is a limitation of the SWI Prolog implementation of CHR, or the CHR specification.
Either way, our implementation of CHR removes this restriction and allows second-order variables
in both the head and body of rules, enabling defeasible modus ponens to be represented.

4. Validation

In this section we attempt to validate the rule language for argumentation schemes and demonstrate
its expressiveness by using it represent twenty argumentation schemes, mostly from [25], selected on
the basis of their representativeness and wide-use in practice. To allow the reader to evaluate for him-
or herself the adequacy of the representations, we present the original formulation alongside our rep-
resentation for each scheme. When the original source of a scheme is not [25], the source text will be
referenced.

The schemes are presented in alphabetical order. To save space, the declarations of the predicates of the
language are not presented. The complete source code, including the missing declarations, is available
on Github.’

4.1. Abductive argumentation scheme

Premises

e D is a set of data or supposed facts in a case.
e Each one of a set of accounts A , A,, ..., A, is successful in explaining D.
e A; is the account that explains D most successfully.

Conclusions

e Therefore, A; is the most plausible hypothesis in the case.

id: abduction
variables: [S,T,H]
premises:

- Observed(S)

- explanation(T,S)

- in(T,H)
conclusions:

- H

9https://github.com/carneades/carneades-4/blob/master/examples/AGs/YAML/walton.yml

https://github.com/carneades/carneades-4/blob/master/examples/AGs/YAML/walton.yml

T.F. Gordon et al. / Representing argumentation schemes 103

exceptions:
- more_coherent_explanation (T, S)

4.2. Argument from analogy

Premises:

e Generally case C; is similar to case C,
e A istrue in case C;

Conclusions
e A is true in case C,
Critical Questions

o Are there differences between C; and C, that would tend to undermine the force of the similarity
cited?

o Is A true (false) in C;?

e Is there some other case C3 that is also similar to Cy, but in which A is false (true)?

id: analogy
variables: [C,A]
premises:
- similar_case(C)
- 1in_case(A,C)
conclusions:
- A
exceptions:
- relevant_differences(C)
- more_on_point (A,C)

In our reconstruction of the scheme from analogy, an implicit current case is compared to the precedent
case, C. The first premise checks whether the precedent is similar to the current case, and the second
premise checks that a given statement, A, is true in the precedent case. The first exception, modelling
the first critical question, asks whether there are relevant differences between the current case and the
precedent. The second exception asks whether there is a more on point case than C in which A is not
true. The second critical question is not modeled explicitly, since it merely reiterates the second premise,
asking whether the statement is really true in the precedent.

4.3. Argument from appearance

Premises
e This object looks like it could be classified under verbal category C.
Conclusions

e Therefore this object can be classified under verbal category C.

104

T.F. Gordon et al. / Representing argumentation schemes

Critical Questions

e Could the appearance of its looking like it could be classified under C be misleading for some
reason?

e Although it may look like it can be classified under C, could there be grounds for indicating
that it might be more justifiable to classify it under another category D?

id: appearance
variables: [0O,C]
premises:

- looks_1like(0O,C)
conclusions:

- instance (0, C)

4.4. Argument from cause to effect

Premises

e Generally, if A occurs, then B will (might) occur.
o In this case, A occurs (might occur).

Conclusions

e Therefore, in this case, B will (might occur).

Critical Questions

e How strong is the causal generalization (if it is true at all)?
o Is the evidence cited (if there is any) strong enough to warrant the generalization as stated?
e Are there other factors that would or will interfere with or counteract the production of the

effect in this case?

id: cause_to_effect
variables: [A,B]
premises:

- causes (A, B)

- has_occurred(2)
conclusions:

- will occur (B)
exceptions:

- interference (A)

The first two critical questions are not explicitly included in the reconstruction, because they both

attack the first premise, rather than articulating exceptions (undercutters) or assumptions. Premise at-
tacks and rebuttals are modeled with separate argumentation schemes, rather than by exceptions and

assumptions of a scheme.

