
Argument and Computation, 2015
Vol. 6, No. 1, 3–23, http://dx.doi.org/10.1080/19462166.2014.1001790

Context-aware reconfiguration of large-scale surveillance systems:
argumentative approach

Peter Novák∗ and Cees Witteveen

Algorithmics, EEMCS, Delft University of Technology, The Netherlands

(Received 16 June 2014; accepted 7 October 2014)

The Metis research project aims at supporting maritime safety and security by facilitating
continuous monitoring of vessels in national coastal waters and prevention of phenomena,
such as vessel collisions, environmental hazard, or detection of malicious intents, such as
smuggling. Surveillance systems such as Metis typically comprise a number of heteroge-
neous information sources and information aggregators. Among the main problems of their
deployment lies their scalability with respect to a potentially large number of monitored
entities. One of the solutions to the problem is continuous and timely adaptation and recon-
figuration of the system according to the changing environment it operates in. At any given
timepoint, the system should use only a minimal set of information sources and aggregators
needed to facilitate effective and early detection of indicators of interest. Here, we describe
the Metis system prototype and introduce a theoretical framework for modelling scalable
information-aggregation systems. We model information-aggregation systems as networks of
inter-dependent reasoning agents, each representing a mechanism for justification/refutation of
a conclusion derived by the agent. The proposed continuous reconfiguration algorithm relies
on standard results from abstract argumentation and corresponds to computation of a grounded
extension of the argumentation framework associated with the system. Finally, we demon-
strate the flexibility of the presented framework by extending the proposed algorithm to adapt
to context-dependent changes in information sources availability, as well as shifts in system’s
focus according to its context.

Keywords: applications of argumentation technology; context-aware configuration & recon-
figuration; information-aggregation agents; heterogeneous information sources; grounded
semantics; maritime traffic surveillance

1. Introduction

The Metis project (Hendriks & van de Laar, 2013; TNO Embedded Systems Innovation, 2013)
studies techniques supporting development of large-scale dependable systems of systems which
aggregate multiple sources of information, analyse them, compute risk factors and deliver
assessments to system operators. Systems-of-systems are large-scale integrated systems that are
heterogeneous and independently operable on their own, but are networked together for a com-
mon goal (Jamshidi, 2008). Here, we introduce the Metis project’s prototype application, which
applies the developed concepts to the domain of maritime security and aims to provide advanced
situation awareness capabilities for monitoring maritime traffic in national coastal waters. Our
focus here is on supporting continuous reconfiguration, that is, efficient adaptation to changes in
its environment.

The Metis system is a large-scale surveillance system operating in a mixed physical and soft-
ware environment. It comprises a number of cooperative agents serving as information sources

*Corresponding author. Email: p.novak@tudelft.nl

c© 2015 Taylor & Francis

http://orcid.org/0000-0002-7015-4297
mailto:p.novak@tudelft.nl

4 P. Novák and C. Witteveen

and aggregators. Typically, these would be either situated physical agents, such as cameras,
satellites or human patrols, or software components interfacing various public, or proprietary
databases, web resources, etc.

In the implemented prototype scenario similar to the one implemented and demonstrated to
industrial partners of the project in spring and autumn 2013, Metis aims at detection of ships sus-
pected of smuggling illegal contraband during their approach to the port under surveillance. For
every vessel in the zone of its interest, the system accesses the various information sources and
subsequently processes the extracted information so as to finally identify vessels which require
operator’s attention. The available sources provide information about the ships, including their
identifications, crew, ports-of-call, various physical characteristics, possibly even digest of news
articles reporting on events involving the vessel, or the crew. Quite often, such information would
yield inconsistent, or even contradictory information, which needs to be cross-validated and pro-
cessed in order to infer the most likely values. The resulting information is aggregated by a
hierarchy of information aggregators so that the system is ultimately able to determine whether a
particular vessel should be considered a smuggling suspect, or it is able to justify that it is innocu-
ous given the available information. In the prototype scenario, the individual aggregators are
represented by various information-fusion components operating over a shared data warehouse,
but could also include external agents, such as human experts.

Metis should be deployable both on land and on board of independently operating ships. As
a consequence, querying individual information sources and subsequent information aggregation
could incur non-negligible financial and computational costs. While accessing a publicly avail-
able Internet resource via a fixed broadband connection can be relatively cheap, the bandwidth
of satellite communication links used on board of maritime vessels is limited and data transfers
incur external costs too. Similarly, accessing proprietary industrial databases, or utilisation of
physical agents, such as aerial drones, or imaging satellites can incur rather significant costs to
the system’s operation. Hence, using all available information sources and information-fusion
components is not always feasible. The problem of configuration and dynamic reconfiguration
according to the current system’s needs can be thus formulated as follows:

Which information sources and aggregators should be active over time so as to facilitate an early
detection of malicious intents in the most efficient manner?

To answer this question, we will use tools and methods derived from argumentation theory.
Abstract argumentation theory (Dung, 1995) studies logical reasoning solely in terms of interre-
lationships of arguments, abstract entities representing inference mechanisms, not unlike opaque
information aggregators of the Metis system. As a consequence, the argumentative approach
provides a solid basis for modelling information-processing systems in terms of interrelated
arguments which support, or attack each other.

Here, we propose an approach to (re-)configuration of large-scale information-aggregation
systems by modelling the interactions between the individual components in terms of an argu-
mentation framework. This paper builds upon and significantly extends the results presented
in Novák and Witteveen (2013). After introducing the basic concepts (Section 2) and a pre-
liminary analysis of evolutions of information-aggregation systems, in Section 4, we present the
problems of configuration and reconfiguration of information-aggregation systems to account for
changes in their environments. Subsequently, in Section 5, we show that suitable system con-
figurations correspond to the concept of grounded extensions of an associated argumentation
framework and provide an algorithm for continuous reconfiguration of information-processing
systems with respect to the changes in their environment. The solution concept viewed through
the optics of abstract argumentation is closely related to standard results in logic programming,
so the relationship opens the door for further study of reconfiguration in relation to standard

Argument and Computation 5

results in logic programming. Finally, in Section 6, we extend the reconfiguration algorithm to
account for context-dependent availability of information sources in the system and dynamic
changes in system’s focus according to context-dependent query specification. The results intro-
duced in Section 6 comprise a major advancement over the results presented in Novák and
Witteveen (2013). A discussion of on-going and future work along the presented line of research
concludes the paper.

Throughout the discourse, in a series of example expositions indicated under the heading
Metis x.y, we describe the relevant parts of the Metis system and identify a class of relevant solu-
tion concepts. These expositions present simplified example fragments of the delivered prototype
and are aimed at supporting the discourse as a running example.

Metis 1.1 In the prototype scenario, Metis should continuously monitor vessels in the coastal
waters in the Dutch Exclusive Economic Zone, source information about them and process it,
so as to finally identify vessels which are suspect of smuggling. Upon detection of a suspicion,
the system should notify the user, a Netherlands Coastguard officer, who then decides on the
following course of action. Such can include for instance sending a coastguard boat patrol to
check the situation, engage additional, possibly costly, information sources like a satellite high-
resolution video feed, or a human expert, or can even alert and engage police, or other entities
concerned with public security. To put the scenario in perspective, note that the monitored area
covers more than 63,000 km2 and typically contains around 3–4000 vessels at any given moment
in time.

To illustrate the functionality of Metis, in the system exposure we consider the fol-
lowing simplified fragment of the prototype scenario. Information sources available to the
system comprise a local copy of IHS Fairplay (IHS, 2013) database and web-portals of
MyShip.com (MyShip, 2013), MarineTraffic.com (Maltenoz Limited, 2013) and its Ports of Call
database storing the harbours the ship visited in the recent past. There are also two physical sen-
sors: a receiver for Automatic Identification System (AIS) (IEC, 2007; IMO, 1974) messages, the
vessels transmit themselves, and radar providing kinematic signatures of vessel tracks. Besides
cross-validation and probabilistic inference over the received data, the individual information-
processing components also derive meta-information about quality, certainty and trust of the
aggregated information.

2. Information-aggregation systems

An instance of a multi-agent surveillance system such as Metis comprises a set of information-
processing agents and a shared database. Information source agents operate in a dynamic
environment and feed a shared data store which is further processed by a set of information-
aggregator agents. The system’s objective is to determine the truth value of a set of distinguished
indicators, information elements corresponding to some non-trivially observable properties of
the monitored entities, such as whether a vessel is a smuggling suspect.

We model an abstract information-aggregation system as a tuple S = (A,D) comprising a
finite set of information-processing agents and a database schema, respectively. A shared data
store of the system is represented by a 3-valued database schema D comprising a finite set of
propositional variables over the domain Dom = {�,⊥, ∅} representing true, false, and unknown
valuations, respectively.

Remark 1 In practice, Dom could include an arbitrary number of distinct crisp valuations as
far as Dom remains finite. The actual Metis system exposure indeed assumes such an extended
domain of the database schema.

6 P. Novák and C. Witteveen

Without loss of generality, we do not distinguish between different interpretations of the
unknown value ∅: no information and value existent, but unknown Klein (2001). A database
snapshot (database) D : D→ Dom of the schema D at a given timepoint is a ground interpreta-
tion of variables of D. That is, each variable of D takes a truth value from the domain Dom. Let
D|x denote the valuation of a variable x in D and D∅ be a database snapshot with all variables
valued as unknown.

The information-processing agents A = {A1, . . . , An} of the system are modelled as func-
tion objects over interpretations of the schema D, formally A : (D→ Dom)→ (D→ Dom) for
each A ∈ A. Usually, an information-processing agent is not interested in the complete set of
D-valuations to transform it to a new set of D-valuations: only a part of the database variables
and their values are of its interest and dependent upon their values will be used to change the
value of some other variables. Therefore, we assume that there is a specific subset of input val-
ues that is considered by agent A, denoted by inA ⊆ D and a specific set of variables (possibly)
updated by A, denoted by outA ⊆ D. Using inA and outA, we can consider an agent A as a function
mapping partial interpretations into partial interpretations. Formally:

A : (D→ Dom)|inA → (D→ Dom)|outA.

Let D be an arbitrary snapshot of D and let D|inA and D|outA denote value assignments to vari-
ables of inA and outA, respectively. Then, A maps the snapshot D to a snapshot D′ = A(D) as
follows:

(1) D′|outA = A(D|inA);
(2) for every x
∈ outA, D′|{x} = D|{x}.

That means that only the bindings of the variables in outA might have been changed by an
information-processing agent A. We model a special type of information-processing agents, infor-
mation sources, as standard agents, however, with an empty set of input variables inA = ∅ and a
non-empty set of output variables outA
= ∅. We denote the set of all information-source agents
within a system by Asrc.

Metis 2.1 In the prototype scenario (Figure 1), Metis features seven information-source agents
(white), including three physical sensors (dotted) and four non-trivial information-aggregation
agents (grey).

The system contains a CheckDefault aggregator agent. This agent consults the local phys-
ical AIS sensor and cross-validates the self-transmitted vessel identity with those listed in the IHS
FairPlay database. The identity of a ship is the value of a variable aisD, the outcome of checking
an IHS FairPlay database is stored in the variable fpID. So, inCheckDefault = {aisID, fpID}. If there
is a mismatch, the aggregator will set the variable isSuspectID to true, if there is a match, this
variable is set to false. So, outCheckDefault = {isSuspectID}.

In a similar fashion, upon failure to match the identities of the vessel, the system performs
a deeper check of the vessel’s identity (CheckSpoofing) in order to determine whether it
does not actively spoof it. If that is indeed the case, the system escalates to the highest-level
information-aggregator CheckSmuggling consulting the most extensive set of information
sources and aggregators and performing the deepest analysis of the vessel’s background so as
to assess its potential involvement in smuggling. The TrackAnalyser processor matches the
vessel’s kinematic track signature from the Radar sensor to the vessel type retrieved from AIS.
Should the vessel turn out to be a suspect smuggler according to the Metis’s analysis, the valua-
tion of isSmuggling information element is communicated to the system operator via a GUI
warning. Note that all the involved agents assume a domain of the underlying database extended

Argument and Computation 7

Figure 1. Metis system interdependencies.

with enumerations of possible identities, etc., and can also produce unknown valuation ∅ for
each of their output variables.

3. Configurations and database evolution

A set of information-processing agents of a system gives rise to the notion of system configura-
tion. Formally, a configuration C ⊆ A of a system S = (A,D) is a set of information-processing
agents active in S in a given point in time. From now on, unless explicitly stated otherwise,
we consider only non-trivial configurations C
= ∅. Notation for input and output variables of
an agent naturally extends to configurations, that is inC =

⋃
A∈C inA and outC =

⋃
A∈C outA. The

notion of an update of a database snapshot given a configuration of agents can be easily defined
as follows:

Definition 3.1 Let C ⊆ A be a configuration of a system S = (A,D) and D a database snapshot
of the schema D. Then, the database D′ is said to be an update of D by C, denoted by C(D) = D′,
iff

(1) Every change in D′ w.r.t. D can be attributed to an information-processing agent, that
is for each x ∈ D, such that D|x
= D′|x, there exists an agent A ∈ C with x ∈ outA and
D′|outA = A(D|inA).

(2) An update does not change the database snapshot only if no agent A ∈ C is able to make
a change, that is D′ = D only if for every agent A ∈ C, A(D|inA) = D|outA.

If D|outA
= D′|outA = A(D|inA), we also say that the update was co-induced by the agent A.

8 P. Novák and C. Witteveen

Note that here we give priority to an agent in a configuration that is able to change the current
database snapshot. Moreover, each variable x modified in the update D′ w.r.t. its original value
in D, is a result of a (single) computation of some agent A in the configuration C. This does not
imply that an update D′ = C(D) is the result of at most one information-processing agent A ∈ C,
it only implies that there is no interference between agents in C during an update.

