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Abstract. In multi-agent systems (MAS), abstract argumentation and argumentation schemes are increasingly important. To be
useful for MAS, argumentation schemes require a computational approach so that agents can use the components of a scheme to
construct and present arguments and counterarguments. This paper proposes a syntactic analysis that integrates argumentation
schemes with abstract argumentation. Schemes can be analysed into the roles that propositions play in each scheme and the
structure of the associated propositions, yielding a greater understanding of the schemes, a uniform method of analysis, and
a systematic means to relate one scheme to another. This analysis of the schemes helps to clarify what is needed to provide
denotations of the terms and predicates in a semantic model.
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1. Introduction

Argumentation has proved useful in multi-agent systems (MAS) to represent dialogue (e.g. [33]),
reasoning about action selection (e.g. [2,27]), and reasoning with inconsistent knowledge bases (KBs)
[9,24,25] in argumentation frameworks [23]. Argumentation schemes (AS) originated in informal logic
(e.g. [22,35]) to represent arguments that are acceptable in ordinary conversation but are classical falla-
cies. A catalogue of schemes appears in [36]. They have also been used in computational argumentation
to generate arguments and attacks on arguments, thus integrating ASs into abstract argumentation frame-
works. For example, in one approach, schemes can be viewed as defeasible inference rules in a KB as
in ASPIC+ [25]. A second approach refines the definition of a scheme by providing a semantic model,
where the syntactic constituents of the AS have corresponding denotations in the model, e.g. the Prac-
tical Reasoning scheme in [5,6]; an instance of an AS is taken as an abstract Dungian argument, and
arguments that attack it can be generated with reference to the model. A structural analysis of ASs
also appears in [30]. Arguments generated using these approaches can be organised into argumentation
frameworks, where arguments and attacks between them can be represented as nodes and arcs in directed
graphs. Argumentation frameworks can be evaluated using a variety of semantics, such as grounded, pre-
ferred, and stable. A third approach relates ASs in ontological terms [28], which supports the annotation
of texts. These approaches are related and address different parts of the computational analysis, use, and
evaluation of ASs.

In this paper, we extend the second approach in a novel way by functionally tying together an abstract
argument, the role of each proposition in an argumentation scheme, and the structure of the propositions.
The result is a formal, fine-grained, and systematic analysis of argumentation schemes that feeds into
abstract argumentation. The analysis is presented stepwise, starting from source data and proceeding
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to successively more abstract levels, along the way providing an intermediate level of representation for
ASs. In this, the analysis systematically connects the source natural language expression of the argumen-
tation scheme with its abstract argument; instantiated ASs provide arguments suitable for argumentation
frameworks, while having an appropriate internal structure that can be used to capture important el-
ements of the meaning of the original text. We establish a methodology for analysing ASs into their
constituent parts that is suitable for computational modelling, in particular, the functional and Logic
Programming paradigms. We use our analysis to relate schemes in virtue of common predicates and
terms, where the conclusion of one scheme provides part of the justification in some other scheme. This
offers a different perspective from the class-subclass relationships that arise naturally when building an
ontology of schemes. In our view, it is key to have a detailed analysis of AS syntax in order to provide
a basis for development of fine-grained semantic models and for generating attacks from those models.
The paper contributes to the theory of MAS argumentation by providing an analysis of ASs that can be
used in argumentation between agents.

The chief novel contributions of the paper are: the levels of analysis of ASs from natural language
arguments to coarse-grained and fine-grained computational forms, the connection between the scheme
structure and its constitutive propositions, and the specification of computational relationships between
schemes. The analysis can also be used to understand some of the different formulations of ASs as
in [5,15,25,32], though we do not carry out such a comparative study here. From a larger perspective,
the analysis begins to bridge the gap between the realisations of argumentation in natural language and
their formal analysis. The analysis elaborates [5], where the ASs can be grounded in a semantic model,
yielding benefits similar to those in model based diagnosis systems [16,31], where we can reason from
first principles specific to the domain.

In Section 2, we discuss the levels of ASs, starting from a natural language instance of an AS and
ending with abstract arguments. Initially, the analytic method is illustrated for the Position to Know
AS. Section 3 formalises our analysis. The method is extended in Section 4 to various arguments about
matters of fact, where we also discuss the relationships between schemes. In Section 5, we discuss the
analysis, related work, and future directions.

2. Levels of description in argumentation schemes

Following [35], an AS is a stereotypical pattern of reasoning in which the premises give a presumptive
reason to accept the conclusion. ASs are intended to be used in a dialogical context, where they are given
as justifications for a conclusion and are subject to a critique covering a set of points characteristic of
the particular scheme. An interlocutor might pose questions to elicit an answer that either contradicts,
reaffirms, or otherwise weakens the rhetorical force of the AS. Consider, for example, the well-known
Argument From Position to Know, where E is an individual and P a proposition; we will use this scheme
as a running example.

• If E is in a position to know P ; and
• E asserts P .
• Therefore P .

This is not a logically sound argument, but is widely used and accepted. Like any argument, this argu-
ment can be attacked by offering reasons to believe that its conclusion is false (rebuttal), by showing that
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Table 1

Levels of description of argumentation schemes

Level Representation Reference
6 Canonical sentences [36]
5 Labelled roles and strings [15,32]
4 Labelled roles and instantiated predicates [4,5]
3 Functional roles and instantiated predicates [25]
2 Functional roles and typed propositional functions [4]
1 Atomic arguments [23]

one of the premises is false (undermining), or by giving a reason to believe that the rule is inapplicable
(undercut).1

To understand, interrelate, implement, and make ASs compatible with argumentation frameworks,
we analyse them at different levels of representation. Hitherto, the lack of a formal analysis of the
instantiated forms of the schemes as found in informal logic, such as [36], has given rise to confusion,
especially in relation to abstract argumentation. This has proven a barrier to the meaningful use of ASs
in computational models. To clarify these matters, we introduce a method of analysis that yields several
related levels of representation from natural language expressions to fully abstract arguments, where the
scheme level sits in the middle. Table 1 indicates the representation and an indicative, relevant reference.
Each level is exemplified and discussed in Section 2.1. Our main, novel proposal is an articulation of
Level 2, which in our view is the appropriate level to refer to an AS that relates to an argumentation
framework.

There are three related objectives of the analysis. First, we want to relate ASs in natural language to
arguments that can then be evaluated in abstract argumentation frameworks, providing a method that
can be applied to a variety of ASs. Second, we want to analyse the characteristic components of a
particular AS, giving the roles of the propositions in the AS and the associated internal structure of the
propositions. Third, we want to relate ASs one to the other in light of their characteristic components. In
this section, we address the first two points. The third point is discussed further in Section 4. We illustrate
the method with our running example scheme, moving from a concrete example to successively more
analytic representations (from Sixth to First levels in Table 1). Underlying the manner of presentation is
the assumption that our analysis in this section proceeds by analysing fragments, where a fragment is a
subset of the language for which we develop a syntax and semantics [21]; that is, we do not attempt to
provide an analysis for all ASs of the “whole” language, which is indeterminate. Each AS uses its own
fragment; as we understand additional ASs, we extend the analysis.

What counts as an AS or as different ASs is not clear in the literature, where the same AS can be
seen in various formulations, and different catalogues of schemes are given (a point further discussed in
Section 4). We presume canonical forms, selected from the range of synonymous lexical and syntactic
variants, while acknowledging this is subject to further research. For our running example, we have the
following, where the presumptive conclusion follows from the conjunction of the two premises.

Level 6 – Canonical sentences.

• Ms. Peters is in a position to know whether Mr. Jones was at the party.
• Ms. Peters asserts that Mr. Jones was at the party.
• Therefore, presumptively, Mr. Jones was at the party.

1There is no terminological consensus about the ‘parts’ of arguments. For our purposes, we follow the terminology in [25].
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2.1. From argumentation scheme data to abstract arguments

Starting with the AS data in natural language of Level 6, we incrementally decompose it into its
formal, constitutent parts and their relationships, showing the method not only provides the result for
this particular scheme, but also shows how to analyse other ASs in a systematic manner. In Section 3,
we provide our formal language of ASs.

From the data, we identify: the terms and predicates of the argument’s propositions, and the roles that
propositions play in the AS. We use these to draw out some guiding intuitions. The terms and predicates
could be expressed in a suitable logic of the associated expressions and represented in a KB. As for roles,
there appear to be two distinct sorts that propositions play in ASs – scheme generic and scheme specific.
The scheme generic roles associate propositions with the logical role in the argument irrespective of the
propositional content, much as the logical connectives apply to any proposition; in contrast, scheme spe-
cific roles highlight aspects of domain information in the propositions, where specific schemes present
specific content. There is a fixed and finite set of scheme generic roles such as are typically labelled
Premise and Conclusion;2 in principle, any proposition could fulfill these roles. The scheme specific
roles identify the particular role in respect of the propositional content of the proposition that the roles
apply to. For instance, with respect to our sample scheme, we have propositions about an individual
being in a position to know and about the assertion that individual makes. The scheme requires two
premises, one of each type, and linked in a specified way.

2.1.1. Level 5
These guiding intuitions indicate that it will be useful to represent the specific roles as modifiers of

the generic roles, giving us a positionToKnow-Premise, an assertion-Premise, and a conclusion; such
labelled roles appear in the appendix of [36], though not consistently nor with further analysis. More
specifically, we subsort and label the premises for the role that the proposition plays in the argument.
Interestingly, there is no related conception of differentiating the conclusion with respect to specific ASs;
this is to do no more than to say that all ASs have a conclusion; we shall have reason to revise this view
where we discuss Level 3 since plainly conclusions are tied to schemes.

Level 5 – Labelled roles and strings.

• positionToKnow-Premise: Ms. Peters is in a position to know whether Mr. Jones was at the party.
• asserts-Premise: Ms. Peters asserts that Mr. Jones was at the party.
• concludes: Mr. Jones was at the party.

The assumption here (and the other levels below) is that where the premises conjunctively hold, the
conclusion presumptively follows.

2.1.2. Level 4
At Level 5, there is an implicit relationship between the labels and the content of the strings, which

needs to be analytically explicit; after all, the positionToKnow-Premise ought not to label just any string.

2There may be alternatives, e.g. assumption, issue, and ordinary premise, as in [25], Definition 3.5, though they are not
highly relevant for us at the moment. However, we note the point is a bit subtle. For example, whether a particular proposition
is an exception or assumption or ordinary premise (to follow the terminology of [15]) is tied to the propositional content, the
relation of the given proposition to the other propositions in the argument, or even on whether the speaker or the hearer has the
burden of proving the proposition if it challenged; that is, even these generic roles are contextual in the argument, and as the
context varies, so varies the role. The important point for our purposes is that the generic roles are not themselves labelled with
respect to the domain terminology.
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To draw out this relationship, we represent the predicates and terms, helpfully reusing the predicate in
the role label:

Level 4 – Labelled roles and instantiated predicates.

• positionToKnow-Premise: positionToKnow(Ms. Peters, Mr. Jones was at the party).
• asserts-Premise: asserts(Ms. Peters, Mr. Jones was at the party).
• concludes: Mr. Jones was at the party.

In other words, we have not only labelled strings, but we have begun to formalise the meaning of the
string in a correlated logic-like language.

However, before further analytic steps, we add to our representation premises for rules. In our view, it
is useful to be able to differentiate arguments concerning acceptance of the rule as it is from those con-
cerning normative circumstances for the application of the rule. In general, arguments have a structure
idealised as Modus Ponens of Classical Propositional Logic, where there are premises that are literals
as well as a rule that has the literals in the antecedent of the rule and another literal in the conclusion;
where the literals and rule hold, one infers that the conclusion of the rule holds. There are strict and
defeasible rules, symbolically indicated with → and � respectively. However, while Modus Ponens of
Classical Propositional Logic must explicitly provide the rule, in arguments as they commonly appear,
rules seem rarely to be stated explicitly as a premise of the argument: if someone says Q since P, this
introduces the presupposition that the speaker has committed to P as well as to a rule if P, then Q. As
ASs are presumptive, they would include a defeasible rule. We believe defeasible rules in ASs appear
under two “guises” – the rule itself and a rule with respect to normative circumstances; for the former,
we can argue whether or not we accept the rule, while for the latter we can argue that though we accept
the rule, the circumstances are not normative for its application. For our purposes in formalising ASs, it
is important to explicitly express the rule as we can then allow two different ways to attack an AS with
respect to a rule.

For a rule that is accepted, we can simply state the rule. For a normative application of a rule, we
believe that a theory of circumscription [19,20] is useful. Broadly, circumscription presumes that the
situation is as normal or regular as we understand it ought to be, given our knowledge. It addresses
the frame problem by bounding explicit conditions to only those generally understood to be relevant to
solving a problem and excluding irrelevant exceptional circumstances; it handles inertia by assuming
that unless explicitly changed by an action, all else remains constant. Of course, for reasoning about
different circumstances and actions, there are distinct relevant conditions or consequences of actions.
Thus, some representation of such variety is needed.

To make relativised circumscription explicit, we use of a designated predicate abCirc applied to a
rule ri , abCirc(ri), which means the circumstances are abnormal for the application of the rule ri . We
introduce ¬abCirc(ri) as a negated premise (an exception), which we label ceteris paribus, meaning “all
other things being equal”; a rule applies unless the circumstances are abnormal.3 Where abCirc(ri) holds,
the circumstances are abnormal and ceteris paribus is perturbed, so we cannot reason to the conclusion
even though the rule holds; we have undercut the applicability of the rule. Where ¬abCirc(ri) holds,
the circumstances fulfill ceteris paribus, so we can reason to the conclusion using the rule, assuming the
premises of the rule also hold. While we can give a list of sufficient conditions for abCirc to hold, this
list will never, even in principle, be complete. On the other hand, we may have a circumstance which
fulfills ceteris paribus, yet, it is argued that the rule itself is not correct; here, we have undermined the

3Ceteris paribus is used in the physical and social sciences to hold factors constant for the application of the rule.
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argument by denying the rule premise. The abCirc predicate and rule appear in our running example as
follows, which is still Level 4, but with the auxiliary information about the rule and the abCirc predicate:

Level 4 – Labelled roles and instantiated predicates with abCirc and rule.

• positionToKnow-Premise: positionToKnow(Ms. Peters, Mr. Jones was at the party).
• asserts-Premise: asserts(Ms. Peters, Mr. Jones was at the party).
• ceterisParibus-Premise: ¬abCirc([positionToKnow(Ms. Peters, Mr. Jones was at the party) ∧

asserts(Ms. Peters, Mr. Jones was at the party)] � Mr. Jones was at the party).
• rule-Premise: [positionToKnow(Ms. Peters, Mr. Jones was at the party) ∧ asserts(Ms. Peters, Mr.

Jones was at the party)] � Mr. Jones was at the party.
• concludes: Mr. Jones was at the party.

The ceteris paribus premise is easily recovered from the rule, so can be suppressed. Literals and the
rule are taken from the KB to construct the AS; consequently, given the AS itself with the premises and
conclusion, we can recover the rule, so that we can suppress it as well.

2.1.3. Level 3
To this point, we have a logic-like expression of an AS. One of our chief goals is to relate ASs to

argumentation frameworks, which requires that we associate ASs with abstract arguments. One approach
to this association is the ASPIC approach to argumentation, best expressed in [25] and referred to as
ASPIC+. We will draw comparisons to ASPIC+ in the remainder of this paper, noting where we deviate
from it, e.g. circumscription deviates from [25], Definition 3.4. We turn to [25], Definition 3.6 and
dependent definitions, where arguments are defined syntactically and generic roles are functions from
arguments to propositions from the KB. There are several parts to the definition that are relevant to our
purpose – arguments, rules, and premises/conclusions. Our analysis proceeds in two analytic steps, first
introducing functions from arguments to expressions of a KB (along the lines of [25]), then introducing
propositional functions, which abstract from the propositions of Level 4.

In [25], arguments are syntactic abstract objects in the sense that they are constructed from expressions
in the KB. These objects are then are used in an argumentation framework. In contrast, we do not
provide a syntactic definition of arguments, but of ASs; arguments themselves are semantic abstract
objects – individuals in the semantic model to which we can apply functions and which have attributes.4

Furthermore, while arguments may be atomic or complex (having subarguments), we consider for our
purposes arguments without subarguments (though we return to this topic later).

Turning to the specific structure of an argument in [25], Definition 3.6, the elements of the arguments
(premise, conclusion, and rule) are not just listed informally (as in Levels 4 and 5), but are functions
from arguments. We assume a KB, which in [25], is expressed in a well defined language and subject to
some (unspecified) logic. The Prem function is from arguments to the set of literals from the KB, giving
the premises; the function Conc is from arguments to a literal from the KB, giving the conclusion.

In ASPIC+, premises are homogenised rather than differentiated as in Levels 4 and 5. To give more
fine-grained semantic information as required for ASs, we subsort the premise function into several
premise functions (and keep a function for the conclusion); thus, the premises are heterogeneous. Fur-
thermore, we want to explicitly associate the premises with the predicates and terms of the correlated
expression; to do this, we prefix the premise function with the predicate of the associated expression.
In addition, as we are considering the structure of ASs and not just some particular instance, we want

4Arguments have the attributes of abstract objects: they do not “exist” as objects that have physical attributes, yet they can
be quantified over (every argument), referred to (that argument), and bear properties (an attractive argument) [3].
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the level of representation where the expressions have not yet been grounded. The justification for sub-
sorting the premises is that literals play different and restricted roles in an AS, and the justification for
particular premises of an AS may depend on the literal being justified. These distinctions are not made
explicit in a homogeneous structure for arguments. For instance, to define the Position to Know AS,
there must be one proposition that presents the position to know, one proposition that presents the as-
sertion, and (aside from the rule and the abCirc predicate) no other premises. Moreover, the justification
for the positionToKnow-Premise is different from the justification of the asserts-Premise. Turning to the
concludes function, we find that it is important to clearly differentiate the sorts of the conclusions of
arguments (particularly where the rule is suppressed): the conclusion of an AS is semantically particular
to that AS, e.g. the meaning of the Position to Know AS conclusion is systematically different from the
meaning of the conclusion of the Practical Reasoning AS, and so on for other ASs. Furthermore, where
ASs are combined and unified, a point we illustrate in Section 4, it is technically important to differen-
tiate conclusions. Therefore, we assume that the conclusion function is differentiated with respect to the
AS; in other words, a conclusion of an AS is a conclusion of that AS and not of another AS.

Following this analysis, we have functions applied to an argument ai :

Level 3 – Functional roles and instantiated predicates.

• positionToKnow-PremiseF(ai) = positionToKnow(Ms. Peters, Mr. Jones was at the party).
• asserts-PremiseF(ai) = asserts(Ms. Peters, Mr. Jones was at the party).
• ceterisParibus-PremiseF(ai) = ¬abCirc([positionToKnow(Ms. Peters, Mr. Jones was at the

party) ∧ asserts(Ms. Peters, Mr. Jones was at the party)] � Mr. Jones was at the party).
• rule-PremiseF(ai) = [positionToKnow(Ms. Peters, Mr. Jones was at the party) ∧ asserts(Ms.

Peters, Mr. Jones was at the party)] � Mr. Jones was at the party.
• positionToKnow-ConcludesF(ai) = Mr. Jones was at the party.

2.1.4. Level 2
However, the previous levels are not, in our view, truely schemes since they are all fully instantiated,

that is, we are using predicates and terms that are constants rather than predicates and variables. To
represent a scheme as such, we must abstract over the instantiated expressions. Here we present the for-
malisation of the working AS; in Section 3, we provide a general, formal language of ASs. As predicates
are key to our analysis of ASs, we suppose a syntactically typed and semantically sorted language for the
expressions of the KB. For example, Xargument is a variable subtyped for argument, Yperson is a variable
subtyped with respect to person, while Yliteral is a variable subtyped with respect to literal (an atomic
proposition, which bears a truth value, or its negation). The variables for literals are a convenience since
they could be analysed as predicates applied to terms, but this requires a more extensive analysis than is
needed for our purposes. We assume that predicates are also typed and sorted with respect to the types
and sorts of their terms (but suppress this in the presentation for readability). The syntactic terms and
predicates have denotations in corresponding semantic sorts. As we assume only finitely many sorts,
we could instead use more verbose expressions in an unsorted first order language with unary predi-
cates that partition the domain of discourse. For instance, rather than Yperson and Vbook, we could instead
have predicates such as person(x) and book(x), where no individual is both a person and book. By the
same token, Logic Programming is untyped, but can achieve the effect of typing with special, defined
predicates. Broadly speaking, the predicate and term types simplify the discussion; a richer discussion
requires, among other things, representations for intensional “objects” such as the propositions that are
the complements of propositional attitudes. We refer to propositions with free variables as propositional
functions since they are functions from individuals (or ordered n-tuples of individuals) to truth values; the
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propositional function would, when instantiated, represent a literal or a relation between an individual
and a literal.

Turning to the AS functions, we have premise functions associated with predicates, indicated as
X -PremiseF , from variables of type Xargument to the corresponding propositional function, where
X is a string that matches the predicate of the propositional function. We have a concludes func-
tion Y-concludesF , where the Y string is the label for the AS; in our working AS, Y-ConcludesF
is a function from variables of type Xargument to a variable of type Zliteral. For example, where the
premise function is positionToKnow-PremiseF(Xargument), the output is positionToKnow(Yperson, Zliteral);
for positionToKnow-ConcludesF(Xargument), the output is Zliteral.

Finally, the ceterisParibus-Premise and rule-Premise are constructed with respect to the other premise
functions. The ceterisParibus-Premise functions are from variables of type Xargument to expressions of
type abCirc, which are propositional functions of the form ¬abCirc(rule-PremiseF(Xargument)); this is
well formed when the argument is instantiated. The rule-Premise function is from variables of type
Xargument to expressions of type Rule. In turn, expressions of type Rule have a specific structure – the
body of the rule is the set of premise functions associated with predicates (above), and the head of the
rule (the conclusion) is a literal from the KB.5 The formal definitions for both these sorts of premise
functions are given in Section 3.

We can now represent our working example AS formally in a language compatible with formal argu-
mentation, where the instantiation of Xargument is an abstract argument in an argumentation framework.
Yet, the important point is that our schematic representation connects the argument with the proposi-
tional functions that, given suitable grounding, represent the semantic content of the scheme.

Level 2 – Functional roles and typed propositional functions.

• positionToKnow-PremiseF(Xargument) = positionToKnow(Yperson, Zliteral).
• asserts-PremiseF(Xargument) = asserts(Yperson, Zliteral).
• ceterisParibus-PremiseF(Xargument) = ¬abCirc(rule-PremiseF(Xargument)).
• rule-PremiseF(Xargument) = [positionToKnow(Yperson, Zliteral) ∧ asserts(Yperson, Zliteral)] � Zliteral.
• positionToKnow-ConcludesF(Xargument) = Zliteral.

As in Prolog clauses, variables must be consistently instantiated within a scheme. At this level of anal-
ysis, we have term variables and propositional functions, yet the scheme functions and the predicates
are instantiated.6 In our view, this is the appropriate level to bear the title argumentation scheme as such
since, properly speaking, a scheme is only a scheme when it has uninstantiated term variables for the
propositional functions. Yet, the conceptual content of the particular AS is represented by the specific
propositional functions.

Before discussing the next level, we digress. One might propose another abstract scheme where we
have an unsorted premise function, which is conceptually equivalent to the premise function as found in
ASPIC+ [25], Definition 3.6. Here the output of the function conj-Premise is not a literal or a relation,
but a conjunction of literals; the output of conj-Concludes is a literal from among the conjoined literals;

5In argumentation, the rule may be attacked either with respect to abnormal circumstances or the rule itself; thus the negation
of a rule or an abCirc predicate may appear as the conclusion of an argument. While such arguments can be formalised in
ASPIC+ [25], our formalisation does not characterise them as argumentation schemes, which are prototypical, presumptive
patterns of reasoning, as we are not aware of such patterns where the conclusion is the negation of a rule or an abCirc predicate.
Should it demonstrated otherwise, our formalisation would change accordingly.

6We could abstract over the predicates and functions as well given a second order language.
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the rule is strict, and there is no abCirc predicate. As a whole, the argument has the form of Conjunc-
tion Reduction in Propositional Logic; it is unclear to us what such a scheme means where the rule is
applicable ceteris paribus since in principle for such a scheme there cannot be any relevant variation in
context.

Conjunction reduction.

• conj-PremiseF(Xargument) = Xliteral, ∧, . . . , ∧Zliteral.
• rule-PremiseF(Xargument) = [Xliteral, ∧, . . . , ∧Zliteral] → conj-ConcludesF(Xargument).
• conj-ConcludesF(Xargument) = Yliteral.

While one might take this as a “generic” AS, we propose that it is something different from the AS we
find at Level 2 in three respects. First, there are no functions that depend on the semantic content of the
literals. Second, it is not an abstract representation of our presumptive, defeasible ASs since conjunction
reduction is strict. Third, other ASs have conjunctive premises (though differentiated) and the premise
function of Conjunction Reduction is not associated with any semantic content of the literals. For these
reasons, we prefer to only call structures in the form of Level 2 an AS and not structures of the form for
Conjunction Reduction or other standard inference rules of Propositional and Predicate Logic, which we
refer to as Logical Schemata. It may be that there are ASs that have a representation where the premises
are unsorted, but this remains an open question for us.

Conjunction Reduction should not be conflated with an AS that has a conjunction of literals. For
instance, in an analysis of the Value-based Practical Reasoning AS [5], it is proposed that there are
premises that represent the current circumstances and consequences of actions, each of which denote
a state that can be specified as a conjunction of literals. As with other ASs, such a scheme requires
some extension to the fragment currently under discussion, in particular to express circumstances, con-
sequences, actions, and values. This seems straightfoward, as actions and values type variables, and we
can allow circumstance and consequence predicates on a conjunction of literals; we have the associated
functions on arguments. Because of this, we can say such a scheme is represented in the manner of
Level 2.

2.1.5. Level 1
Returning from the digression, we have Level 1 where we have argument individuals, {a0, . . . , an},

that ground ASs at Level 2, associating these individuals with properties. Argument individuals are the
objects which can be used (given attacks as specified in Section 3) for evaluation in an argumentation
framework as in [23] and subsequent work. Given indexed argument individuals and the functional defi-
nition of argumentation schemes, we can always recover (by the inverted function) the semantic content
that the argument is related to; in this respect, we can identify such an argument with the instantiated AS
in which it appears, for the AS may be taken as the characterisation or internal structure of the argument.
In this respect our analysis differs from abstract argumentation, where arguments as [23] are not associ-
ated with any AS, have no internal structure, and cannot justify any conclusion nor justify attacks since
the internal structure of the arguments is not available. Rather abstract arguments are used in the evalua-
tion of sets of arguments. In contrast, justifications are a primary motivation for our analysis of ASs. On
the other hand, our analysis does not introduce undue complexity into abstract argumentation itself, in
which regard our analysis serves as a systematic bridge between abstract and instantiated argumentation.

To end this section, it is important to emphasise again that the language we have outlined above is an
indicative specification for the fragment, not a formal specification of this or all ASs since the range of
alternative interpretations or possible expressions remains to be determined. More broadly, it remains
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to be investigated how expressive the language of arguments must be to accommodate the expressive
range of linguistic forms. But, we have already indicated how this might be done for one AS, and we
will see how this can be done for other ASs in Section 4. As well, there may be reason to further analyse
the Position to Know AS; for instance, properly speaking, the “object” of the predicate “know” is better
represented as a proposition in an intensional semantics, yet to provide this analysis opens the door to a
fuller formal analysis of natural language syntax and semantics [13], which while relevant, detracts from
the focus in this paper on the formal analysis of ASs. On the other hand, we assume that the premise
functions are as fine-grained as their corresponding propositional functions.

3. A functional language for argumentation schemes

In this section, we present our formal language for ASs. We have a language, specifications for ASs,
identity conditions, and a definition of the attack relation. We assume a logical language L, a finite lan-
guage of syntactically typed and semantically sorted predicates, terms, and variables. We have illustrated
a fragment of such a language above and leave further specification open-ended and extensible since it
depends not just on what schemes we want to represent, but also on further analysis of the schemes we
have. We assume classical negation ¬.7 There are expressions of type Rule that are strict → or defeasible
�; the bodies are conjoined expressions of L, and the heads are propositions of L. As a subset of the
variables, we have types and sorts for arguments and literals. We also have a designated predicate abCirc
that applies to expressions of type Rule. Finally, we have a finite set of AS labels, G.8 With respect to
the language, we have component definitions.

Definition 1 (AS Functions).

1. A set of functional premises D, where the functions have the form:
X ′-PremiseF(Xargument) and are from variables of type Xargument to the propositional function where
the predicate is X . X ′ is an element of G, X is an element of the predicates of L, and X ′ is
functionally derived from X .

2. A set of functional ceterisParibus premises N , where the functions have the form:
ceterisParibus-PremiseF(Xargument) and are from variables of type Xargument to a propositional func-
tion of the form ¬abCirc(Z), where Z is of type Rule and the rule connective is �.

3. A set of functional rule premises R, where the functions have the form:
rule-PremiseF(Xargument) and are from variables of type Xargument to an expression of type Rule and
the rule connective is �.

4. A set of functional conclusions C, where the functions have the form:
Y-ConcludesF(Xargument) and are from variables of type Xargument to a literal Z , and Y is an element
of G.

Definition 1 formalises the parts of ASs, where the Level 2 representation is an example; the functions
on arguments are defined with respect to the content of the correlated propositions. Definition 1 (1.) pro-
vides the non-rule premises of the AS, associating the particular label of the premise to the propositional
function; Definition 1 (2.–3.) are the rules of the AS; Definition 1 (4.) is the conclusion. The functions

7Though see discussion in [25] on a contrariness function.
8We suppress a one-to-one function from predicates to correlated labels, which are strings that can serve as prefixes to the

premise and conclusion function.
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define argumentation schemes, not more general patterns of reasoning that also serve as arguments and
are definable in terms of ASPIC+ [25] such as Conjunction Reduction discussed above. In particular,
arguments with a conclusion that is the negation of a ceterisParibus or a rule premise are not elements
of C.9

Definition 2 (Function distribution).

1. There is a non-empty set DASi
⊂ D; and

2. There is exactly one function NASi
∈ N ; and

3. There is exactly one function RASi
∈ R; and

4. There is exactly one function CASi
∈ C.

Definition 3 (Function constraints).

1. For NASi
of form ceterisParibus-PremiseF(Xargument), such that

ceterisParibus-PremiseF(Xargument) = ¬abCirc(RASi
);

and
2. For RASi

, where the output expression is a rule with body B and head H, B = DASi
(the set

interpreted conjunctively), and H ∈ L; and
3. CASi

= H.

Definition 2 constrains the numbers of functions for a particular AS, while Definition 3 ties the ceter-
isParibus premise to the rule and the rule to the other premises and conclusion of the AS.

Definition 4 (Definition of AS well-formedness). An ASi is well-formed if and only if the functions are
given as in Definitions 1–3, and ASi = DASi

∪ {NASi
} ∪ {RASi

} ∪ {CASi
}.

Definition 4 specifies that an AS is well-formed if and only if it has all the relevant “parts” of an AS.

Definition 5 (AS identity conditions). ASi and ASj are identical if and only if ASi = ASj , otherwise
ASi �= ASj .

Given our set-theoretic definition of an AS, Definition 5 for the identity condition is such that any
two ASs are identical if and only if they have all the same “parts”. This is a rather stringent constraint
since, after all, different wording or syntactic structures might be used in two natural language ASs,
but which are taken to be synonymous. These are general, well-known issues of lexical semantic and
syntactic analysis, e.g. when are two sentences related by synonymy, contradiction, or entailment [11].
Other relationships between schemes can be defined set-theoretically, e.g. subarguments. Both topics are
touched on in Section 4.

Finally, we turn to the various notions of attack, where one argument attacks another with respect to
specific “parts” of an AS.

9The rationale for this constraint on well-formed argumentation schemes is empirical – we know of no proposal for patterns
of presumptive, defeasible reasoning for ceterisParibus or a rule statements; where such examples to be provided, the definition
of C would be generalised.
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Definition 6 (Argument attack). Xargument attacks Yargument, Xargument �= Yargument, if and only if Xargument

rebuts Yargument, or Xargument undermines Yargument, or Xargument undercuts Yargument.10

Definition 7 (Rebuttal, Undermining, and Undercutting).

1. Xargument rebuts Yargument if and only if

X -ConcludesF(Xargument) = ¬(
Y-ConcludesF(Yargument)

)
.

2. Xargument undermines Yargument if and only if

– X -ConcludesF(Xargument) = ¬(Z-PremiseF(Yargument)), for some premise prefix Z; or
– X -ConcludesF(Xargument) = ¬(rule − PremiseF(Yargument)).

3. Xargument undercuts Yargument if and only if

X -ConcludesF(Xargument) = ¬(
ceterisParibus-PremiseF(Yargument)

)
.

These notions of attack are closest to the basic attack conceptions of [23,25], not to richer notions
of defeat, where attacks are relativised to preferences or values [1,8], though one might incorporate
them. It is worth emphasising (following [9,25]) that arguments and attacks on arguments are entirely
constructed from information found in the (inconsistent) knowledge base, meaning that there are no ad
hoc attacks. At this point, we can turn attention to the structure of a set of closely related schemes.

4. Relating schemes

Having introduced a method and a formalisation illustrated with a worked example, we consider richer
schemes and their relationships. A compendium of ASs is provided in [36]. Assuming that all schemes
are represented in (or translated to) our formalisation of ASs, an AS is specified by its functions as in
Definition 4; relationships between ASs such as identity and subset can be expressed in set theoretic
terms. We discuss a family of schemes for arguing about facts to illustrate these relationships.

In 4.1, we discuss two ways to analyse ASs about facts. First, we take several schemes catalogued
in [36] and express them in our formalisation, showing several limitations. Then, because of the limita-
tions, we propose a reanalysis of the schemes into a main scheme Credible Source (also in [36]) with
subsidiary ASs for particular premises, which are novel and not found in the literature, yielding a ‘tree-
like’ structure of related ASs (cf. [18]). Thus, unlike the compendium of ASs as in [36], we provide
some decomposition and structure to ASs and their relationships. The analysis shows the strengths of
our approach, for it helps to clarify fundamental issues about particular analyses of ASs, which can lead
to improved ASs, and additional definitions on ASs.

10This encodes the conception that no instantiated argumentation scheme (and so no argument) can attack itself, which could
only be the case were the conclusion of an argument to contradict a premise, rule, or abCirc of the same argument. Were
such contradictions to arise within an argument, then any conclusion could be drawn. This follows the widespread conception
in instantiated argumentation, e.g. [9,25], that arguments are internally consistent and that inconsistency only arises between
distinct arguments.
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4.1. Arguing about facts

In [36], several related ASs are reported to establish matters of fact:

1. Argument from Position to Know (PK): Source S is in a position to know about things in subject
domain D containing proposition P; and S asserts that P is true (false). Therefore, P is true (false).

2. Argument from Expert Opinion (EO): Source E is an expert in subject domain D containing
proposition P; and E asserts that proposition P is true (false). Therefore, P is true (false).

3. Argument from Witness Testimony (WT): Witness W is in position to know whether P is true
or not; Witness W is telling the truth (as W knows it); and Witness W states that P is true (false).
Therefore, P may be plausibly taken to be true (false).

4. Argument from Perception (P): Person P has an image I (an image of a perceptible property);
and to have an image I (an image of a perceptible property) is a prima facie reason to believe that
the circumstances C exemplify I. Therefore, it is reasonable to believe that C is the case.11

There appear to be two directions to take the analysis, and we illustrate them each to highlight how our
approach shows issues concerning AS analysis. In one way of analysis, the direct analysis, we take the
ASs essentially as they are, represent their logical forms, and then relate them. In the second approach,
reanalysis, we reanalyse the variant schemes into essentially a main argument, here Credible Source,
with subsidiary arguments for premises of the main scheme.

4.2. Direct analysis

The schemes PK, EO, WT, and P are clearly related, yet there are a range of variations which are
not clearly relevant to the argument, and the schemes should be normalised and canonicalised to support
formal integration (leaving standardisation open for future research). For example, all the conclusions are
presumptive statements that some state of affairs holds. Yet, this only appears in WT. As well, we assume
the arguments are always about reasonable belief. In other schemes there is variation such as asserts that
A, asserts that proposition A, and states that. Our analysis forces out such incidental variation. For
our purposes, we normalise the schemes and present them as ASs in our formalisation; some complex
predicates in the data are decomposed in the analysis; propositions are presented as expressions of type
Zliteral. Consistent with our assumptions above, the conclusion functions are all labelled according to the
AS in which they appear, thus relativising the conclusion to the scheme in which it appears.

Position to Know (PK).

• positionToKnow-PremiseF(Xargument) = positionToKnow(Yperson, Zliteral)

• asserts-PremiseF(Xargument) = asserts(Yperson, Zliteral)

• positionToKnow-ConcludesF(Xargument) = Zliteral

Expert Opinion (EO).

• expertAbout-PremiseF(Xargument) = expertAbout(Yexpert, Zdomain)

• inDomain-PremiseF(Xargument) = inDomain(Xliteral, Zdomain)

• asserts-PremiseF(Xargument) = asserts(Yexpert, Xliteral)

• expertOpinionAS-ConcludesF(Xargument) = Xliteral

11In [36, p. 345], it is claimed that what is reasonable to believe is I; however, the argument is not about the image since we
cannot argue about whether or not an individual has an image, which is a question for epistemology rather than argumentation,
but we can argue about whether or not the report of having the image in an argument for circumstances being one way or
another.
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Witness Testimony (WT).

• positionToKnow-Premise(Xargument) = positionToKnow(Ywitness, Zliteral)

• truthTelling-PremiseF(Xargument) = truthTelling(Ywitness)

• asserts-PremiseF(Xargument) = asserts(Ywitness, Xliteral)

• witnessTestimony-ConcludesF(Xargument) = Xliteral

Perception (P).

• perceives-PremiseF(Xargument) = perceives(Yperson, Zpercept)

• perceptSupports-PremiseF(Xargument) = perceptSupports(Zpercept, Vliteral)

• perception-ConcludesF(Xargument) = Vliteral

A range of issues arise about particular analyses, variations in the terms and predicates, and attendant
relationships between the schemes. We see that the ASs intersect on some functions and not on others:
PK and WT have positionToKnow; PK, EO, and WT have asserts; only P has perceptSupports. Each
AS has a different conclusion function, which means that the literal that concludes an instantiated AS is
particular (though not necessarily unique) to each AS.

A deeper level of observations touch on the issue of the fine-grained semantic analysis of
the statements of the AS. To give one example, we see that several ASs have the function
asserts-PremiseF(Xargument), which given our functional assumptions, ought to map to the same propo-
sitional functions. Yet, clearly they do not; in particular, we have predicates such as asserts applying to
terms of different sorts such as person, expert, and witness. This might be taken to imply that either we
have predicates similarly subsorted, to distinguish schemes, or we have polymorphic types.

One possible solution would be simply to abstract over the predicate asserts that varies and define
its possible scope, e.g. R = {expert′, witness′, person′}, which essentially represents the set of sets of
individuals that play a part in such ASs; the logical form for the assertion propositional function would
have this variable in place of expert′(x). In effect, the particular ASs are tied to a higher level abstract
AS that comes with an associated ontology.

While we might treat the asserts-Premise in a relatively homogeneous manner, others are more prob-
lematic. On the face of it, there seems to be some semantic relationship between positionToKnow, ex-
pertAbout, and (perhaps) perceives. Yet, unless this relationship is further specified (as we have done
with respect to asserts), the ASs are otherwise unrelated. A similar point applies to asserts and percept-
Supports.

Unless and until these lexical semantic relationships between terms and predicates are resolved, we
cannot say much more about the relationships between the associated ASs. The discussion is instructive
in any case, for by formally clarifying the space of issues, we can systematically address them in a
coherent manner. For example, one approach is to reanalyse the schemes to homogenise their differences,
which are made subsidiary to a main scheme.

4.3. Reanalysis

In contrast to the direct analysis, we reanalyse the four schemes as subsidiary to or dependent on
a single main scheme, the Argument from Credible Source (CS), which we articulate below; each of
the four dependent schemes is a way of establishing a premise of the main scheme. In other words,
the CS along with particular additional arguments for premises form a tree-like structure, where one
(subsidiary) argument justifies the premise of another argument. This can be seen as an overall argument



A. Wyner / A functional perspective on argumentation schemes 127

with subarguments, where the subarguments are glued together by unification of variables along with
sortal restrictions on terms and predicates. The idea is that we can have a cascade of rules, where more
specialised rules justify predicates that can unify with predicates in the body of some more abstract
rule. For instance, schemes for eyewitness testimony or testimony from videotape may be used to justify
predicates in a more generalised scheme for witness testimony; in turn, witness testimony can be used
to justify predicates in yet a more abstract scheme for credible source. Our analysis extracts conceptual
redundancy from the current analysis of schemes and formally homogenises them.

An analysis along these lines is compatible with a Logic Programming paradigm: a predicate Pi in the
body of a rule Ri unifies with the predicate Pj that is the head of some other rule Rj ; the predicate Pj

has to be justified (true) with respect to the rule Rj , and by the same token we can say that Rj justifies
Pi . There may be alternative ways to justify Pi , given different rules Rk, . . . ,Rl with a predicate in
the head that can unify with Pi . As well, there may be rules that justify other predicates that are in the
body of the rule Ri . Similar points can be made for justifications of predicates in the body of Rj . In the
following, we show such a cascade.

We first formalise a main scheme Credible Source (CS), followed by formalisations of the subsidiary
schemes, and show how we can relate the schemes set theoretically to yield the tree-like structure. We
give the CS in two forms – Levels 6 and 2.

Credible Source (CS).

• John is a credible source about the domain of ornithology.
• John says that female blackbirds are brown.
• That female blackbirds are brown is a statement in the domain of ornithology.
• Therefore, presumptively, female blackbirds are brown.

Functional roles and typed propositional functions.

• credibleSourceAbout-PremiseF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

• assertion-PremiseF(Xargument) = asserts(Yperson, Zliteral)

• statementInDomain-PremiseF(Xargument) = statementInDomain(Zliteral, Vdomain)

• credibleSource-ConcludesF(Xargument) = Zliteral

From our four previous schemes (PK, WT, EO, P), we take these as different ways of arguing for
the CS premise credibleSourceAbout; that is, each of these schemes has as conclusion the propositional
content associated with the credibleSourceAbout premise of the CS.

EO′
• expertAbout-PremiseF(Xargument) = expertAbout(Yperson, Vdomain)

• expertOpinion′-ConcludesF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

PK′
• positionToKnow-PremiseF(Xargument) = positionToKnow(Yperson, Vdomain)

• positonToKnow′-ConcludesF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

WT′
• witnessConcerning-PremiseF(Xargument) = witnessConcerning(Yperson, Vdomain)

• witnessTestimony′-ConcludesF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

P′
• perceivesConcerning-PremiseF(Xargument) = perceivesConcerning(Yperson, Vdomain)

• perceives′-ConcludesF(Xargument) = credibleSourceAbout(Yperson, Vdomain)
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Clearly, EO′, PK′, WT′, and P′ all have the same propositional function as a conclusion, so they are all
seem to be about making the same point, though they differ in how the premises justify the conclusion.
More importantly, we can equate the conclusion of one AS (given a value for Y) with the premise of
another since the following is true:

credibleSourceAbout-PremiseF(Xargument) = Y-ConcludesF(Xargument)

= credibleSourceAbout(Yperson, Vdomain)

And in general, the premises and conclusions of ASs may be related as follows:

Definition 8 (Premise-conclusion tie).

X -PremiseF(Xargument) = Y-ConcludesF(Yargument) = Vliteral,

where X �= Y , and Xargument �= Yargument.

Consider a worked example. Suppose that we are making use of the PK′, CS, and (for clarity) the
equivalence of the premise and conclusion. Prior to instantiation, we have:

• PK′

– positionToKnow-PremiseF(Xargument) = positionToKnow(Yperson, Vdomain)

– positionToKnow′-ConcludesF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

• CS

– credibleSourceAbout-PremiseF(Xargument) = credibleSourceAbout(Yperson, Vdomain)

– assertion-PremiseF(Xargument) = asserts(Yperson, Zliteral)

– statementInDomain-PremiseF(Xargument) = statementInDomain(Zliteral, Vdomain)

– credibleSource-ConcludesF(Xargument) = Zliteral

• Premise-conclusion equivalence

– credibleSourceAbout-PremiseF(Xargument) = positionToKnow′-ConcludesF(Yargument) =
credibleSourceAbout(Yperson, Vdomain)

When we instantiate the schemes and unify the variables, the denotations of the schemes are tied
together. Suppose that for a person john′, a domain, ornithology′, and a literal female_blackbirds_are_
brown′, we have the following instantiation:

• PK′

– positionToKnow-PremiseF(ai) = positionToKnow(john′, ornithology′)
– positionToKnow′-ConcludesF(ai) = credibleSourceAbout(john′, ornithology′)

• CS

– credibleSourceAbout-PremiseF(ai) = credibleSourceAbout(john′, ornithology′)
– assertion-PremiseF(ai) = asserts(john′, female_blackbirds_are_brown′)
– statementInDomain-PremiseF(ai) = statementInDomain(female_blackbirds_are_brown′,

ornithology′)
– credibleSource-ConcludesF(ai) = female_blackbirds_are_brown′
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• Premise-conclusion equivalence

– credibleSourceAbout-PremiseF(ai) = positionToKnow′-ConcludesF(ai) =
credibleSourceAbout(john′, ornithology′)

From this, we see that with a contribution from PK′, the conclusion from CS is female_blackbirds_are_
brown′.

The other ASs – EO′, WT′, P′ – could similarly be used. They are mutually compatible where we
can unify the variables, giving different justifications for the same conclusions; where we have different
unifications, then the resultant ASs may be understood as incompatible (or not, depending on other
aspects of the given model). Each of these subsidiary ASs has a conclusion that matches a premise of
the main scheme CS. We could have additional schemes to justify other premises of the CS, and so on,
giving a rich tree made up of a main scheme with several subsidiary layers.

There is a range of lexical semantic issues to address. While our direct analysis may have introduced
too fine-grained an analysis, the reconstruction here may have homogenised important distinctions in
meaning, creating awkward expressions. For instance, is it correct to witness a domain or perceive a
domain? These are different from the more familiar phrases of being an expert about a domain or being
in a position to know about a domain. This suggests some further intermediate structure is required,
where the CS has more abstract predicates that are argued for in more fine-grained ASs.

In our instantiation, we have but one argument individual ai which appears in two distinct ASs; this
arises because of the unification of the argument variable. In [25], arguments have subarguments given
the recursive syntactic definition of arguments. We could reproduce this semantically. Suppose that in
the model, argument individuals are totally ordered by the subargument relation and that we have the
following constraint:

Definition 9 (Subargument).
[
X -PremiseF(Xargument) = Y-ConcludesF(Yargument) = Vliteral

]

→ subargument(Xargument, Yargument), where X �= Y, and Xargument �= Yargument.

One ASi is a subargument of another ASj , where one of the premises of ASi is the same literal as the
conclusion of ASj ; that is, a subargument arises where the instantiation of the conclusion of one AS
unifies with the premise of the instantiation of a different AS. This is not as in [25], where subarguments
are defined recursively such that each branch of an argument tree is a subargument and so is each branch
of each branch and so on. To capture a similar idea in our analysis, we assume the Transitive Closure
of the subargument relation. The problem for us is the precise meaning, use, and importance of the
recursive definition in ASPIC+, particularly where argument attacks are concerned. For our purposes,
we leave investigation of these matters for future research.

5. Discussion and future work

In this paper, we have presented a functional language for a computational analysis of ASs that is com-
patible with argumentation frameworks. We have outlined an extensible methodology, worked through
an example, and shown how ASs in our analysis can be systematically related to one another. In this
section, we discuss some related work, topics that were not addressed in the presentation, and future
work.



130 A. Wyner / A functional perspective on argumentation schemes

There is an abundance of research in ASs. [36] provide a catalogue of ASs at a largely descriptive and
unsystematic level. A range of considerations about ASs are developed in [26], but these do not give
rise to a formal analysis. Some research remains at Level 5, where strings are annotated with respect to
labels [32]. There are computational proposals which do not differentiate premises [25,30], while others
do differentiate premises, but not with respect to the content of the associated propositions, e.g. [15]. ASs
have been analysed for legal argumentation. In [34], an approach to the analysis of schemes is outlined
and exemplified for legal reasoning. There are formalised ASs with propositional functions for legal
case-based reasoning [7,38,39], though these are highly specialised. Moreover, the approach to abstract-
ing arguments is underspecified and not tied to a theory of argumentation, e.g. ASPIC+. None of these
proposals for legal reasoning propose a more general language for ASs. A different line of work provides
an interchange format and associated ontology [29], which allows for differentiated premises; however,
this work does not tie the premise subsorts to the propositional content, much less to the natural lan-
guage statements of the argument; nor does it take into account formal argumentation systems. In [10],
the formal problems with the AIF are addressed by interpreting it in terms of ASPIC+. Our approach
is distinct from ASPIC+ [25] in several ways, where our proposal: has heterogeneous premises; ties the
role of a premise in an AS to the propositional content of the premise; differentiates generic reasoning
patterns from ASs; uses predicate logical structure; and relates the natural language expression of an
AS to a formal, argumentation-theoretic representation. Closest in spirit to our proposal is [4,5], where
a natural language expression of practical reasoning is analysed in terms of predicates and terms with
respect to denotations in a semantic model. In that approach, ASs are construed as arguments, though the
specific translation is underspecified and a language for ASs is not provided. Also related to our proposal
is the Carneades system; the features of the current implementation are given in [14]. The similarities
are not accidental: like our work, Carneades originates in the ESTRELLA and IMPACT Projects,12 al-
though Carneades remains essentially a separate development of an implementation designed to support
different workpackages in those projects.

In Sections 4.2 and 4.3, we pointed to issues about the fine-grainedness of premise functions. Fine-
grainedness arises as there are many ways of expressing or modifying a predicate: one may know indi-
rectly or know in one’s heart; one may assert quietly or state or assert in court. Similarly, the terms of
the predicates may vary with respect to properties of the person or alternative forms of the proposition.
In general, this is related to similar discussions about propositions and propositional attitudes, e.g. belief,
and may warrant a similar treatment [12]. One way to treat some of these issues is to homogenise ter-
minology under synonyms, e.g. asserts in the data is substitutable by said or wrote, so we can presume
these map to the same premise function. The knowledge base may be further enriched for such lexical
semantic information. Alternatively, one may simply use a controlled language [37] to constrain the ex-
pressivity of the language in a given domain. However, this is a general topic that requires significant
further research.

In future work, we look forward to a range of topics. Of a particular interest is the relationship of
ASs to semantic models, critiques, and dialogue. Current examples of semantic models are the Knowl-
edge bases of [25] and the transition systems of [4,5]. We have not discussed the dialogical aspects of
argumentation, nor critical questions, which are questions used to critique the presumptive truth of the
instantiated AS. These topics are closely related, crucial aspects to a full analysis of ASs and argumenta-
tion. Briefly, ASs may be critiqued, using critical questions, in the course of a dialogue, where there are

12ESTRELLA Project (IST-2004-027655): http://www.estrellaproject.org/. IMPACT Project (FP7-ICT-2009-4): http://www.
policy-impact.eu/.

http://www.estrellaproject.org/
http://www.policy-impact.eu/
http://www.policy-impact.eu/
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alternative instantiations of propositions of the AS relative to the semantic model; the questions encode
these alternatives. Models are also used to generate instantiated ASs, some of which may be in attack re-
lations (cf. on these topics [4,5]). In analysing a range of ASs, of special interest is the differentiation of
semantic models with respect to the requirements of the scheme; in other words, the different fragments
of the language are given appropriate semantic models. In [25], three different knowledge bases are pro-
vided, but it differentiates only between facts, strict rules and defensible rules, rather than supporting the
many sorts required by our analysis. We want to differentiate sorts of rules and justify them accordingly,
so that, e.g. rules about causation, definition, observational generalisation, values, assertions, are each
given a distinct sort of justification (and related attacks), and the meanings of the justifications (attacks)
are grounded in an associated semantic model. With such analyses, we could look to implement ASs in
a database for web-based applications [40] and Functional or Logic Programs that instantiate the ASs,
as well as to generate arguments, calculate attacks, and determine extensions.

One final research direction is to investigate the relationships between our formalisation of argumenta-
tion schemes with ongoing work in argumentation mining [17], where arguments in unstructured natural
language corpora are extracted and mapped to abstract arguments for reasoning in Dungian AFs. Cur-
rent techniques apply machine learning to identify topics, classify statements, and relate contrastive
statements. Yet, given the complexity of natural language, current mining approaches do not appear to
account for synonymy, contradiction, or entailment, as these require rich domain and linguistic informa-
tion along with fine-grained syntactic and semantic analysis into a formal language. While our approach
to argumentation schemes also cannot yet be used for argumentation mining, it does provide a theoretical
“target” for such mined arguments, e.g. the normalised expressions and their relationships. In this sense,
our work is the theoretical framework for mining argumentation schemes.
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