T.F. Gordon et al. / Representing argumentation schemes 105
4.5. Argument from correlation to cause

Premises

e There is a positive correlation between events £ and E;

Conclusions

e E, causes E,

id: correlation_to_cause
variables: [El,E2]
premises:

- correlated(El,E2)
conclusions:

- causes (E1,E2)
assumptions:

- explanatory_theory (El,E2)
exceptions:

- causes_both(E1l,E2)

4.6. Argument from defeasible modus ponens

Premises

e A= B
e A

Conclusions

e B

id: defeasible_modus_ponens
variables: [A,B]
premises:
- implies (A, B)
- A
conclusions:
- B

In the original version, the = symbol denotes a defeasible conditional, not a strict (material) condi-
tional. Similarly, in the reconstruction the implies predicate also is intended to denote a defeasible

conditional.
4.7. Argument from definition to verbal classification

Premises

e A fits definition D
e For all x, if A fits definition D, then x can be classified as having property G.

106 T.F. Gordon et al. / Representing argumentation schemes

Conclusions
e A has property G
Critical Questions

e What evidence is there that D is an adequate definition, in light of other possible alternative
definitions that might exclude A’s having G?

o Is the verbal classification in the classification premise based merely on a stipulative or biased
definition that is subject to doubt?

id: definition_to_verbal classification
variables: [0O,G,D]
premises:
- satisfies_definition(0O,D)
- classified_as (D, G)
conclusions:
- instance(0,G)
exceptions:
- inadequate_definition (D, G)

4.8. Argument from established rule

The version of the argument from established rule we use here is from [22]. No critical questions were
formulated for this version of the scheme.

Premises

e If rule R applies to facts F in case C, conclusion A follows.
e Rule R applies to facts F in case C.

Conclusions

e In case C, conclusion A follows.

id: established_rule
variables: [C,R]
premises:

- has_conclusion(R,A)

- applicable(R)
conclusions:

- A
assumptions:

- valid(R)

In our reconstruction of the scheme for argument from established rule, the facts and case have been
abstracted away, using an applicable predicate, which is intended to mean that the rule R applies to
the facts of the current case. Notice that we have added an assumption for questioning the validity of the
rule, which was not formulated in the original version.

T.F. Gordon et al. / Representing argumentation schemes 107
4.9. Ethotic argument

Premises

e If x is a person of good (bad) moral character, then what x says should be accepted as more
plausible (rejected as less plausible).
e a is a person of good (bad) moral character.

Conclusions
e Therefore, what x says should be accepted as more plausible (rejected as less plausible).
Critical Questions

e Is a a person of good (bad) moral character?
o Is character relevant in the dialogue?
o [s the weight of presumption claimed strongly enough warranted by the evidence given?

- id: ethoticl
variables: [P, S]
premises:
- asserts (P, S)
— good_moral_character (P)
conclusions:
- S
assumptions:
— character_is_relevant (S)

id: ethotic2
variables: [P, S]
premises:
- asserts (P, S)
- bad_moral_character (P)
conclusions:
- =S
assumptions:
— character_is_relevant (S)

The first scheme for ethotic arguments, ethoticl, has a second-order variable, S, as its conclusion.
The conclusion —S, of the second scheme, ethotic2, however, is, a first-order atomic proposition,
with — being a unary predicate symbol, not a logical operator. Neither CHR nor Carneades has a built-
in negation operator, but in Carneades all pairs of atomic propositions of the form P and —P can be
declared, in a single declaration, to be logical complements, which cannot both be accepted (in) in the
same argument graph. If this is done, ethoticl and ethotic2 can be used to construct rebuttals.

4.10. Argument from expert opinion

Premises

e Source E is an expert in subject domain S containing proposition A.
e FE asserts that proposition A is true.

108 T.F. Gordon et al. / Representing argumentation schemes

Conclusions
e A istrue.
Critical Questions

e How credible is E as an expert source?

Is E an expert in the field that A is in?

What did E assert that implies A?

Is E personally reliable as a source?

Is A consistent with what other experts assert?
Is E’s assertion based on evidence?

id: expert_opinion
variables: [W,D,S]
premises:
- expert (W,D)
- in_domain (S, D)
- asserts (W, S)
conclusions:
- S
exceptions:
- untrustworthy (W)
- inconsistent_with_other_ experts(S)
assumptions:
- based_on_evidence (asserts (W, S))

4.11. Argument from ignorance

This version of the scheme from ignorance is in the 2008 compendium [25], but the two critical
questions of the scheme were added later, in [24].

Premises

o If A were true, then A would be known to be true.
e It is not the case that A is known to be true.

Conclusions
e Therefore, A is not true.
Critical Questions

o How deep has the search been?
e How deep does the search need to be in order to prove the conclusion that A is false to the
required standard of proof in the investigation?

T.F. Gordon et al. / Representing argumentation schemes 109

id: ignorance
variables: [A]
premises:

- would_be_known (A)

— —known (A)
conclusions:

- —A
exceptions:

— uninvestigated (A)

In the reconstruction, the two critical questions are modeled by a single exception, where the
uninvestigated predicate is intended to mean that the statement A has not been sufficiently in-
vestigated.

4.12. Argument from negative consequences

Premises

e If A is brought about, then bad consequences will occur.
Conclusions

e Therefore, A should not be brought about.
Critical Questions

e How strong is the likelihood that the cited consequences will (may, must) occur?

e What evidence supports the claim that the cited consequences will (may, must) occur, and is it
sufficient to support the strength of the claim adequately?

e Are there other opposite consequences (bad as opposed to good, for example) that should be
taken into account?

id: negative_consequences

variables: [A,G]
premises:
- brings_about (A, G)
- bad (G)
conclusions:

— =should_be_performed (A)

The critical questions are not modeled as exceptions or assumptions in the reconstruction. The first
critical question asks about the weight of the argument. Weighing arguments is built in to the model
of structured argument we are applying [12] and applies to all schemes, without the need for explicit
exceptions or assumptions. We have interpreted the second critical question as merely challenging the
first premise. Every premise can be questioned in our model of structured argument, without needing
to explicitly enumerate critical questions for each premise. Alternatively, this critical question could
have been interpreted as meaning that the premise is actually an assumption, not requiring proof until
the question is asked. The final critical question asks whether there are any rebuttals. Rebuttals too are
handled directly by the model of structured argument, without needing to add an explicit critical question
asking for possible rebuttals to each scheme.

110 T.F. Gordon et al. / Representing argumentation schemes
4.13. Argument from position to know

Premises

e Source a is in position to know about things in a certain subject domain S containing proposition
A.
e a asserts that A is true (false).

Conclusions
e A is true (false).
Critical Questions

e Is a in position to know whether A is true (false)?
e Is a an honest (trustworthy, reliable) source?
e Did a assert that A is true (false)?

id: position_to_know
variables: [W,S,A]
premises:

- position_to_know (W, S)

- in_domain (A, S)

- asserts (W, A)
conclusions:

- A
exceptions:

- dishonest (W)

In the reconstruction, the source is denoted by W (for witness) instead of a, because schema variables
must begin with an uppercase letter and the variable A is already used, to denote the statement being
asserted. The first premise of the source version is split into two premises in the reconstruction. The first
states that W is in a position to know things in the domain S. The second states that A is in the domain
S.

Only one of the critical questions is explicitly modeled in the reconstruction, with an exception asking
whether W is dishonest, modeling the second critical question in the source version. The other two
critical questions simply ask whether the premises are true.

4.14. Argument from positive consequences

Premises

e If A is brought about, good consequences will plausibly occur.
Conclusions

o Therefore, A should be brought about.
Critical Questions

e How strong is the likelihood that the cited consequences will (may, must) occur?

T.F. Gordon et al. / Representing argumentation schemes 111

e What evidence supports the claim that the cited consequences will (may, must) occur, and is it
sufficient to support the strength of the claim adequately?

e Are there other opposite consequences (bad as opposed to good, for example) that should be
taken into account?

id: positive_conseqguences
variables: [A,G]
premises:
- brings_about (A, G)
- good (G)
conclusions:
- should_be_performed (A)

The critical questions of the scheme for argument from positive consequences are the same as for
the scheme for arguments from negative consequences. The reasons for not including exceptions or
assumptions for these critical questions in the reconstruction are the same.

4.15. Argument from practical reasoning

Here we present two schemes for practical reasoning, from Atkinson and Bench-Capon [2] and Wal-
ton et al. [25]. We show how to represent both, simply because they have both been influential in the
literature.

Atkinson and Bench-Capon’s value-based version is:

In the current circumstances R

We should perform action A

Which will result in new circumstances S
Which will realise goal G

Which will promote some value V.

Notice that Atkinson and Bench-Capon do not distinguish premises and conclusions of the scheme.
They do however list critical questions:

e Are the believed circumstances true?
e Assuming the circumstances, does the action have the stated consequences?
e Assuming the circumstances and that the action has the stated consequences, will the action bring

about the desired goal?

Does the goal realise the value stated?

Are there alternative ways of realising the same consequences?

Are there alternative ways of realising the same goal?

Are there alternative ways of promoting the same value?

Does doing the action have a side effect which demotes the value?

Does doing the action have a side effect which demotes some other value?
Does doing the action promote some other value?

Does doing the action preclude some other action which would promote some other value?
Are the circumstances as described possible?

Is the action possible?

Are the consequences as described possible?

112 T.F. Gordon et al. / Representing argumentation schemes

e Can the desired goal be realised?
e Is the value indeed a legitimate value?

Here is are reconstruction of Atkinson and Bench-Capon’s scheme for practical reasoning:

id: value_based_practical_reasoning
variables: [A,S1,S2,G,V]
premises:

- current_circumstances(S1l)

- would_bring about (A,S1l,S2)

- would_be_ realized (G, S2)

- would_promote_value (G,V)
conclusions:

- should_be_performed (A)
assumptions:

- legitimate_value (V)

- worthy goal (G)

- possible(A)
exceptions:

- bring_about_more_effectively(S2,A)

- realize_more_effectively(G,A)

- promote_more_effectively (V,A)

- side _effects(A,S1)

Now, here is Walton’s scheme for instrumental practical reasoning, called “practical inference” in
[25]:

Premises

e I have a goal G.
e Carrying out this action A is a means to realize G.

Conclusions
e Therefore, I ought (practically speaking) to carry out this action A.

Critical Questions

e What other goals that I have that might conflict with G should be considered?

e What alternative actions to my bringing about A that would also bring about G should be
considered?

e Among bringing about A and these alternative actions, which is arguably the most efficient?

e What grounds are there for arguing that it is practically possible for me to bring about A?

e What consequences of my bringing about A should also be taken into account?

id: instrumental_practical_reasoning
variables: [A,S1,S2,G]
premises:

- current_circumstances (S1l)

T.F. Gordon et al. / Representing argumentation schemes

would_bring about (A, S1,S2)
would_be_realized (G, S2)

conclusions:

should_be_performed (A)

assumptions:

possible (A)
possible (G)

exceptions:

bring about_more_effectively(S2,A)
realize_more_effectively (G, A)
intervening_actions (A, G)
side_effects (A, S1)
incompatible_goal (G)

4.16. Argument from precedent

113

The version of argument from precedent we have chosen is from [23]. The critical questions included
here are new. They were not explicated in [23].

Premises

e () is a previously decided case.

e In case Cy, rule R was applied and produced finding F.
e (, is a new case that has not yet been decided.

e (; is similar to C; in relevant respects.

Conclusions

e Rule R should be applied to C, and produce finding F'.

Critical Questions

e There relevant differences between C; and Cs.
e Rule R is not applicable in C5.

id: precedent
variables: [F,C,R]
premises:

- similar case(C)

- rule_of case(R,C)

- has_conclusion(R,F)
conclusions:

- F
exceptions:

relevant_differences (R,F)
inapplicable_rule (R)

114 T.F. Gordon et al. / Representing argumentation schemes

In our reconstruction of the argument from precedent, the second case, C,, representing the current
case, is left implicit. This is because we want the conclusion to be that F' is true, rather than F is true in
case C», so that the argument can be used to support arguments having F as a premise. Since there is only
one case mentioned in the reconstruction, we have renamed C; to C. We have reduced the four premises
to three, by combining the first and fourth premises into a single premise, the first in the reconstruction,
meaning that C is a previously decided case which is similar to the current case.

4.17. Slippery slope arguments

Premises

e A is up for consideration as a proposal that seems initially like something that should be
brought about.

e Bringing up Ay would plausibly lead (in the given circumstances, as far as we know) to Ay,
which would in turn plausibly lead to A,, and so forth, through the sequence A,, ..., A,.

e A, is a horrible (disastrous, bad) outcome. Conclusion: Ay should not be brought about.

Conclusions
e A(should not be brought about.
Critical Questions

e What intervening propositions in the sequence linking up Ay with A,,. are actually given?

e What other steps are required to fill in the sequence of events, to make it plausible?

e What are the weakest links in the sequence, where specific critical questions should be asked
on whether one event will really lead to another?

id: slippery_ slopel
variables: [A,E]
premises:

- would_realize(A,E)

- horrible_costs (E)
conclusions:

- negative_consequences (A)

id: slippery_slope?2
variables: [El,E2]
premises:

- causes(El,E2)

- horrible costs (E2)
conclusions:

- horrible costs(El)

Notice that our reconstruction of the slippery slope scheme splits the scheme into two, where the
second scheme represents an inductive step in a recursive argument for proving that events which cause
events with horrible costs also have, indirectly, horrible costs. The base case in such a recursive argument
would be covered by facts or assumptions stating that some particular events have horrible costs.

T.F. Gordon et al. / Representing argumentation schemes 115

The reconstruction does not explicitly model the critical questions, using exceptions and assumptions.
The first two critical questions are handled by the recursive (second) scheme, which chains together a
sequence of events. The third critical question merely attacks the causality premise of the second scheme.
Premise attacks are built into the model of structured argument and do not require critical questions to
be expressed or represented.

4.18. Argument from sunk costs

The version of the scheme for argument from sunk costs below is from [25], except for the critical
questions, which are new. No critical questions for the scheme were formulated in [25].

In the following scheme, let #; be the time of the proponent’s commitment to a certain action (pre-
commitment) and #, be the time of proponent’s confrontation with the decision of whether to carry out
the pre-commitment or not.

Premises

e There is a choice at #, between A and —A.
e At I am precommitted to A because of what I did or committed myself to at #;.

Conclusions
o Therefore, I should choose A.

Critical Questions

Is there some hope of completion of the course of action?

Should the projected future losses of continuing this course of action outweigh the value of my
commitment to continuing with it?

e Are my prior commitments important enough to warrant continuing this course of action, even
though continuing might not lead to success in the future?

Are cost benefit calculations applicable?

id: sunk_costs
variables: [A,C]
premises:

- sunk_costs (A, C)

- too_high_to_waste(C)
conclusions:

- should_be_performed(A)
assumptions:

- feasible ()
exceptions:

- future_losses_outweigh(A)

In the reconstruction, we have not modeled the first premise, which states there is a choice to be made
between A and —A. This premise only makes explicit that there is a choice to be made between accepting
and not accepting the conclusion of the scheme. Such premise could be added to every scheme, but is not
really necessary or useful, since this choice is built-in to the underlying framework or logic of structured
argumentation. The second premise, about being precommitted to the action, has been split into two in

116 T.F. Gordon et al. / Representing argumentation schemes

the reconstruction, one fixing the amount of the sunk costs, C, and the other claiming that these costs
are too high to waste.

The first critical question, about there being some hope to complete the course of action, has been
modeled in the reconstruction as an assumption, feasible (A), which is intended to mean that it is
still feasible to complete the course of action. The other critical questions have been combined into a
single exception in the reconstruction, future_losses_outweigh (A), which is intended to mean
that projected future losses outweigh the sunk costs and the value of completing the project, in a cost-
benefit analysis.

4.19. Argument from verbal classification

Premises

e a has property F.
e For all x, if x has property F, then x can be classified as having property G.

Conclusions
e a has property G.
Critical Questions

e What evidence is there that a definitely has property F', as opposed to evidence indicating room
for doubt about whether it should be so classified?

o Is the verbal classification in the classification premise based merely on an assumption about
word usage that is subject to doubt?

id: verbal classification
variables: [O,F,G]
premises:

- instance (O, F)

- subclass (F,G)
conclusions:

- instance (0, G)

4.20. Argument from witness testimony

Premises

e Witness W is in a position to know whether A is true or not.
e Witness W is telling the truth (as W knows it).
o Witness W states that A is true (false).

Conclusions
e A is true (false).
Critical Questions

e Is what the witness said internally consistent?

T.F. Gordon et al. / Representing argumentation schemes 117

Fig. 1. Global warming example.

Is what the witness said consistent with the known facts of the case (based on evidence apart

from what the witness testified to)?

id:

Is what the witness said consistent with what other witnesses have (independently) testified to?
Is there some kind of bias that can be attributed to the account given by the witness?
How plausible is the statement A asserted by the witness?

witness_testimony

variables: [W,D,S]
premises:

position_to_know (W, D)
in_domain (D, S)
believes (W, S)
asserts(w, S)

conclusions:

S

assumptions:

internally consistent (S)

exceptions:

inconsistent_with_ known_facts(S)
inconsistent_with_ other witnesses(S)
biased (W)

implausible(S)

Figure 1 shows a simple example of how these schemes can be used by Carneades 4 to automatically
generate, evaluate and visualize an argument graph, given the following assumptions:

- expert (joe, climate)

- asserts (joe, ncaused_by (global_warming, humans))

— in_domain (—caused_by (global_warming, humans), climate)

— inconsistent_with_other_experts (—-caused_by(global_warming, humans))

118 T.F. Gordon et al. / Representing argumentation schemes

5. Conclusions

Our experiments with using Constraint Handling Rules (CHR) to represent argumentation schemes
for the purpose of generating arguments have been encouraging.

We have successfully implemented twenty representative argumentation schemes [25], including their
critical questions.10 Nine of these twenty schemes, about half, have conclusions which are second-
order variables. Only one of the schemes, defeasible modus ponens, has a second-order variable as a
premise. Our implementation of CHR has been extended to allow second-order variables in the premises
of schemes.

Using CHR as a foundation for implementing argumentation schemes provided us with an opportunity
to extend the concept of an argumentation scheme in various ways, to make it possible to represent any
CHR rule as an argumentation scheme. This method for representing and implementing argumentation
schemes inherits all of the attractive features of CHR, including Turing completeness, the possibility
of concurrent execution, support for stopping and restarting computation at any time, with intermediate
results available for use, and support for inputting further information incrementally during dialogues
and other argumentation processes.

Conversely, the synthesis of CHR and argumentation provided by Carneades provides additional ben-
efits not provided by CHR alone. CHR has no concept of negation. Carneades issues can model negation
or, more generally, a set of conflicting positions of issues. Moreover, CHR provides no built-in support
for defeasible reasoning. We use CHR to generate pro and con arguments, which are then evaluated
in a post-process, using a model of structured argument, to support defeasible reasoning by weighing
and balancing arguments and resolving attack relations among arguments. Most importantly, our sys-
tem produces arguments which can be used to explain and understand CHR inferences, for example by
visualizing the arguments in argument maps.

While the method presented here for generating arguments using Constraint Handling Rules was de-
veloped for the latest version of the Carneades model of structured argument [12], it can be adapted
for use in any model of argument in which arguments are constructed by instantiating argumentation
schemes. We leave it for future research by others to adapt the method to other models of structured
argument.

Acknowledgements

This work was partially funded by the Social Sciences and Humanities Research Council of Canada
(SSHRC), in the Carneades Argumentation System project (Insight Grant 435-2012-0104), and by Mi-
crosoft, in the DUCK project.

References

[1] S. Abdennadher, T. Frithwirth and C. Holzbaur, Introduction to the special issue on constraint handling rules, Theory and
Practice of Logic Programming 5(4-5) (2005), 401-402. doi:10.1017/S1471068405002346.

[2] K. Atkinson and T.J.M. Bench-Capon, Practical reasoning as presumptive argumentation using action based alternating
transition systems, Artificial Intelligence 171(10-15) (2007), 855-874. doi:10.1016/j.artint.2007.04.009.

10https://github.com/carneades/carneades-4/blob/master/examples/AGs/ YAML/walton.yml

http://dx.doi.org/10.1017/S1471068405002346
http://dx.doi.org/10.1016/j.artint.2007.04.009
https://github.com/carneades/carneades-4/blob/master/examples/AGs/YAML/walton.yml

(3]
(4]
(5]
(6]

(7]
(8]

(9]
[10]
[11]
[12]

[13]
[14]

[15]

[16]
[17]
[18]

[19]
[20]

[21]
(22]

(23]

[24]
[25]

T.F. Gordon et al. / Representing argumentation schemes 119

T. Bench-Capon, K. Atkinson and A. Wyner, Using argumentation to structure e-participation in policy making, in: Trans-
actions on Large-Scale Data-and Knowledge-Centered Systems XVIII, Springer, 2015, pp. 1-29.

T. Bench-Capon and M. Sergot, Toward a rule-based representation of open texture in law, in: Computer Power and Legal
Language, C. Walther, ed., 1988, pp. 39-60.

L. Brownston, R. Farrell, E. Kant and N. Martin, Programming in OPS5: An Introduction to Rule-Based Programming,
Addison-Wesley Longman, Boston, 1985.

B.G. Buchanan and E.H. Shortliffe (eds), Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project, Addison-Wesley, Reading, Mass., 1984.

W.E. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag, 1981.

PM. Dung, R.A. Kowalski and F. Toni, Assumption-based argumentation, in: Argumentation in Artificial Intelligence,
I. Rahwan and G.R. Simari, eds, Springer, 2009, pp. 199-218. doi:10.1007/978-0-387-98197-0_10.

T. Frithwirth, Constraint Handling Rules, Cambridge University Press, 2009. doi:10.1017/CB09780511609886.

T.F. Gordon, Constructing arguments with a computational model of an argumentation scheme for legal rules — Interpret-
ing legal rules as reasoning policies, in: Proceedings of the Eleventh International Conference on Artificial Intelligence
and Law, ACM Press, 2007, pp. 117-121.

T.F. Gordon, H. Prakken and D. Walton, The Carneades model of argument and burden of proof, Artificial Intelligence
171(10-11) (2007), 875-896. doi: 10.1016/j.artint.2007.04.010.

T.F. Gordon and D. Walton, Formalizing balancing arguments, in: Proceeding of the 2016 Conference on Computational
Models of Argument (COMMA 2016), 10S Press, 2016, pp. 327-338. doi:10.3233/978-1-61499-686-6-327.

P. Hammond, APES: A user manual, Technical report, 1983.

R. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986), 67-95. doi:10.1007/
BF03037383.

E.S.L. Lam and M. Sulzmann, A concurrent constraint handling rules implementation in Haskell with software transac-
tional memory, in: Proceedings of the 2007 Workshop on Declarative Aspects of Multicore Programming, DAMP 07,
ACM, New York, NY, USA, 2007, pp. 19-24. ISBN 978-1-59593-690-5. doi: 10.1145/1248648.1248653.

J.L. Pollock, Defeasible reasoning in OSCAR, The Computing Research Repository, 2000, https://arxiv.org/pdf/cs/
0003012.

H. Prakken, An abstract framework for argumentation with structured arguments, Argument & Computation 1 (2010),
93-124. doi:10.1080/19462160903564592.

C. Reed and G. Rowe, Araucaria: Software for puzzles in argument diagramming and XML, Technical Report, Department
of Applied Computing, University of Dundee, 2001.

M. Snaith and C. Reed, TOAST: Online ASPIC+ implementation, COMMA 245 (2012), 509-510.

J. Sneyers, T. Schrijvers and B. Demoen, The computational power and complexity of Constraint Handling Rules, ACM
Trans. Program. Lang. Syst. 31(2) (2009), 8:1-8:42, ISSN 0164-0925. doi:10.1145/1462166.1462169.

B. Verheij, Virtual Arguments, TMC Asser Press, The Hague, 2005. doi:10.1007/978-90-6704-661-9.

D. Walton, An overview of the use of argumentation schemes in case modeling, in: Modelling Legal Cases, K. Atkinson,
ed., Huygens Editorial, 2009, pp. 77-89.

D. Walton, Similarity, precedent and argument from analogy, Artificial Intelligence and Law 18(3) (2010), 217-246.
doi:10.1007/s10506-010-9102-z.

D. Walton, Argument mining by applying argumentation schemes, Studies in Logic 4(1) (2011), 38-64.

D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press, 2008. doi:10.1017/
CB09780511802034.

http://dx.doi.org/10.1007/978-0-387-98197-0_10
http://dx.doi.org/10.1017/CBO9780511609886
http://dx.doi.org/10.1016/j.artint.2007.04.010
http://dx.doi.org/10.3233/978-1-61499-686-6-327
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/10.1007/BF03037383
http://dx.doi.org/10.1145/1248648.1248653
https://arxiv.org/pdf/cs/0003012
https://arxiv.org/pdf/cs/0003012
http://dx.doi.org/10.1080/19462160903564592
http://dx.doi.org/10.1145/1462166.1462169
http://dx.doi.org/10.1007/978-90-6704-661-9
http://dx.doi.org/10.1007/s10506-010-9102-z
http://dx.doi.org/10.1017/CBO9780511802034
http://dx.doi.org/10.1017/CBO9780511802034

	Introduction
	Argument from expert witness testimony
	Defeasible modus ponens

	Constraint handling rules
	Representation and implementation of argumentation schemes
	Validation
	Abductive argumentation scheme
	Argument from analogy
	Argument from appearance
	Argument from cause to effect
	Argument from correlation to cause
	Argument from defeasible modus ponens
	Argument from definition to verbal classification
	Argument from established rule
	Ethotic argument
	Argument from expert opinion
	Argument from ignorance
	Argument from negative consequences
	Argument from position to know
	Argument from positive consequences
	Argument from practical reasoning
	Argument from precedent
	Slippery slope arguments
	Argument from sunk costs
	Argument from verbal classification
	Argument from witness testimony

	Conclusions
	Acknowledgements
	References