Instead of referring to configurations of agents, we might also refer to an update D′ of D
by means of a partial database Du. The information in this partial database Du should override
existing information in D only if the information in Du is known, that is the value of a variable x
in Du is either � or ⊥:

Definition 3.2 Let D be a database and Du be a partial database. We say that D′ is an update
of D by a partial database Du, denoted by D′ = D⊕ Du, iff whenever Du|x is defined, we have
D′|x = Du|x and D′|x = D|x otherwise.

Given a configuration C of agents and an update D′ = C(D) of D, it might be that agents in
C might be used to update D′ too, resulting in a new update D′′ = C(D′). This gives rise to the
notion of an evolution of a system S under a configuration C ⊆ A:

Definition 3.3 Let S be a system, D0 be a database snapshot and C ⊆ A a configuration. An
evolution of a system S under a configuration C ⊆ A from D0 is an infinite sequence of database
snapshots λD = D0, . . . , Dk , . . . , such that each Di+1 = C(Di) is an update of Di by C, for all
i ∈ N0. The evolution λD is called a C-evolution of S from D0 on.

In general, given a configuration C and an initial snapshot D0, there might be many different
evolutions λD starting from D0, depending upon the agents active at every update of the current
snapshot. So, an evolution of a system can be considered a non-deterministic process. Among
these evolutions, there are special evolutions that interest us: these are the evolutions that from
some point k on do not change. Such evolutions we deem stable (Table 1):

Definition 3.4 Let λD = D0, . . . , Dk , . . . be a C-evolution of S. We say that λD is stable if there
exists a constant k ≥ 0 such that

(1) D0, . . . , Dk is an initial segment of λD;
(2) for all possible C-evolutions λ′D = D′0, . . . , D′k , D′k+1, . . . such that D′j = Dj for j ≤ k, that

is λ′D and λD share the same initial segment D0, . . . , Dk , we have D′k+i = Dk+i = D′k for
all i ≥ 1.

Table 1. Metis system agents.

Agent in out

AIS ∅ aisID∗, aisType′
FairPlay ∅ fpID∗
MyShip ∅ myShipID†

MarineTraffic ∅ mtID†

MarineTraffPorts ∅ portCalls‡

Radar ∅ track′
Patrol ∅ isSpoofingID‡

TrackAnalyser marked ′ vesselType‡

CheckDefault marked ∗ isSuspectID†

CheckSpoofing marked † isSpoofingID‡

checkSmuggling marked ‡ isSmuggling

Argument and Computation 9

The state Dk is also known as the stable state in the evolution λD = D0, . . . , Dk ,

Stable evolutions can also be identified with their finite initial segment D0, . . . , Dk . There is
an easy characterisation of stable evolutions using the definition of a database update:

Proposition 3.5 Let λD = D0, . . . , Dk , . . . be a C-evolution. Then, λD is stable iff there exists
some finite k such that C(Dk) = Dk .

Proof The only-if direction is trivial, so assume that C(Dk) = Dk . Then, for all A ∈ C we
have A(Dk|inA) = Dk|outA. This means that for any C-evolution λ′′D starting from Dk we
have λ′′D = Dk , Dk , . . . , Dk , Hence, for every evolution λ′D = D′0, . . . , D′k , D′k+1 sharing D′0 =
D0, . . . , D′k = Dk with λD, we have Dk′+1 = C(D′k) = Dk . Hence, λD is stable. �

The evolution of a system strongly depends on both the nature of the active configuration and
the particular order in which the agents of the configuration work over the database. So, even if
C-evolutions from a given snapshot D0 turn out to be stable, it might be that there are several
distinct stable states reached by these C-evolutions from the same initial snapshot D0. In general,
this is not what we want: given any initial situation, we want to draw a definite set of conclusions
from it. Therefore, we would like to characterise C-evolutions from a certain initial snapshot that
not only are stable, but at their points of stability turn out to reach the same stable state, whatever
initial snapshot we take. The following definition articulates this intuition formally:

Definition 3.6 Let C ⊆ A be a configuration of a system S = (A,D). We say that C is normal
iff

(1) for every database snapshot D0 all C-evolutions of S from D0 stabilise and
(2) all the stable states achieved by these stable C-evolutions from D0 are identical.

More formally, a configuration C of agents is normal if for every initial database snapshot
D0 and every evolution λi

D = D0, Di
1, . . . Di

k , . . . starting from D0, there exists a finite constant ki

such that C(Di
ki
) = Di

ki+1 and for all i
= j, Di
ki+1 = Dj

kj+1 = Di
ki

. The unique stable state reached
by such a normal configuration C from an initial snapshot D0 is denoted by C∗(D0).

Clearly, not all configurations of any information-aggregation system are normal. To see this,
consider the following example:

Example 3.7 A solution to a configuration problem does not always exist. For instance, consider
three agents A1, A2 and A3. Suppose that A1 is an information-source agent where outA1 = {x}. A1

is able to set x to �. A2 and A3 are information-processing agents, where inA2 = outA3 = {x} and
inA3 = outA2 = {y}. It holds that

A2(x �→ ⊥) = y �→ �, (1)

A2(x �→ �) = y �→ ⊥, (2)

while

A3(y �→ �) = x �→ �, (3)

A3(y �→ ⊥) = x �→ ⊥. (4)

Let C = {A2, A3} be a configuration. Let D0 be the snapshot after A1 provides a crisp value to
x. Then, there exists no stable C-evolution starting with D0 as the updates from D0 oscillate

10 P. Novák and C. Witteveen

between x, y being true and x, y being false. Hence, the configuration C = {A2, A3} is not a normal
configuration.

As we already pointed out, the precise operational semantics of application of a configuration
to an information-system’s database snapshot remains abstract. In particular, the configuration
execution model is not precisely defined in terms of ordering of the individual agents, as well as in
terms of possible effects concurrent execution might have on the underlying database. Since our
study relates to design of information-aggregation systems which lend themselves to an analytical
insight, the following questions are central and of natural interest to guide design of information-
aggregation systems with a more transparent system evolution semantics:

What are the conditions which need to be imposed on information-aggregation systems and their
underlying databases, so that existence of non-trivial normal configurations is guaranteed?

More specifically, ignoring the restrictions imposable on database snapshots, we are interested in
the question:

What are the properties of information-aggregation systems which guarantee that regardless of the
database snapshot of the system, there exists a non-trivial normal configuration?

Tackling the aforementioned questions in their generality is beyond the scope of this paper.
Instead, to give a baseline for our further analysis in the later text, we introduce a constrained
class of information-aggregation systems with a property that they always enjoy normality.
More specifically, these systems have the property that given an arbitrary configuration C of
information-aggregation agents, whenever the information-source agents have ‘produced’ an ini-
tial database snapshot D0, any C-evolution from D0 will result in the same stable state. We delve
into the details and rationale of such configurations in the later text.

Definition 3.8 We say that an information-aggregation system S = (A,D) is simple and
stratified iff

(1) there exists a stratification of A, that is a partitioning of A into a sequence (A0, . . . ,Ak)

of strata (layers), where A0 = {A ∈ A | inA = ∅} and Ai = {A ∈ A | inA ⊆ out⋃
j=1...i−1 Aj}

for all i = 1, . . . , k; and
(2) S is simple in that for every every variable X ∈ D there is at most one agent A ∈ A such

that X ∈ outA.

As it turns out, these conditions are sufficient to guarantee normality of configurations:

Proposition 3.9 Let S = (A,D) be a simple and stratified system. Then every configuration C
of information-processing agents in S is normal w.r.t. any initial database D0 produced by the
information-source agents A ∈ A0.

Proof The proof follows by induction over the number k of layers in the stratification
(A0, . . . ,Ak) of A. Let k = 0. Then, the only agents we have are information-source agents.
So by assumption, every configuration comprising only information-source agents is stable as it
cannot update the database any more, since their outputs are already reflected in it. Hence, given
any initial database snapshot D0, C(D0) = D0, proving that every such configuration is normal.

Assume the induction hypothesis to hold for any stratification (A0, . . . ,Aj) with j ≤ k. Let
S be a system with k + 1 layers in its stratification, let C be an arbitrary configuration of agents
and D0 be an initial database snapshot. Let C = C≤k ∪ Ck+1, where C≤k contains all agents in C

Argument and Computation 11

that occur in the layers 1 up to k and Ck+1 contains all agents in the (k + 1)th layer. By induc-
tion hypothesis, we know that C≤k is normal since it reduces to a configuration in a simple and
stratified system S′ = (

⋃
i≤k Ai,D) with k layers. Hence, C∗≤k(D0) = D∗ is well defined. Now, let

|Ck+1| = m and consider an arbitrary Ck+1-evolution λD = D∗, D∗1, . . . D∗m, . . . starting with D∗.
First, we show that Ck+1(D∗m) = D∗m. We can divide D∗ into two disjoint parts D∗ = D∗in ∪

D∗out, where D∗out = D∗|(⋃A∈Ak+1
outA) and D∗in = D∗ − D∗out. Note that, by simplicity of S, all

parts outA are disjoint. Now, the effect of any agent A ∈ Ck+1 is restricted to a possible modi-
fication of D∗|outA only, without affecting D∗in. In particular, for any agent A ∈ Ck+1 its effect
on D∗ is limited to D∗|out(A) which will be changed to A(D∗|in(A)). Therefore, after at most
m updates, the cumulative effect of all updates by agents A in the configuration Ck+1 equals
D∗m = D∗in ∪ (

⋃
A∈Ck+1

A(D∗|in(A))) and any A ∈ Ck+1 applied to D∗m will result in D∗m again.
Since, given D∗, D∗m is uniquely defined, any Ck+1 evolution λD is normal w.r.t. the initial
database D∗ reaching the unique stable state D∗∗ = D∗m.

Second, we show that D∗∗ is the unique stable state any C-evolution λD will evolve to start-
ing from an initial snapshot D0. To prove this, we define D∗∗j to be that part of the state D∗∗

that contains only bindings for variables1 in the layers 0 up to j, that is variables occurring in
in(A) ∪ out(A) for any agent A ∈⋃

i≤j Ai. For j = 0, D∗∗0 = D0 is the unique stable state any
C-evolution λD will evolve to. Assume that for j ≤ k, any C-evolution will evolve to the unique
state D∗∗j . Then for j = k any C-evolution evolves to D∗∗k . But then we must have D∗k = D∗∗k ,
implying that D∗in = D∗∗k . Now assume that there is another stable state D∗∗∗
= D∗∗ reachable
by a C-evolution λ′D from D0. By induction hypothesis, we have D∗in = D∗∗k = D∗∗∗k . But then
we must have D∗∗ = D∗in ∪ (

⋃
A∈Ck+1

A(D∗|in(A))) = D∗∗∗, contradiction. Therefore, D∗∗ is the
unique state every C-evolution from D0 will evolve to. Therefore, any C is normal w.r.t. any
initial database snapshot D0. �

While simple stratified systems represent a rather constrained and narrow class of
information-aggregation systems, they are still a very useful subclass of systems. For instance,
most deployed sensor networks fall into this class of systems due to their uni-directional flow of
information and relative simplicity of information-fusion mechanisms.

Metis is a security-related information-aggregation system. Such knowledge-intensive sys-
tems are designed by encoding human expert knowledge into the structure of the system. In
practice, however, we observe that domain experts tend to articulate their knowledge in terms of
hierarchically structured information flows and cascading inference and filtering processes. This
provides an intuitive justification for the stratified design of such systems. Complementarily, the
requirement of simplicity of a system as expressed in the aforementioned definition embodies the
intuition that the easiest way to resolve conflicts is by doing so explicitly. That is, in the case there
might be a conflict between two operating aggregators over a valuation of some variable, this
should be resolved already in the design phase by explicitly splitting the computation of the two
aggregators into two separate variables and designing an independent third aggregator capable to
resolve such conflicts either by fusing their outcomes, deciding which of them takes precedence,
or otherwise. More formally, whenever x ∈ outA1 ∩ outA2 for two distinct agents A1, A2, we can
rename x in outA1 to x1, similarly rename x to x2 in outA2 and introduce a new agent Ax with
inAx = {x1, x2} and outAx = {x}. Ax then embodies the fusion of x1 and x2 into a single variable
without a possibility of a conflict over x in S.

In the remainder of this paper, we flesh out the above-introduced intuitions about systems’
evolutions and design requirements which need to be imposed on them in order to facilitate ‘well-
behaved’ information aggregation. In particular, we discuss the issues stemming from embedding
of information-aggregation systems in environments which might have their own dynamics. An
example of such might be a mixed physical and IT infrastructure-related context our Metis

12 P. Novák and C. Witteveen

prototype system operates in. Subsequently, we introduce and apply optics of abstract argumenta-
tion on the functionality of such information-processing systems. Along the way, we re-introduce
the framework of information-processing systems as laid out earlier, this time in terms of argu-
mentation frameworks. We demonstrate that the parallels between the two are useful as they
allow us to relate the information-aggregation processes to reasoning, inference and conflict-
resolution mechanisms of argumentation approaches. As a side effect, we lift the constraint of
system’s simplicity introduced in Definition 3.8 and show how we can arrive to sound conclu-
sions of the information-aggregation processes in systems such as Metis. Furthermore, as we
will show, argumentation optics allows us to straightforwardly capture the notion of justification
of a system’s conclusion regarding a variable of interest, a query.

4. Configuration and reconfiguration problems

In this section, we formulate the problems of configuration and reconfiguration of information-
aggregation systems. Before that, however, we introduce and illustrate the concept of an environ-
ment such a system is to be embedded in. The notion of environment provides a connection of
the system to the ground reality, the source of data the system processes and upon which it infers
its conclusions.

4.1. System and its environment

An information-aggregation system, such as Metis, is situated in a dynamic environment which
changes over time. It reads values from it, monitors it and derives non-trivial information on the
basis of the collected evidence. We model an environment as a database schema E over crisp
truth values {�,⊥}.

A system S = (A,D) can be embedded in an environment E when the two database schemas
coincide in exactly the variables produced by the information-source agents of S. That is, each
variable x ∈ outA of an agent A ∈ A with inA = ∅ is included in the environment too, that is x ∈
E ∩D and we denote DE

in = E ∩D. A variable x ∈ DE
in in a database snapshot D of S reflects the

state of the environment E iff D|x
= ∅ implies D|x = E|x. We say that the system S is embedded
in E iff computations of all the information-source agents reflect the state of the environment.
That is, for all A ∈ A with inA = ∅ all variables from outA in the snapshot A(D) reflect E.

The dynamics of the environment is captured by its evolution over time modelled as a (pos-
sibly infinite) sequence λE = E0, . . . , Ek , . . . of database snapshots. To ensure correspondence
between an evolution λE of the environment E and an evolution λD = D0, . . . , Dl, . . . of a system
S = (A,D) embedded in E , we require that there exists a sequence of indices i0, . . . , im, . . . ∈ N0,
such that the variables from DE

in in Di with i ∈ ij · · · (ij+1 − 1) reflect the environment state Ej for
j ≥ 0. That is, at every such a distinguished timepoint, the system is embedded in the current state
of the environment.

Metis 4.1 A configuration capable to produce the system evolution depicted in Figure 2 could
include the agents AIS, FairPlay, CheckDefault, Radar and TrackAnalyser agents
executed subsequently in that order up to the database snapshot D4. That is, D0 is produced
by execution of AIS, D1 by execution of FairPlay, D2 by CheckDefault, D3 by Radar
and D4 by TrackAnalyser. Subsequently, D5 is produced by a re-execution of AIS, which
produces an unknown valuation ∅ for the aisID variable which leads to derivation of ∅ also for
the isSuspectID variable when finally D6 is produced by re-execution of CheckDefault. The
environment of the system evolves in a sequence E0, E1, E2 and its changes are reflected in the
evolution of the system’s database snapshots. Assuming that all the not-mentioned variables in

Argument and Computation 13

D0, E0 D1 D2 D3, E1 D4 D5, E2 D6

aisIDE aisID aisID aisIDE aisID
aisTypeE aisType aisType aisTypeE aisType aisTypeE aisType

fpID fpID fpID fpID fpID fpID
isSuspectID isSuspectID isSuspectID isSuspectID

trackE track trackE track
isSuspectType isSuspectType isSuspectType

Figure 2. An example evolution of the Metis system database. Only variables valued � are listed. The
variables marked E are read from the corresponding environment update.

the environment do not change, the system is embedded in it exactly at points marked by the
environment updates.

4.2. Configuration problem

Assessments of a surveillance information-aggregation systems such as Metis could have real-
world repercussions. For instance, after deriving that a vessel could be a smuggling suspect,
a warning would be indicated to the operator, who might then consider contacting the vessel,
possibly even sending a patrol to the location. Such actions, however, need to be justified in the
operational scenario. As a consequence, any crisp conclusion computed by the system must be
explainable and defensible by inspecting the structure of inferences from basic evidence in the
environment. In turn, we are interested in system configurations, which can either crisply answer
distinguished queries, such as suspicion of smuggling, or, if that is not possible, the operator
needs to be sure that there is no such configuration given the current state of the environment and
the system’s implementation. In the following, we implicitly assume that the system is embedded
in an environment state reflected in its current (initial) database snapshot.

Definition 4.2 Given a tuple C = (S, φ, D), with S = (A,D) being an information-aggregation
system, φ ∈ D a query variable and D being an initial snapshot of D, the information-
aggregation system configuration problem is to find a normal configuration C, a solution to
C, such that all evolutions of S rooted in D stabilise in a snapshot C∗(D) and C satisfies the
following:

(1) φ ∈ outC , that is C contains at least one agent A ∈ C capable to derive φ. We also require
that the resulting query solution is a crisp valuation C∗(D)|φ
= ∅ computed by the
configuration C;

(2) for each variable x ∈ inC , also x ∈ outC and C∗(D)|x
= ∅; and finally
(3) there is no configuration C′ with C ⊂ C′ satisfying Equations (1) and (2), such that

C′∗(D)|φ
= C∗(D)|φ.

Condition (1) of the aforementioned definition stipulates that the solution configuration indeed
provides a valuation of the query. Condition (2) formalises the intuition that the query solution
can be traced back to the evidence from the environment and computations of a series of crisp
variable valuations by the individual agents of the system, that is a justification for the query
solution. Finally, condition (3) ensures that there is no doubt about the computed query solution.
In that sense, C is a minimal sufficient support of the query answer.

Definition 4.2 is agnostic of the structure of the underlying system. As a consequence, as we
already pointed out in the previous section, in general, a solution to a configuration problem does
not always exist.

14 P. Novák and C. Witteveen

4.3. Reconfiguration problem

Through information-source agents, a dynamic environment serves as the main driver of change
within the system. Situating the configuration problem into a changing environment, repeated
configuration becomes a means for continuous adaptation of the system to the updates coming
from its environment.

Definition 4.3 Given a tuple R = (λE ,S, φ), where λE = E0, . . . , Ek , . . . is an evolution of an
environment E , S = (A,D) is an information-aggregation system embedded in E , and φ ∈ D is
a query variable, the information-aggregation reconfiguration problem is a search for a sequence
of configurations C0, . . . , Cl, . . . , such that each Ci is a solution to the configuration problem
Ci = (S, φ, Di) for i > 0, where Di = C∗i−1(Di−1)⊕ Ei|DE

in and D0 = D∅ ⊕ E0|DE
in. We say that

a sequence of configurations C0, . . . , Cl, . . . is a weak solution to R, iff Ci is a solution to Ci =
(S, φ, Di) if it exists and can be arbitrary otherwise.

Informally, a reconfiguration problem solution is a sequence of configurations producing a
database evolution reflecting the changes of the system’s environment. The sequence of config-
urations in a weak solution to the reconfiguration problem captures the intuition that the system
tries its best to compute a query solution upon each environment update, which, however, does
not always exist.

Metis 4.4 Consider the Metis prototype scenario introduced in the previous expositions. An
example configuration problem could be C = (SMetis, isSmuggling, D3). As stated, there is no
solution to C. This would only exist if all the information-source agents provide a reading of their
output variables. Then, the solution would comprise all the agents of the system.

5. Solving configuration and reconfiguration problems using argumentation theory

The individual agents of an information-aggregation system perform inference over valuations of
their input variables, premises, and thus provide support to the output variables, conclusions. In
effect, they can be treated as blackbox modules embodying a support for their output variables,
or can produce an output in conflict with outputs of other agents within the system. Thus, their
interrelationships embody the flow of information within the system in terms of mutual support
of conflict.

Dung’s theory of abstract argumentation (Dung, 1995) is a formal model revolving around
analysis of mutual support and the structure of conflicts between abstract arguments in favour,
or against some conclusion. Hence, the framework of abstract argumentation provides a natural
model of computation of information-aggregation systems. Here, we propose an approach to solv-
ing (re-)configuration problems rooted in sceptical semantics of argumentation. The terminology
introduced in the later text is adapted from Dung (1995).

Definition 5.1 Let S = (A,D) be a system and D be a database snapshot of D. We construct a
configuration argumentation framework CAF = 〈A,≺〉 associated with S over D as follows:

• Arguments correspond to information-processing agents A and embody a set of inter-
relations among variables of the schema D. The input variables inA provide the basis
for inferring the conclusions outA of the argument A ∈ A. We say that an argument is
valid w.r.t. a database snapshot D iff A(D|inA) ⊆ D and for all variables x ∈ inA, we
have D|x
= ∅. Informally, a valid argument is supported by a given database snapshot
in that the input/output characteristics of the internal computation of the agent is truthfully

Argument and Computation 15

reflected in the database. From now on, we will use the notions of an argument and an agent
interchangeably according to the context.
• We say that a valid argument A ∈ A attacks another argument A′ ∈ A denoted A′ ≺ A,

on a variable x ∈ outA ∩ outA′ w.r.t. a given database snapshot D iff A(D|inA)|x
= ∅ and
A(D|inA)|x
= A′(D|inA′)|x. That is, the agent A derives a crisp valuation for x which dis-
agrees with the one derived by the agent A′. We also say that A is a counter-argument to A′,
or that A is controversial. Finally, an argument A ∈ A attacks a set of arguments C ⊆ A iff
there exists A′ ∈ C attacked by A.

Note that the attack relation is defined only for valid arguments supporting their conclusions
by crisp valuation of their input. The conclusion, however, does not necessarily need to be crisp
itself. Also, the attack relation is not symmetric in that a valid argument supporting a crisp con-
clusion can attack an argument providing unknown valuation to the same conclusion, but not vice
versa.

Metis 5.2 In the case of the example system depicted in Figure 1, an attack in a particular argu-
mentation framework associated with a Metis system in some state might arise in the case the
agents Patrol and CheckSpoofing produce two different crisp valuations for the variable
isSpoofingID. This situation could realistically arise in the case when for instance the informa-
tion provided by AIS and FairPlay agents cannot be cross-validated by that retrieved from
other external databases (MyShip or MarineTraffic) and thus CheckSpoofing agent
concludes that the ship might be spoofing its identity. At the same time, a coastguard patrol boat
or a UAV sent to inspect the ship would actually confirm the identity of the vessel to be that
retrieved from AIS.

Definition 5.3 Consider a fixed argumentation framework CAF associated with a system S =
(A,D) over a database D. A configuration C is said to be conflict-free if there are no agents
A, B ∈ C, such that A attacks B w.r.t. CAF. A valid argument A ