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Carneades is a recently proposed formalism for structured argumentation with varying proof
standards, inspired by legal reasoning, but more generally applicable. Its distinctive feature is
that each statement can be given its own proof standard, which is claimed to allow a more natural
account of reasoning under burden of proof than existing formalisms for structured argumen-
tation, in which proof standards are defined globally. In this article, the two formalisms are
formally related by translating Carneades into the ASPICT framework for structured argumen-
tation. Since ASPIC™ is defined to generate Dung-style abstract argumentation frameworks, this
in effect translates Carneades graphs into abstract argumentation frameworks. For this transla-
tion, we prove a formal correspondence and show that certain rationality postulates hold. It is
furthermore proved that Carneades always induces a unique Dung extension, which is the same
in all of Dung’s semantics, allowing us to generalise Carneades to cycle-containing structures.

Keywords: abstract argumentation; structured argumentation; non-monotonic reasoning;
proof standards; burden of proof

1. Introduction

Argumentation involves the construction of arguments in favour of and against statements, select-
ing the acceptable arguments, and in the end determining which statements hold. How arguments
support their conclusion depends on the knowledge they use and the inference rules they apply,
so any full theory of argument evaluation should take the structure and content of arguments
into account. One way to do so is to define a defeat relation between arguments that takes into
account the structure and content of arguments and (if available) information on their relative
strength. This approach thus results in an abstract argumentation framework in the sense of Dung
(1995), so that the full theory of abstract argumentation can be applied. Two frameworks for
structured argumentation that are designed following this approach are assumption-based argu-
mentation (Bondarenko, Dung, Kowalski, and Toni 1997, Dung, Kowalski, and Toni 2009) and
ASPIC* (Prakken 2010). In fact, Prakken (2010) shows that assumption-based argumentation can
be translated into ASPIC™ as a special case.

However, there have also been advances in structured argumentation that diverge from this
approach. A recent application in legal reasoning is the Carneades argumentation system, both
a logical model (Gordon, Prakken, and Walton 2007, Gordon and Walton 2009b) and a soft-
ware toolbox for structured argument evaluation, construction and visualisation (Gordon 2010).
Carneades innovates models of structured argumentation by allowing varying proof standards to
be assigned to individual propositions. It is claimed that this allows for a more natural account of
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reasoning under burden of proof than existing formalisms for structured argumentation, in which
proof standards are defined globally (Atkinson and Bench-Capon 2007, Bench-Capon, Doutre,
and Dunne 2007). This makes the Carneades formalism potentially very attractive, as signified by
the large number of citations due to its proof standards.

Recently, Brewka and Gordon (2010a) translated Carneades into Brewka and Woltran’s (2010b)
abstract dialectical frameworks. Moreover, Brewka, Dunne, and Woltran (2011) have proved a
formal correspondence between abstract dialectical frameworks and Dung’s abstract argumenta-
tion frameworks. By combining these results, a formal relation between Carneades and Dung’s
semantics can be obtained. However, this relation is rather indirect. In this paper, we therefore
take a different approach, by translating Carneades into the ASPIC* framework. Since ASPIC™ is
defined to generate abstract argumentation frameworks, which are the input of Dung’s approach,
a translation of Carneades into ASPIC* provides a more direct way to translate Carneades’ graphs
into Dung’s frameworks. Futhermore, we will prove that Carneades can be modelled cycle-free,
thus always inducing a unique Dung extension, which is the same in all of Dung’s semantics. This
allows us to generalise Carneades’ argument evaluation structures (CAES) to cycle-containing
structures, addressing an important issue left for future research by Gordon and Walton (2009b).
An additional advantage of translating Carneades to ASPIC™ is that the results of Prakken (2010)
on the rationality postulates of Caminada and Amgoud (2007) can be shown to hold for the
translation.

This article is structured as follows: first we will review the necessary background in
Section 2, namely, Dung’s abstract argumentation frameworks and Prakken’s ASPIC™ frame-
work. In Section 3, we introduce Carneades in a different formulation than that of Gordon and
Walton (2009b), keeping only the relevant stage-specific parts. In Section 4, we then establish
a formal relation between Carneades and Dung’s frameworks by developing a translation and
proving formal results.! Finally, in Section 5, we conclude and discuss related and future work.

2. Background

In this section, we briefly review Dung’s abstract argumentation frameworks (Dung 1995), fol-
lowed by an introduction to the structured argumentation frameworks of Prakken (2010). For a
recent in-depth introduction to Dung’s frameworks, see Baroni and Giacomin (2009).

2.1. Abstract argumentation frameworks

In 1995, Dung introduced his seminal theory of argumentation, with which he, due to its abstract
nature, was able to model logic programming and several of the contemporary approaches to
non-monotonic reasoning. By showing that these forms of reasoning can be represented as a form
of argumentation, the relationship between these approaches was clarified.

Dung’s abstract argumentation frameworks consist of a set of arguments ordered by a binary
relation of defeat.”

DEFINITION 2.1 (Abstract argumentation framework) An abstract argumentation framework is a
tuple (Args, Def), such that Args is a set of arguments and Def C Args x Args is a defeat relation
on the arguments in Args.

DErRINITION 2.2 Let AF = (Args, Def) and S C Args.

(1) S is called conflict-free ift =3A, B € S such that (A, B) € Def.
(2) An argument A € Args is acceptable w.r.t. S iff VB € Args, if (B,A) € Def then 3C € §
such that (C, B) € Def.
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(3) The characteristic function of an AF, Fap is a function such that
° FAF . 2Args N 2Args’
o Far(S) = {A|A is acceptable w.r.t. to S}.

(4) A conflict-free set of arguments S is admissible iff every argument A € S is acceptable
w.r.t. S, that is, S C Far(S).

DEerINITION 2.3 (Extensions) Given a conflict-free set of arguments S and an argumentation
framework AF :

S is a complete extension iff S = Fap(S).

S is a grounded extension iff it is the least fixed point of Fag.

S is a preferred extension iff it is a greatest fixed point of Fap.

S is a stable extension iff it is a preferred extension defeating all arguments in Args\S.

Finally, we use Dung’s definition of a well-founded argumentation framework. A well-founded
AF is an AF without cycles or an infinite defeating chain of arguments. We will later prove the
translation of Carneades to be well-founded.

DEFINITION 2.4 (Well-founded argumentation framework) An argumentation framework is well-
founded iff there does not exist an infinite sequence of arguments: Ay, Ay, .. .,A,, ... such that for
each i, (Aj11,A;) € Def.

The differences between the semantics collapse in an argumentation framework in which there
are no cycles.

THEOREM 2.5 (Theorem 30 of Dung (1995)) Every well-founded argumentation framework has
exactly one complete extension which is grounded, preferred and stable.

2.2. Structured argumentation frameworks

The abstract argumentation frameworks by Dung (1995) keep the structure and nature of arguments
and the attack relation unspecified. This allows for general reasoning about the acceptability status
of arguments, but provides no guidance for the modelling of actual argumentation problems. Other
research has therefore taken a structured approach to argumentation (Amgoud 2005, Gordon et al.
2007).

Structured argumentation frameworks (ASPIC™) as defined by Prakken (2010) are a further
development of the ASPIC framework as defined by Amgoud et al. (2006). Prakken’s frameworks
instantiate? the abstract argumentation model of Dung, defining the internal structure of arguments,
defining multiple types of attack and adding preferences to the attack relation, and resulting in a
defeat relation.

The basic building block of a structured argumentation framework is the concept of an argu-
mentation system, extending the standard notion of a proof system. In argumentation systems, the
logical language is left unspecified except for the existence of a contrariness relation (generalisation
of logical negation to asymmetric conflict). Inference rules are divided into strict and defeasible
rules, respectively, of the form ¢y,...,¢, — ¢ and ¢y, ..., ¢, = ¢. Strict rules are interpreted
as “if the antecedents ¢, ..., ¢, hold, then without exception the consequent ¢ holds”, where
for defeasible rules this presumably holds. Finally, the relative strength of defeasible rules can be
determined by means of a partial preorder.
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DEFINITION 2.6 (Argumentation system (Prakken 2010, Def. 3.1)) An argumentation system is
atuple AS = (£,”, R, <) where

(1) L is alogical language,
(ii) ~ is a contrariness function from £ to 2*, such that if ¢ € ¥ then
e if Y & @ then ¢ is called a contrary of ¥,
e otherwise, ¥/ € @ and ¢ and v are called contradictory, that is, ¢ € ¥ and ¥ € @.
(iii)) R = R, U Ry is a set of strict (Ry) and defeasible inference rules (R;) such that R, N
Ra =9,
(iv) <is a partial preorder on R,.

Since this definition leaves the nature of the logical language and the inference rules largely
unspecified, it is possible to reformulate specific argumentation systems as instances of ASPIC™.
For example, Prakken (2010) has shown that assumption-based argumentation (Bondarenko et al.
1997, Dung, Mancarella, and Toni 2007), a structured argumentation approach using assumptions
from which conclusions are drawn using strict inference rules, is a special case of ASPIC™, and
Modgil and Prakken (2011) have proved the same for variants of classical argumentation (cf.
Besnard and Hunter 2008).

With the argumentation system defined, we can now look at the construction of arguments
by means of a knowledge base in an argumentation system. The set of rules contains both a
strict and defeasible kind and the knowledge base can be inconsistent. In addition to the possible
inconsistency, the knowledge base also contains four different types of facts, inspired by a similar
distinction of Gordon et al. (2007). Similar to the axioms in deductive logic, there are (unattackable)
premises called necessary axioms (KC,), (attackable) ordinary premises (KC,), assumptions (K,)
— which are a weak type of premise always defeated by an attack — and issues (KC;) — which are
premises that are not acceptable unless backed by further argument.

DEFINITION 2.7 (Knowledge base (Prakken 2010, Def. 3.5)) A knowledge base in an argumen-
tation system (£,”, R, <) is a pair (I, <’) where K C £ and <’ is a partial preorder on [C\/C,,.
Here K = K, UK, U K, U K; where these subsets of K are disjoint.

With the knowledge base and inference rules defined as above, the construction of arguments
can be defined by adopting Vreeswijk’s (1993, 1997), definition of an argument. The smallest
argument is simply a fact from the knowledge base. More complex arguments can be constructed by
chaining inference rules on previous arguments, resulting in an argument in tree form (containing
sub-arguments).

DEFINITION 2.8 (Arguments (Prakken 2010, Def. 3.6)) An argument A on the basis of a knowl-
edge base (/C, <’) in an argumentation system (£,”, R, <) is

(1) ¢ if ¢ € K with:
Prem(A) = {¢},
Conc(A) = ¢,
Sub(A) = {¢},
DefRules(A) = @,
TopRule(A) = undefined.
2) Ay,..., A, > ¢ if Ap,... A, are arguments such that there exists a strict rule
Conc(Ay),...,Conc(A,) — ¥ in Ry,
Prem(A) = Prem(A;) U ---U Prem(A,),
Conc(A) =,
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Sub(A) = Sub(A;) U ---USub(A,) U {A},
Def Rules(A) = Def Rules(A1) U - - - U Def Rules(A,),
TopRule(A) = Conc(Ay),...,Conc(A,) — V.
3) Ay,..., A, = ¢ if A},...,A, are arguments such that there exists a defeasible rule
Conc(Ay),...,Conc(A,) = ¥ in Ry,
Prem(A) = Prem(A;) U ---U Prem(A,),
Conc(A) =,
Sub(A) = Sub(A1) U---U Sub(A,) U {A},
Def Rules(A) = Def Rules(A1) U - - - U Def Rules(A,) U
{Conc(Ay),...,Conc(A,) = ¥},
TopRule(A) = Conc(Ay),...,Conc(A,) = V.

ExaMPLE 2.9 Given an argumentation system and a knowledge base in that argumentation system
with the following rules and facts (where ¢, r — s means with g and r derived, derive s):

Ry ={z,s = t;q,r — s},

Ra = {p,u= q},

Kn={p:2}
Kp = {u},
Ko ={r},
K= {s}.

An argument for ¢ can be constructed by using an issue premise from K;, as seen in Figure 1. (The
type of premise is used as superscript.)

Arguments using issue premises will result in not being acceptable. Therefore, to produce a
possibly acceptable argument for ¢ after evaluation, we will want to derive an argument for s
instead of using the issue premise. Such an argument for ¢ can be seen in Figure 2. Here double
lines indicate a defeasible inference. This argument contains several sub-arguments which can
formally be written as follows:

Ay :p, As:ALA =g,
A2 u, A6 ZA5,A3 — S,
As:r, A7:Aq, A4 —t.

Ay z,

Here A7 is the argument from Figure 2.

Figure 1. An argument for ¢ using an issue premise.

p" u?

Figure 2. Another argument for ¢.
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Now we can define the notion of an argumentation theory.

DEFINITION 2.10 (Argument theories (Prakken 2010, Def. 3.11)) An argumentation theory is a
triple AT = (AS, KB, <) where AS is an argumentation system, KB is a knowledge base in AS
and < is an argument ordering on the set of all arguments that can be constructed from KB in AS.

With the internal structure of arguments defined, it is now possible to distinguish between
types of attack.

Undermining attack is an attack on the premises on an argument and is the only attack possible
in the context of strict rules. An undercutting attack is an attack on the (defeasible) inference step
and is a way to provide “exceptions to the rule”. Finally, a rebutting attack is done by constructing
a contrary or contradictory conclusion for the attacked argument’s (sub)conclusion.

DEFINITION 2.11 (Types of attack (Prakken 2010, Def. 3.16, 3.11, 3.14))

o Argument A undermines argument B (on ¢) iff Conc(A) € (i_) for some ¢ € Prem(B)\K,. In
such a case, A contrary-undermines B iff Conc(A) is a contrary of ¢ or if ¢ € K.

e Argument A undercuts argument B (on B') iff Conc(A) € B’ for some B’ € Sub(B) of the
form BY,...,B) = .

e Argument A rebuts argument B (on B') iff Conc(A) € ¢ for some B’ € Sub(B) of the form
B{,...,B; = v.Insuch acase, A contrary-rebuts B iff Conc(A) is a contrary of ¢.

The types of attack can be combined with an argument ordering to define the notion of defeat.
Similar to contraries, an undercutting attack does not take the ordering into account and hence
always results in defeat. Intuitively, the undercutter contains an argument for an exception to the
rule of the attacked argument, otherwise an undercutter and the attacked argument using that rule
could be in the same extension.

DEFINITION 2.12 (Types of defeat (Prakken 2010, Def. 3.19, 3.20))

e Argument A successfully rebuts argument B if A rebuts B on B’ and either A contrary-rebuts
B orA £B.

e Argument A successfully undermines argument B if A undermines B on ¢ and either A
contrary-undermines B or A £ ¢.

The previous notions can be combined in an overall definition of defeat.

DEerINITION 2.13 (Defeat (Prakken 2010, Def. 3.21)) Argument A defeats argument B iff no
premise of A is an issue and A undercuts or successfully rebuts or successfully undermines B.
Argument A strictly defeats argument B iff A defeats B and B does not defeat A.

To deal with issue premises, an argument is acceptable only if it contains no issue premises;
therefore, changing Definition 2.2 to the following.
Anargument A € Args is acceptable with respect to a set S of arguments, or alternatively S defends
A, iff A contains no issue premises and for all arguments B € S: if defeats(B, A) holds then there
is a C € S for which defeats(C, B) holds.*

With arguments and the defeat relation fully defined, it is possible to link the argumentation
theories of the structured approach to Dung’s abstract argumentation frameworks, thereby formally
making the correspondence between the structured and abstract approach.
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Ay By

Ay <— By

Figure 3. Corresponding argumentation framework.

DEFINITION 2.14 (Argumentation framework (Prakken 2010, Def. 3.22)) An abstract argumen-
tation framework AF corresponding to an argumentation theory AT is a pair (Args, defeats) such
that

e Args is the set of arguments on the basis of AT as defined by Definition 2.8,
e defeats is the relation on Args given by Definition 2.13.

Finally, the acceptability of conclusions (of a mathematical language L) is defined in the
corresponding argumentation framework.

DEFINITION 2.15 (Acceptability of conclusions (Prakken 2010, Def. 3.23)) For any semantics S
and for any argumentation framework AF and formula ¢ € Lar :

(1) ¢issceptically S-acceptable in AF if and only if all S-extensions of AF contain an argument
with conclusion ¢;

(2) ¢ is credulously S-acceptable in AF if and only if there exists an S-extensions of AF that
contain an argument with conclusion ¢.

ExaMPLE 2.16 Given an argumentation system and a knowledge base in that argumentation
system with the following rules and facts (where ¢, r — —r; means that given g and r, rule r
does not apply, that is, undercut):

Ra = {bird =, fly; penguin = —r},
K, = {bird; penguin},

“={(r,—n}
The arguments on the basis of this knowledge base are the following:

Ay : bird, B, : penguin,
Ay i Ay =, fly, By : By = —r.

The defeat relation on basis of the argumentation system and knowledge base (independent of
the ordering <), defeats = {(B»,A3)}, can be visualised together with the arguments constructed
(Figure 3).

For this argumentation framework, we have one complete (and thus one grounded, preferred
and stable) extension, namely E = {A;, By, B,}. We can see that bird and penguin are sceptically
and credulously justified in E.

3. Stage-specific Carneades

Carneades is a formal model of argumentation incorporating both static and dynamic aspects
of argumentation. In Carneades, argumentation is seen as a dialogical process, determining the
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acceptability of arguments by applying proof standards, where the assignment of proof standards
to arguments is determined by the various proof burdens. The version of Carneades that we will
discuss is the stage-specific part of the most recent version by Gordon and Walton (2009b). It
is of primarily interest to us because of the existing reduction to abstract dialectical frameworks
Brewka and Gordon 2010a; Brewka and Woltran 2010b). Contrary to how Carneades has been
introduced in the literature (Gordon et al. 2007; Gordon and Walton 2009b), but similar to Brewka
and Gordon (2010a), we will introduce proof standards to be part of the static, evaluative part of
Carneades.

We will start with an introduction to Carneades’ concept of arguments. Similar to structured
abstract argumentation frameworks introduced in the previous section, arguments in Carneades
are not left abstract but given certain structure. Arguments are constructed by linking premises
and exceptions to a conclusion. The Arguments pro and con and conclusions are later aggregated
and evaluated through proof standards.

DEFINITION 3.1 (Arguments (Gordon and Walton 2009b, Def. 1)) Let £ be a propositional lan-
guage. An argument is a tuple (P, E, ¢) where P C L are its premises, E C L with PN E = () are
its exceptions and ¢ € L is its conclusion. For simplicity, ¢ and all members of P and E must be
literals, that is, either an atomic proposition or a negated atomic proposition. Let p be a literal. If
p is ¢, then the argument is an argument pro p. If p is the complement of ¢, then the argument is
an argument con p.

In Carneades, a dialogue is a sequence of stages but for evaluating arguments in a specific stage
the other stages are irrelevant. As in Brewka and Gordon (2010a), we therefore only consider stage-
specific CAES. To define them, the concepts of an audience and an acyclic set of arguments must
be introduced.

DEFINITION 3.2 (Audience (adapted from Gordon and Walton 2009b, Def. 3)) Let £ be a propo-
sitional language. An audience is a tuple (assumptions, weight), where assumptions C L is a
consistent set of literals assumed to be acceptable by the audience and weight is a function® map-
ping arguments to real numbers in the range 0.0 - - - 1.0, representing the relative weights assigned
by the audience to the arguments.

Carneades is defined with an acyclic set of arguments to simplify the definitions and time
needed for the evaluation of arguments.® In the original definition by Gordon and Walton (2009b),
sets of arguments were restricted to be acyclic in the sense that the chains of arguments a4, ..., a,
constructable from the set should be acyclic. A chain is constructed by sequencing arguments,
intuitively giving the possibility to link the conclusion of an argument to a premise of a later
argument. Acyclicity of a chain implied that a premise of an argument a; could not be used in
a conclusion of an argument a; later in the chain. However, this results in a non-well-founded
definition of acceptability in Carneades due to possible cycles in exceptions in arguments, for
example, consider arguments = {a, b} with a = (@, {p}, q) and b = (@, {q}, p). This is probably a
small oversight, contrasting the correct definitions in Gordon et al. (2007).

Instead, we will use the more general concept of a dependency graph to determine acyclicity
of a set of arguments, based on the definition of Brewka and Gordon (2010a).

DEFINITION 3.3 (Acyclic set of arguments (adapted from Brewka and Gordon 2010a, Def. 2.1))
A set of arguments is acyclic iff its corresponding dependency graph is acyclic. The corresponding
dependency graph has nodes for every literal appearing in the set of arguments. A node p has a
link to node ¢ whenever p depends on ¢ in the sense that there is an argument pro or con p that
has g or g in its set of premises or exceptions.
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The previous definitions can now be combined to define Carneades’ concept of an evaluation
structure.

DEFINITION 3.4 (Stage-specific CAES (adapted from Gordon and Walton 2009b, Def. 4)) A
(stage-specific) CAES is a tuple (arguments,audience,standard), where the argument is an acyclic
set of arguments, audience is an audience and the standard is a total function mapping of literals
in L to their applicable proof standards.

In the (legal) dialogues that Carneades models, proof burdens, such as the burden of production
or the burden of persuasion, can be assigned to a propositional literal. Intuitively, an assigned
proof burden obliges a participant of the dialogue to provide proof for that proposition, under the
condition that the proof satisfies a certain standard of proof. In the model, the assignment of the
proof standard is determined by the function standard provided in the previous definition. This
proof standard can be evaluated in a specific stage and thus can be taken as a static part of Carneades.
Proof standards included in the Carneades model, originating from the work of Freeman and Farley
(1996) and Farley and Freeman (1995), are a scintilla of evidence, preponderance of the evidence,
clear-and-convincing evidence, beyond-reasonable-doubt and finally dialectical-validity. A proof
standard is a function that given a literal p aggregates arguments pro and con p and evaluates to
true or false depending on a specific audience.’

DEFINITION 3.5 (Proof standard (Gordon and Walton 2009b, Def. 4)) A proof standard is afunc-
tion mapping tuples (issue, arguments, audience) to {true, false}, where issue is a literal in L,
arguments is an acyclic set of arguments and audience is an audience.

Given a CAES and the concept of a proof standard, we can define the acceptability of a literal.
The acceptable set of literals can be seen as the collection of literals for which the proof standard
is satisfied.

DEEINITION 3.6 (Acceptability of literals (adapted from Gordon and Walton 2009b, Def. 5)%)
Given C = (arguments, audience, standard) a CAES, p aliteral in £ and s = standard (p) the proof
standard corresponding to P. Then, the literal p is acceptable in C iff s(p, arguments, audience)
is true.

All proof standards defined depend on the concept of argument applicability and thus this
needs to be defined first.

DEFINITION 3.7 (Applicability of arguments (adapted from Gordon and Walton 2009b, Def. 6))
Let C = (arguments, audience, standard) be a CAES. An argument (P,E,c) € arguments is
applicable in C iff

e p € Pimplies pis an assumption of the audience or [p is not an assumption and p is acceptable
in C] and

e ¢ € E implies e is not an assumption of the audience and [e is an assumption or e is not
acceptable in C].

Now we can turn to the definition of Carneades’ proof standards. There is one subtle matter
concerning the first proof standard, scintilla of evidence. A literal that is assigned scintilla of
evidence as its proof standard obliges the party who puts forward an argument for this literal to
produce an applicable argument. So to satisfy the scintilla of evidence standard only an applicable
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argument needs to be constructed; contradictory arguments do not influence the acceptability, thus
allowing both p and its contradiction p to be acceptable in a given CAES.

DEFINITION 3.8 (Proof standards) Given a CAES C = (arguments, audience, standard) and a
literal p in L:

(1) scintilla(p, arguments, audience) = true iff there exists at least one applicable argument
pro p in arguments,

(ii) preponderance(p, arguments, audience) = true iff there exists at least one applicable
argument pro p in arguments for which the weight assigned by the audience is greater
than the weight of the applicable arguments con p,

(iii) clear-and-convincing(p, arguments, audience) = true iff there is an applicable argument
A, pro p for which:
e preponderance(p, arguments, audience) holds,
o the weight for A exceeds the threshold «, and
o the difference between the weight of A and the maximum weight of the applicable con
arguments exceeds the threshold .

(iv) beyond-reasonable-doubt(p, arguments, audience) = true  iff  clear-and-convincing
(p, arguments, audience) holds and the maximum weight of the applicable con arguments
is less than the threshold y .

(v) dialectical-validity(p, arguments, audience) = true iff there exists at least one applicable
argument pro p in arguments and no argument con p in arguments is applicable.

The theory of a (stage-specific) CAES is constructed by combining the acceptable literals in
that CAES with the assumptions of the audience. In Carneades, the propositional logic is assumed
as the logical language, so the theory is taken to be closed under propositional inferences.

DEFINITION 3.9 (Theory of a CAES) Let C = (arguments, audience, standard) be a CAES. The
theory of C is the deductive closure, in propositional logic, of the union of assumptions and the
set of literals acceptable in C.

ExampLE 3.10 Leta = 0.3, = 0.3 and y = 0.6. Consider a CAES C = (arguments, audience,
standard) and audience ={assumptions, weight) with

arguments = {ay, a», as, as},
ar = {p1,p2}. {e1}, ), a2 = ({p2. p3}. {e2}, ),
as = ({p2}, {es}, —c), as = (0, {es}, ),
assumptions = {p1, p2, €4},
weight(a;) = 0.4; weight(ay) = 0.9; weight(az) = 0.5; weight(as) = 0.6,

standard(c) = preponderance, standard(—c) = clear-and-convincing.

We can visualise these arguments (arrows denote premises/inferences and open circles denote
exceptions) (Figure 4).

Then we have that argument a, is not applicable because p; ¢ assumptions and ps3 is not
acceptable because there is no argument with p; as the conclusion. Argument a4 is not applicable
because e4 € assumptions. Argument a; and as are applicable.
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p1 p2 €1 p2 p3 €2
O O
0.4 0.9
c -c
D2 €3 €4
\ Q Q
0.5 0.6
-c -c

Figure 4. Arguments in Carneades.

The conclusion ¢ (of argument a;) is not acceptable because standard(c) = preponderance
and weight(a;) # weight(asz) while a; is an applicable con argument for ¢. The conclusion
—c is also not acceptable because standard(—c) = clear-and-convincing and when considering
the argument ay4 it holds for the applicable con argument a; that: weight(as) # weight(a;) + B
(although weight(as) > o).

4. Relation between Carneades and Dung’s frameworks

In the next subsections, Carneades will be related to Dung’s model. First we will translate the static,
stage-specific part of Carneades to structured argumentation frameworks. We will study properties
of our translation, for instance, proving correspondence results and showing that the translation
does not violate rationality postulates. Then, we will generalise our translation of Carneades,
allowing to lift the restriction of acyclicity on a CAES. Finally, we will relate our translation to the
existing translations of Carneades to ADF’s (abstract dialectical framework) and the defeasible
logic (Brewka and Gordon 2010a; Governatori 2011).
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4.1. Translation of stage-specific Carneades

We will start with relating the premises and exceptions of the arguments in Carneades to a
knowledge base in an argumentation system. The assumptions of the audience in a CAES are
propositional literals which are unattackable and furthermore, as can be seen in Definition 3.9,
part of the logical theory. Combining these characteristics, assumptions in Carneades are closely
related to the concept of axioms in a knowledge base and thus will be modelled as necessary
axioms, K, in our knowledge base. Next, the use of conclusions as a premise in a later argument
is similar to the chaining of sub-arguments to construct more complex arguments and can, there-
fore, be handled by the argument generation part of ASPIC™. Finally, a premise with no backing,
also called an issue premise in Gordon et al. (2007), maps exactly to the issue premises in our
knowledge base.

Combining these insights, we can now define the knowledge base corresponding to a CAES.

DEFINITION 4.1 (Knowledge base corresponding to a CAES) Given a CAES C = (arguments,
audience, standard) with audience = (assumptions, weight) and propositional language Lcags.
Then the knowledge base in an argumentation system corresponding to C is a pair (K, <) where

e [C, = assumptions,

o IC, =K, =19,

o C; = Lcags\(ssumptions U {c|(P,E,c) € arguments}),
o <'={(k.k) | k € (K\K,)}.

There is no need to differentiate in the strength of premises, making our preference relation
on premises just the reflexive closure on non-axiom premises.

As shown in our visualisation of Carneades’ arguments in Example 3.10, the link between the
premises, the exceptions and the conclusion is a two-part inference. The first part — applicability of
the argument —is solely determined by the acceptability of the premises and exceptions. The second
step — acceptability of the conclusion — requires the argument to be applicable and furthermore to
satisfy the demands of the proof standard that is assigned to the conclusion.

So for every argument a = (P, E, c¢) in a CAES, a defeasible rule going from the premises to
the applicability of the argument is added, P =, arg,, saying that if P then a is applicable.’
The other inference is represented by a defeasible rule arg, =>4, ¢, saying that if a is applicable,
its conclusion is acceptable. As before, app, and acc, are rule names, which will need to be added
to the language, L, of the CAES (rule names are assumed to be disjoint with £).

Exceptions in Carneades’ arguments express exceptions to inferring the conclusion. If we have
an argument containing an exception that is acceptable or assumed by the audience, then that
argument is made inapplicable, so the argument cannot make the conclusion acceptable. Given an
acceptable argument containing exception p, it is not implied that p can be assumed to be true; so
two arguments with conflicting exceptions can both be acceptable. This use of exceptions, similar
to the concept of justifications in default logic (Reiter 1980), implies that negations of exceptions
cannot be modelled as an assumption, but instead need to be modelled as an undercutter to the
inference rule. So in our translation of argument a, for each exception e € E, an undercutter
e = —app, is added to R,.

Although it might seem natural to include the negation relation of Carneades into the con-
trariness relation of the corresponding argumentation system, this does not actually work. With
scintilla of evidence as a proof standard that can determine acceptable literals of a CAES, both p
and p are allowed to be acceptable, for example, arguments = {{(#}, 4, p), (4, D, —p)}. It is further-
more possible to construct an acceptable argument for —c while ¢ € assumptions.'® To retain the
properties of the original Carneades system, the negation relation of Carneades will, therefore,
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not be imported into the contrariness relation. Instead the contrariness relation in our argumen-
tation system is used to let applicability conclusions for one argument defeat the acceptability of
conflicting arguments, depending on the proof standards of their conclusions. This is essentially
where the proof standards are encoded.

DEFINITION 4.2 (Argumentation system corresponding to a CAES) Given a CAES C=
(arguments, audience, standard) with audience = (assumptions, weight) and propositional lan-
guage Lcags, the corresponding argumentation system, AS, is a tuple (£, ~, R, <) where

L = Lcags U argument nodes U rule names,
~ consists of all tuples specified below,
Ra = Ra,

RS = acarguments Ré‘a ’

=={(r.r) | reRa}.

U aearguments

For every argument a = (P, E, c¢) in arguments:
Ra, = {P = app, arg,;arg, = ace, ¢}U
{e; = —app,| ei € E}
“(app,) = {—app,}.
For every argument a = (P, E, c¢) in arguments with standard(c)= scintilla:
Rs, = 0.
For every argument a = (P, E, ¢) in arguments with standard(c) = preponderance:
Rs, =9,

“(accy) = {arg, | b= (P',E',¢) € arguments, weight(a) < weight(b)}.

For every argument a = (P, E, c¢) in arguments with standard(c)= clear-and-convincing:
Rs, = {— —accq|weight(a) < a},
“(acc,) = {arg,|b = (P',E',¢) € arguments, weight(a) < weight(b) + B}
U {—acc,}.
For every argument a = (P, E, ¢) in arguments with standard(c)= beyond-reasonable-doubt:
Rs, = {— —accq|weight(a) < a},
“(accy) = {arg, | b = (P',E',c) € arguments, weight(a) < weight(b) + B V weight(b) > v}

U {—acc,}.

For every argument a = (P, E, c¢) in arguments with standard(c) = dialectical — validity :
Rsﬂ = 0),

“(acc,) = {arg,|b = (P',E’,c) € arguments}.

To illustrate the translation of one proof standard, notice that in a CAES, an argument a with
standard clear-and-convincing evidence is unacceptable if either weight(a) < «, or there is a
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contradictory applicable argument b for which weight(a) < weight(b) + B holds. This is then
translated by extending the set of contraries for the acceptability, acc,, with an arg, for every
contradictory argument b for which weight(a) < weight(b) + B holds. If the weight of a is less
than «, there is also an inference — —acc, added to the strict rules, Ry, that together with the
contrary, —acc,, will undercut the acceptability.

Having built up the corresponding argumentation system, we can now relate an argumentation
theory and consequently an argumentation framework to a CAES.

DEFINITION 4.3 (Argumentation theory corresponding to a CAES) Given a CAES C=
(arguments, audience, standard) with audience = (assumptions, weight) and propositional lan-
guage Lcags the argumentation theory AT corresponding to C is a tuple (AS, KB, <) where

e AS is the argumentation system corresponding to C according to Definition 4.2,

e KB is the knowledge base in the argumentation system AS corresponding to C according
to Definition 4.1,

o <=1{.

DEFRINITION 4.4 (Argumentation framework corresponding to a CAES) Given a CAES C =
(arguments, audience, standard) with audience = (assumptions, weight), propositional language
Lcags and argumentation theory AT corresponding to C as given by Definition 4.3, the
AF corresponding to C is the argumentation framework corresponding to AT as given by
Definition 2.10.

To demonstrate our translation, we will show in detail how the CAES in Example 3.10
can be translated into its corresponding argumentation system, generating the corresponding
argumentation framework.

ExaMmPLE 4.5  First consider how the knowledge base in our argumentation system would corre-
spond to the CAES given in Example 3.10. We have K,, = assumptions = {p1, p», e4}, while the
other premises that are not a conclusion nor an assumption would be an issue premise, thus giving
K; = {p3,e1, ez, e3}.

Next we define the rules, R, of the corresponding argumentation system. Every argument
has a corresponding rule for applicability and for the acceptability of the conclusion, arguments
containing an exception will have a corresponding inference rule, generating an undercutter and
finally rules with the proof standard clear-and-convincing or beyond-reasonable-doubt can have
a strict rule undercutting the acceptability, if the weight of the argument is below «. For example,
argument a, will generate

Rduz ={p2,p3 = app,, W8ays A8a, =P acc,, —C3€2 = _'appuz}’
R, =40.

Say

Note that the set of strict rules is empty, because weight(a,) = 0.9 > 0.3 = «.

Given the previous rules, the structured arguments corresponding to the Carneades arguments
can be visualised as given in Figure 5. These arguments contains several (sub)arguments. For
example, the first argument can formally be written as follows:

A1 :p1, Asz:ALA; = app,, A8,

Az ipa, As A3 S, C
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Figure 5. Structured arguments corresponding to Example 3.10.

What remains is the translation of the defeat relation, for which we will consider argument
Ay, related to a; in the CAES. The argument A4 first of all is undercut on app,,, by means of the
argument e; = —app,, . The other attackers are undercutters on the acceptability, acc,, . The proof
standard of the conclusion ¢ of a; is preponderance, while the weight of a; minus g is less than
the other arguments in the CAES, so by the translation, the argument nodes arg,,, arg,, and arg,,,
will all be a contrary of acc,,. Then the (sub)arguments p,, p3 = app,, A8ay» P2 = app,, A8, and
=app,, W8a, will undercut A4 on acc,, . Since the translation does not consider preferences, every
attack that will be made will result in a defeat.

Although there are some defeaters present that do not directly correspond to the original
CAES, that is, the exception e; = —app,, and the undercutter arg, , this is not a problem since
the arguments will not be deemed acceptable due to their issue premise. Thus in the end, the
acceptable arguments will only be the non-issue premises, p;, p» and ey, the arguments for the
applicability of a;, a3 and the argument for non-applicability of a4 (—app,,), which is exactly
what we want.

4.2. Translation properties

Now that we have defined the argumentation framework corresponding to a CAES, we can look
at some interesting properties of the translation.

4.2.1. Well-foundedness

First of all, we will show that an argumentation framework corresponding to a CAES contains
no cycles and therefore is actually a well-founded argumentation framework. From this property
and a proposition proved by Dung, we can then immediately deduce that every argumentation
framework corresponding to a CAES induces a unique Dung extension.

PropPOSITION 4.6  Every argumentation framework corresponding to a (finite) CAES according
to Definition 4.4 is well-founded.

The next result follows directly from Proposition 4.6 and Theorem 2.5:

COROLLARY 4.7 Every argumentation framework corresponding to a CAES according to
Definition 4.4 has exactly one complete extension which is grounded, preferred and stable.
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Here we can see that contrary to the claim of Brewka and Gordon (2010a) — namely that
modelling Carneades in Dung’s approach could not be done cycle-free — we have proved that
an argumentation framework corresponding to a CAES is well-founded and thus cycle-free. This
means that the corresponding argumentation frameworks always induce a unique Dung extension
which is the same in all Dung’s semantics. Carneades’ semantics is therefore essentially a single-
status assignment approach.

We have seen that in Carneades the defeat relation that is generated through the translation
depends on the audience and the proof standards. This use of audience is very similar to (and
inspired by) the approach taken in value-based argumentation frameworks (Bench-Capon et al.
2007). More interestingly, just as the uniqueness of preferred extensions in VAF’s (value-based
argumentation framework) with respect to a single audience is guaranteed, in the translation of
Carneades there is also a unique complete extension.

4.2.2. Computational complexity

The time to compute the extension of a well-founded argumentation framework can be determined
to quadratic, by verifying that it is possible to topologically sort the acyclic dependency graph in
O (V] + |E]) (cf. Cormen, Leiserson, Rivest, and Stein 2001, pp. 549-552) and by checking that
it is possible to compute the grounded extension in ® (|V| + |E]|) (by computing acceptability in
order of dependency). We can, therefore, deduce that if the translation is polynomial, evaluating a
CAES through our translation is also polynomial. Although this might seem immediate from our
translation, there are some subtleties in the actual step that generates arguments. ASPICT only
declaratively states which arguments are to be generated from the argumentation system, but with
a naive implementation/algorithm, the argumentation system corresponding to a CAES would
actually generate an exponential number of arguments.

ExampLE 4.8 (Exponential explosion) Consider a class of CAES with 2n arguments, such that
arguments = {a,, a2, a1, a2, . . . ,dy1, dy }. Here the ith pair of arguments has the same conclu-
sion c;, with premises that depend on the previous, i — 1th, pair of arguments. So we are building
a large chain with pairs of arguments dependent on the previous pair. The start of the chain
is not dependent on a previous conclusion, so a;; = {{p11},9,c1), a2 = {{p11},9, c1). The next
arguments, for i > 1: a;; = ({pi1,ci—1},90,¢i), ap = {pi2,ci-1}, 9, ¢;). And finally, we have that
assumptions = {p11, P12, - - - » Pnl>Pu2}, weight(a;) = 0.5 and standard(a;) = scintilla.
Now consider the corresponding defeasible rules (leaving out rule names):

Ry = {p11 = arg,,;arg,, = ci;
P12 = arg,,,;arg,, = Ci;

Pnls Cn—1 = a”ga,” 5 ai’gan] = Cns
Pr2s Cn—1 = Arg,,3 A8, , = Cn}.
Although the ith argument only needs the conclusion of one of the i — 1th arguments to be accept-

able, when generating arguments, we will generate every possible combination of sub-arguments,
thereby generating 2" arguments.

This exponential explosion is caused due to the implicit linking of arguments in Carneades
that is made explicit when constructing arguments from the corresponding argumentation system.
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However, due to the acyclicity of the arguments, this explicit linking is not needed to compute
the acceptable conclusions. The exponential explosion can be solved by the following (sketched)
polynomial algorithm.

DEFINITION 4.9 (CAES argument generation)

(1) generatedArgs = 0.
(2) sortedArgs = Topological sort of arguments on its dependency graph.
(3) while sortedArgs # 0 :
(a) pick the first argument in sortedArgs. Remove all arguments from sortedArgs that
have the same conclusion, ¢, and put them in argSet;
(b) translate argSer and generate arguments, building on previously generatedArgs as
sub-arguments, and put the generated arguments in tempArgs;
(c) if present, pick one acceptable argument in fempArgs that has the conclusion ¢ and
add it to generatedArgs;
(d) argSet = tempArgs = ¢.

We leave it to future work to formally verify the complexity results of the translation.

This exponential explosion also sheds some light on the complexity of evaluation in Carneades.
An important concept in the definition of Carneades is the “concept of a proof”, where evaluating
a proof (a CAES) should be possible in a tractable time. This tractability can now be proved by
verifying the polynomiality of the translation.

4.2.3. Correspondence results

We can now prove the main theorem of this article, namely that every argumentation framework
that corresponds to a CAES preserves the properties we would expect.

THEOREM 4.10  Let C be a CAES, (arguments, audience, standard), Lcags the propositional lan-

guage used and let the argumentation framework corresponding to C be AF. Then, the following
holds:

(1) An argument a € arguments is applicable in C iff there is an argument contained in the
complete extension of AF with the corresponding conclusion arg,,.

(2) A propositional literal ¢ € Lcags is acceptable in C or ¢ € assumptions iff there is an
argument contained in the complete extension of AF with the corresponding conclusion c.

From Part 2 of Theorem 4.10, we can directly relate the theory of a CAES with the
corresponding argumentation framework:

COROLLARY 4.11 A proposition p is part of the theory of C iff p is contained in the closure under
propositional logic of the complete extension of AF.

We have now formally shown that the argumentation framework corresponding to a CAES
keeps the properties we wanted to preserve. This proves, in contrast to what was claimed by Gordon
et al. (2007), that Carneades can be faithfully modelled in Dung’s argumentation frameworks.

It can even be argued that it is too faithful a correspondence, keeping inconsistencies of the
original model in the final translation. The inconsistencies caused by the use of the scintilla of
evidence proof standard might suggest a change in the definition of proof standard in Carneades,
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for instance, by disallowing proof standards that make contradictory conclusions true at the same
time.

Regardless, the intermediate translation of a CAES into an argumentation system allows for
an easy reparation. We can import the original negation relation of the CAES, generating attacks
for any conflicting conclusion. To be precise, given an argumentation system AS corresponding
to a CAES, we can make the new contrariness relation: 45 = A5 U cags. This will generate
additional defeats in the final argumentation framework, thereby breaking the correspondence
results; however, it will ensure that no inconsistencies can be generated in the final theory.

4.2.4. Ambiguity-blocking and ambiguity-propagating
The stage-specific part of Carneades can be called “ambiguity-blocking” in contrast to “ambiguity-
propagating” (see Gordon, Prakken, and Walton 2007, Section 7.1). Here a non-monotonic logic
is ambiguity-blocking if, when a conflict between two lines of reasoning with contradictory con-
clusions cannot be resolved, both lines of reasoning are cut-off and neither of the conclusions can
be used for further reasoning. In such logics, it may happen that other lines of reasoning remain
undefeated even though one of the cut-off lines of reasoning interferes with it and is not weaker.
Consider the following example, containing an ambiguity between g and —g that does not
interfere with the inference of —s even though —¢ is used as an argument for s.

ExampLE 4.12 Consider the CAES C = (arguments, audience, standard) and audience
=(assumptions, weight) with (Figure 6):

arguments = {ay, a,, az, a4},
ar = ({p}.0.q), a2 = ({r}. ¥, —q).),
a3 = ({—q},9,s), a4 = ({1}, 9, —s),
assumptions = {p,r,t},
weight(a,) = weight(a,) = weight(az) = weight(as) = 0.5,
standard(q) = standard(—q) = standard(s) = standard(—s) = preponderance.

With the proof standard of g, —g, s and —s being preponderance, we can see that g, =g and
s will not be acceptable, but —s will be acceptable. Now consider a naive, direct translation of
the arguments into defeasible inference rules in ASPIC™, that is, K, = {p,r,t} and Ry = {p =
q,r = —q,—q = s,t = —s}. This translation would instead make no corresponding arguments
acceptable.

The translation according to Definition 4.4 solves this by using an explicit argument node,
yielding undefeated undercutters for the acceptability of ¢ and —g, thereby yielding an undefeated
undercutter for the argument for s constructed by using the argument for ¢, so that —s is acceptable
in the corresponding AF.

The main difficulty in finding the translation of Carneades to ASPIC* was dealing with
the ambiguity-blocking nature of Carneades, while ASPIC" is ambiguity-propagating. We have
largely solved this problem by introducing additional argument nodes, allowing for an explicit
representation of applicability and acceptability. We note that to our knowledge, we are the first
to have achieved a translation of an ambiguity-blocking non-monotonic logic to a standard Dung
semantics.
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Figure 6. Ambiguity-blocking in Carneades.

4.2.5. Rationality postulates

The abstract argumentation model by Dung provides a basis for argumentation systems. The
structure imposed, a set of arguments and a defeat (attack) relation, gives rise to multiple semantics
to evaluate argumentation frameworks. These semantics, extensions of acceptable arguments, can
be seen as rationality constraints on how to evaluate argumentation frameworks. Therefore, when
additional structure is imposed on arguments, as done in Section 2.2, more rationality constraints
can be imposed on the evaluation. This approach was taken by Caminada and Amgoud (2007),
who introduced a set of rationality postulates for argumentation systems with more structure.
Caminada and Amgoud argued that extensions of these systems should satisfy postulates regarding
consistency and closure. We repeat here four postulates'! in the formulation of Prakken (2010):

o Closure under sub-arguments: for every argument in an extension all its sub-arguments are
in the extension.

e Closure under strict rules: the set of conclusions of all arguments in an extension is closed
under strict-rule application.

e Direct consistency: the set of conclusions of all arguments in an extension is consistent.

e [ndirect consistency: the closure of the set of conclusions of all arguments in an extension
under strict-rule application is consistent.

We have shown in Section 4.1 that Carneades can be reduced to an ASPICT argumentation
theory. One advantage of going through this intermediate step is the possibility of applying existing
results of ASPIC™ regarding rationality postulates to translated Carneades. To formally verify the
rationality postulates, we first need to repeat some properties of argumentation theories.
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DEFINITION 4.13 (Properties of an argumentation theory (Modgil and Prakken 2011)) Given an
argumentation theory AT with language £, then

e AT is closed under contraposition iff forall S € L,s € Sand ¢ € L, if S I ¢ then S\{s} U

{—p} s
e AT is closed under transposition iff for all SC L, s€S and ¢;---¢,, ¥ € L, if
Ol s Pn—> U € Ry, thenfori=1,...,1n, 01,01, =V, Qi1 ..., 00 = —@; € Ry;

e AT is axiom-consistent iff Clg (K,) is consistent (where Clz (P) is the smallest set
containing P and the consequent of any strict rule in R, whose antecedents are in Clg, (P));

e AT is well formed iff if ¢ is a contrary of ¥ then [ ¢ K, and ¥ is not the consequent of a
strict rule].

PROPOSITION 4.14  Given a CAES C with corresponding argumentation theory AT and corre-
sponding argumentation framework AF, then the four rationality postulates hold for the unique
extension of AF.

An important thing to note here is that although we have proven consistency for the extension
of a corresponding argumentation framework, this consistency is relative to the contrariness rela-
tion of the argumentation theory. The achievement of gaining consistency in an argumentation
framework corresponding to a CAES is mainly due to leaving out the negation relation of that
CAES, in a sense circumventing the problem.

4.3. Generalisation of the translation

Important future work mentioned by Gordon and Walton (2009b) is to generalise Carneades
to cycle-containing structures. Although it was claimed by Brewka and Gordon (2010a) that
Carneades would need a cyclic representation in other frameworks, such as Dung’s argumentation
frameworks, our translation of Carneades translates to cycle-free, or well-founded argumentation
frameworks. This same well-foundedness allows for an easy extension of Carneades’s argument
set to a possibly cycle-containing structure.

Since our translation of a CAES to an argumentation framework does not depend on possible
cycles in the set of arguments, we can use the same translation for cycle-containing CAES and
deal with the resulting cycles by using the standard Dung semantics.

DErFINITION 4.15 Given a CAES C = (arguments, audience, standard) without the acyclic-
ity restriction, Lcags the propositional language used and let the argumentation framework
corresponding to C be AF. Then for s € {complete, preferred, grounded, stable}:

e An argument a € arguments is applicable in C under sceptical (credulous) s semantics iff
all (some) s extensions of AF contain an argument with conclusion arg,.

e A propositional literal ¢ € Lcags is acceptable in C or ¢ € assumptions under scepti-
cal (credulous) s semantics iff all (some) s extensions of AF contain an argument with
conclusion c.

We will demonstrate our generalisation of Carneades by translating Example 2 of Brewka and
Gordon (2010a) to an argumentation framework, showing intermediate steps.

ExAMPLE 4.16 (Cycle example) Assume, we have two possible destinations in mind for a sum-
mer vacation, Greece and Italy, but cannot afford to visit both destinations. We could formalise
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Figure 7. Greece versus Italy argument trees.

Ay By
AQ By
E <~ F

Figure 8. Greece versus Italy argumentation framework.

this as follows. Let arguments = {a, b} with:
a= (@,{It},Gr), b= {0,{Gr},It).

These arguments contain an exception cycle and therefore cannot directly be handled by Carneades.
We can give the example semantics by using the generalisation of our translation. The translation
of this CAES would give the following argument trees as shown in Figure 7, which can be written
formally:

Al = app, AT84» By :=app, a8y,
Ay T A = acc, Gr, B;:B =>accy It,
E :Ay = —app,, F :By= —app,.

From this formal description of arguments, together with the undercuts on applicability and
acceptability, we would get the following argumentation framework as shown in Figure 8.

The argumentation framework above can be evaluated through Dung’s semantics. For instance,
under credulous stable and preferred semantics, both Gr and It are acceptable. Under sceptical
stable, sceptical preferred or grounded semantics both would not be acceptable. These results are
similar to the results in the generalisation by Brewka and Gordon (2010a).

4.4. Related work

Concurrent to the work done in this article and the paper by van Gijzel and Prakken (2011), there
have been translations of Carneades to other argumentation approaches. First of all, there is the
translation of Carneades to abstract dialectical frameworks by Brewka and Gordon (2010a). In
this translation, premises and exceptions, respectively, have a support and attack relation with
the argument node, much in the same way that sub-arguments and undercuts are used in our
translation. Carneades’ proof standards are encoded as acceptance conditions from the argument
node, supporting the conclusion and attacking the contradictory conclusion.

Although the translation of Brewka and Gordon clarified the relation between Carneades and
abstract argumentation by relating it to ADFs, one of the main concerns about this translation
was that it needed the full power of abstract dialectical frameworks, thus obscuring the direct
relation with Dung’s argumentation frameworks. This connection has now been made explicit
by the paper of Brewka et al. (2011), developing a translation of ADFs to AFs, using Boolean
networks (Dunne 1988). The paper concerns itself mostly with the computational complexity of
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the translation, to keep a polynomial complexity in both size and time. However, this translation
introduces additional technical nodes in the final argumentation framework that have no intuitive
meaning. So even though the translation gives a formal connection between the two argumentation
models, the intuitive relation is mostly lost.

Very recently, Carneades has been translated to defeasible logic (Nute 1994) by Governa-
tori (2011). Defeasible logic is a computational approach to non-monotonic reasoning with
an argumentation-like flavour. Defeasible logic has the possibility to handle both ambiguity-
blocking and ambiguity-propagating behaviour, allowing for a rather direct representation of
Carneades’ proof standards. The translation by Governatori maps proof standards to a single
inference mechanism, giving a natural representation of the proof standards.

While Governatori thus establishes an intuitive relation between Carneades and defeasible
logic, he only partly relates Carneades to abstract argumentation, since only the ambiguity-
propagating part of defeasible logic has an established direct formal relation with Dung’s
argumentation frameworks. Its ambiguity-blocking variant has instead been translated to a Dung-
like semantics using a different notion of acceptability (Governatori, Maher, Antoniou, and
Billington 2000).

5. Conclusion

This article has shown that Carneades can be reconstructed, through ASPIC™, as Dung’s abstract
argumentation frameworks. We have seen that the idea of varying proof standards can be modelled
within a Dungean approach, while retaining a correspondence of properties between both systems.
These results show that Dung’s approach to argumentation is able to model complex argumentation
issues such as proof standards. Furthermore, by first translating Carneades through an ASPIC*
argumentation theory, we were able to prove and instantly gain a number of useful results. First of
all, we were able to use results about rationality postulates from Prakken (2010) and directly apply
these to the translated version of Carneades, proving consistency and strict closure of extensions.
The translation also allows us to fully exploit the power of an ASPIC" argumentation theory,
providing us, for instance, with an explicit distinction between strict and defeasible inference rules.
So in addition to providing a correspondence, the translation allows us to integrate Carneades with
an extra set of tools provided by ASPIC™ .

An important property of our reconstruction of Carneades is that our modelling gives a cycle-
free argumentation framework, thus always inducing a unique Dung extension which is the same in
all Dung’s semantics. This shows that Carneades is essentially a single-status assignment approach.
This property allowed us to generalise Carneades to cycle-containing structures by using Dung’s
standard grounded, preferred and stable semantics, thereby addressing the issue put forward by
Gordon and Walton (2009b). This generalisation is done much in the same way as by Brewka and
Gordon (2010a).

Finally, we note that our translation enables a standard Dung semantics for an “ambiguity-
blocking” non-monotonic logic (see Gordon et al. 2007, Section 7.1); to our knowledge, we are
the first to have achieved such a result.

5.1. Future work

Through this article and by the work of Prakken (2010), several approaches to structured argumen-
tation have been developed and subsequently related through a single framework called ASPIC™.
Although the theoretical relations between these approaches have thus been clarified, we have seen
that the actual step of generating arguments has not been given a concrete, efficient implementa-
tion. A useful path to take for future research would therefore be to develop a class of efficient
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argument generation algorithms for ASPIC™. The possibility to efficiently generate arguments for
a large class of argumentation approaches would give a better integration of these approaches.

The translation of Carneades to ASPIC™ gives us access to the full power of an ASPIC*
argumentation theory, thereby gaining the possibility to use strict and defeasible rules or use
different types of knowledge. This additional power could also be used to show how the concept of
argument generators Gordon (2010) and the existing argument schemes of Carneades Gordon and
Walton (2009a) relate to structured argumentation by translating them into schemes for defeasible
inference rules (following the suggestion of Prakken 2010 that most argument schemes can be
seen as such). This would make the relation between ASPICY and the Carneades argumentation
system as a whole more complete.

Our results raise the question whether it would now be better to use ASPIC+ directly, instead
of Carneades, to model argumentation when variable proof standards and the other features of
Carneades are required. The answer depends on whether Carneades is sufficient as a model
of reasoning with variable proof standards. Prakken and Sartor (2011) claim that Carneades’
ambiguity-blocking nature prevents an adequate modelling of the distinction between the burdens
of production and persuasion. If they are right, then there is reason to change Carneades in the
direction of ASPIC+.

Notes

1. Part of this work has appeared before in van Gijzel and Prakken (2011) and van Gijzel (2011).

2. Dung calls it “attack” but to unify terminology we rename it to “defeat”.

3. Prakken (2010) calls the general argumentation model, defined by Dung (1995), argumentation frame-
works. This is in contrast to the use of Dung, where an argumentation framework is a specific set of
arguments and defeat relation. Instantiations of the abstract argumentation model by Dung are in ASPIC™
called argumentation systems and argumentation frameworks are called argumentation theories.

4. This slightly changes the definition of Prakken (2010), disallowing arguments with issue premises to be
acceptable at all, instead of only excluding them from extensions.

5. In contrast to how it was presented by Gordon and Walton (2009b), the weight function will not be
partial. Evaluation of arguments without weights was, in exception of the rare case that the standard was
scintilla for both ¢ and ¢, undefined, and therefore the partiality of the weight function will be assumed
to be incorrect.

6. A possible generalisation to cyclic structures was left as future work (Gordon and Walton 2009b). This
restriction was lifted in the translation done to abstract dialectical frameworks by Brewka and Gordon
(2010a) and we will see that similar results hold for our translation done in Section 4.3.

7. This slightly generalises Carneades in that we allow complementary literals to be given different proof
standards, in contrast to Gordon et al. (2007) and the implementations of Carneades.

8. This (stage-specific) definition fixes a small technical error in the original definition by Gordon and
Walton (2009b). The function standard returning a proof standard was instead directly called with the
arguments for a proof standard.

9. The idea to make the applicability step explicit by means of an argument node is adapted from Brewka
and Gordon (2010a).

10. This is probably a technical mistake of Gordon and Walton (2009b). It can be fixed by slightly changing
the definition of applicability of arguments, including the additional demand “there is not an assumption,
¢ in the audience that is contradictory to the conclusion, ¢, of the argument”.

11. The results of the other postulates follow directly from these four.
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Appendix: proofs

PROPOSITION 4.6  Every argumentation framework corresponding to a (finite) CAES according to
Definition 4.4 is well-founded.

Proof Given a CAES C = (arguments, audience, standard) with audience = (assumptions, weight) and
corresponding argumentation framework AF. Assume AF is not well-founded and given that C is finite,
there exists a sequence of arguments Ay, ...,A, in AF, such that defeats(A,,A1) and for each i < n,
defeats(A;, Aj+1) hold.

Given that for our translation every Carneades argument a; is assigned a unique argument node arg;, we
define ASPICT arguments of the form A; : C1, ... Cj = app, arg;, and the possible extension Ay : A; = ¢, to
correspond with a;. Note that by construction every Conc(C;) will be a premise of a; and the set of contraries
of arg; will contain the exceptions of a;. Then, denoting the direct and indirect parents of a node, c in a depen-
dency graph as ancestors(c), we will show that for every pair of arguments A;, A; for which defeats(A;, Aj)
holds, conc(a;) € ancestors(conc(a;)) holds for the corresponding Carneades arguments a; and a;. By prov-
ing this statement, we can infer that for every pair of arguments ancestors(conc(a;)) € ancestors(conc(a;))
holds, entailing ancestors(conc(a;)) = ancestors(conc(a;)) by cyclity of the defeat sequence. Then by com-
bining both statements we can infer that conc(a;) € ancestors(conc(a;)), inducing a cycle in the dependency
graph, contradicting our initial acylicity assumption of arguments, thereby proving what we want. (Notice
that we are talking about defeat cycles in ASPIC and dependency cycles in a CAES, which although related,
are not of the same nature.)

We will prove the above property by considering the shapes of an arbitrary defeating argument A; and
its target A; in our defeat sequence. By construction of our translation we can see that a defeating argument
can only be of the following shapes:

Case 1: A; :— —accj. This argument cannot be defeated, and will therefore never be part of a defeat
sequence, contradicting our assumption.

Case2:A;: Cy,...,C; = qpp, arg; (with possible superargument: A; = ace; €)- Aj can undercut an argu-
ment of the following form: Agp; : D1, ...,Dp = appas; W8subj = accu; ¢, assuming that arg; € acCyp;.
However, a conclusion ¢ cannot defeat the next argument Ay in the defeat chain and therefore A; must
have defeated a proper sub-argument of A;j. So A; either extended Agp; to an argument that is an exception
to the next argument (—app;) or it was extended to an argument that has an argument node (arg;) as the
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conclusion (note that Agy; can be one of the many sub-arguments of A;). In both cases, we see that the
argument a; corresponding to Aj must have had ¢ as a premise, inducing that a; has ¢ and ¢ as dependencies.
This establishes conc(a;) € ancestors(conc(ay)).

Case 3: A; : e; = —app; with e; € assumptions. This argument cannot be defeated, and will therefore
never be part of a defeat sequence, contradicting our assumption.

Case 4: A;:C1,...C1 =qpp, a18; =ace; €i = —app;. A; can undercut Aj, on its sub-argument
Dy, ....Dn =app; arg;. This does not have to be a proper sub-argument of A;. For —app; to be a con-
trary of app, e; has to be an exception of the argument corresponding to A;, aj. This immediately establishes
that conc(a;) € ancestors(conc(ay)). | |

THEOREM 4.10  Let C be a CAES, {arguments, audience, standard), Lcags the propositional language used
and let the argumentation framework corresponding to C be AF. Then the following holds:

(1) An argument a € arguments is applicable in C iff there is an argument contained in the complete
extension of AF with the corresponding conclusion arg,,.

(2) A propositional literal ¢ € Lcags is acceptable in C or ¢ € assumptions iff there is an argument
contained in the complete extension of AF with the corresponding conclusion c.

Proof We prove 1 and 2 by induction on the number of arguments, n, in the CAES C.

For n = 0, there is neither an (applicable) argument nor an acceptable proposition in C. The knowledge
base KB corresponding to C will only contain axioms in IC,, for each assumption in C and issue premises
in KC; for other propositional literals in Lcags. The defeasible and strict rules Rg and R4 will be empty.
Therefore, all arguments on the basis of KB will either be an argument using an issue premise and thus not in
the complete extension of the argumentation framework (CEAF), or an argument containing only an axiom
and therefore in CEAf. So CEAF contains an argument with corresponding conclusion for every assumption
in C and no argument with a conclusion of the form arg,,, therefore every conclusion of an argument in CEf
is an assumption, making 1 and 2 hold.

Assuming 1 and 2 hold for n arguments, we consider a CAES, C, withn + 1 arguments. Due to acyclicity
of arguments there is at least one argument a = (P, E,c) € arguments for which the conclusion c is not
contained in the premises or exceptions of another argument in arguments. Now consider the CAES C’
constructed from C by taking arguments' = arguments\{a} and let AF’ be the corresponding argumentation
framework. We then obtain a CAES with n arguments for which the induction hypothesis holds.

(1. &) We must prove that for all (not) applicable arguments b in C there is (not) an argument in CE4p
with conclusion argy,. For all arguments in C' this follows from the induction hypothesis. By our selection of
a, the applicability of a does not influence applicability of the arguments that were in C'. In the translation of
a to ASPIC™, corresponding arguments for arg, will not defeat arguments in AF’. Then by the satisfaction of
the directionality criterion of complete semantics (Baroni and Giacomin 2007), it follows that all arguments
acceptable in CEp are also in CE4F, thus leaving correspondence of the applicability of a in C to prove.
Acceptability of the premises and exceptions of a is not influenced by the applicability of a, and thus by the
induction hypothesis on C' and the directionality criterion, premises and exceptions of a are acceptable in
C or part of the assumptions iff there is an argument contained in CEAf with the corresponding conclusion.
By our translation, we know that P =, arg, and the set {e; = —app, | e; € E} are in Ry.

Now suppose first that a is applicable in C. Then by the induction hypothesis for all premises p; € P there
exists an argument A; in CEop. We prove that if for P = {py,...,py} the argument Ay, ..., Ay =qpp, arg,
also is in CEAF. By conflict-freeness of CEaF, no defeater of any A; is in CEAF so it suffices to prove that no
argument for —app,, is in CEar. By applicability of a and the induction hypothesis, for no e € E there exists
an argument in CEAr with conclusion e and thus this follows directly.

Suppose next that a is not applicable in C. Then by the induction hypothesis either not all A; are in CEsF
or for some e € E an argument A, with conclusion e is in CEgp. In the first case A = Ay, ..., An =app,
argq ¢ CEaF by closure of CEsr under sub-arguments (Proposition 6.1 of Prakken 2010). In the second
case A for arg, is defeated by A, so A ¢ CExF by conflict-freeness of CEAF .

(2. =) If d is an assumption, then by translation d € K, and thus there is an argument A with
corresponding conclusion d in CEAF.

Otherwise, we must prove that if a propositional literal d € Lcags is acceptable in C then there is
an argument contained in CExp with the corresponding conclusion d. For the CAES C' defined before,
the induction hypothesis holds and therefore acceptable literals (or literals in assumptions) of C' have an
argument with corresponding conclusion in CEAsp. By our selection of a and acyclicity of arguments we
know that a only influences the acceptability of its conclusion and negation, ¢ and c. Then, again by the
directionality criterion, we have (2. =) left to prove for c and ¢ in C.
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Suppose a is not applicable, then by (1.), no argument for arg, will be in CEsr and therefore neither
will be an argument for its conclusion d in CEar. This prevents a from influencing acceptability of ¢ (and
d), letting (2. =) hold.

If a is applicable and d = c, then by (1.) there exists an argument Ay with conclusion arg, in CExf.
By translation arg, =ucc, ¢ € Ry, allowing Ay to be extended to an argument A; for c. If c is acceptable
in C, then its proof standard is satisfied. Then by translation there will be neither a contrary of accq in ~
nor a strict rule of the form — —acc, € Ry and therefore there will be no undercutter of A> in CEAr on the
final inference. Furthermore, since A1 is in CEsF, by conflict-freeness no defeater of A1 is in CEsp. Thus
Ay € CExf. Similarly, if a makes the proof standard for ¢ unsatisfiable in C, by construction of AF, Ay will
defeat any argument b with conclusion c on its inference rule arg,. So by conflict-freeness no such argument
will be in CE4F, correctly preserving acceptability of c.

If a is applicable and d = ¢, then we only need to consider the influence of the applicability of a on the
acceptability of ¢, since the acceptability of ¢ is irrelevant. First, by (1.) there exists an argument Ay with
conclusion arg, in CEsr. Consider standard(c) = clear-and-convincing. Take an applicable argument b
for c in C' with the highest weight. Since c is acceptable, b satisfies all (weight) conditions for clear-and-
convincing. By the induction hypothesis there is an argument B;, with Conc(B;) = c, in CE, . Then notice
A\ defeats B; iff arg,, is a contrary of acc, which holds iff weight (b) # weight(a) + B, correctly preserving
acceptability of c.

(2. &) Proof by contraposition. First, d & assumptions and therefore d & ICy. Similar to the proof of
(2. =), (2. <) holds if a is not applicable or d is neither c nor c.

So assume a is applicable and d = c. Since c is not acceptable, the proof standard of c is not satisfied in
C. Consider for example standard(c) = clear-and-convincing. Then either weight(a) < a or weight(a) <
weight(b) + B for another applicable argument b with conclusion c. Therefore, the argumentation system
either has — —acc, € Ry or otherwise argy, € ~(acc,). Finally the AF on the basis of this argumentation
system will either have an argument of the form — —acc,, or by applicability of b and the induction
hypothesis, argp will be in CEor and defeats any argument using the defeasible inference acc,. Concluding
any argument constructed for the acceptability of c will be defeated and thus by conflict-freeness not in CEAF.

Ifd = c and c is not acceptable, then applicability of a will not influence acceptability of c. ]

PROPOSITION 4.14  Given a CAES C with corresponding argumentation theory AT and corresponding
argumentation framework AF, then the following rationality postulates hold for the unique extension of
AF:

(1) Closure under sub-arguments,
(2) Closure under strict rules,

(3) Direct consistency,

(4) Indirect consistency.

Proof The first two rationality postulates follow directly from the translation of C to an ASPIC argumenta-
tion theory and Propositions 6.1 and 6.2 of Prakken (2010). For the other two postulates, by Theorem 6.9 and
6.10 of Prakken (2010), we will have to prove our argumentation theory to be closed under contraposition
or transposition, axiom-consistent, well-formed and finally have a reasonable argument ordering (Definition
6.7 of Prakken 2010).

The corresponding AT of C has only one type of strict rule: — —acc,, for every argument a in arguments.
Closure under contraposition (and transposition) is immediately satisfied by the lack of strict rules starting
with a premise accy. Premises from IC,, cannot be used as a premise for a strict rule, trivially satisfying
closure under strict rules, given the consistency of IKC,. If ¢ is a contrary of , then by construction of the
translation,  is always of the form app, or arg,. Neither are in ICp,, nor a consequent of a strict rule, thus
satisfying well-formedness. Finally, preferences are not used in the corresponding AT, allowing us to take
any reasonable argument ordering. |





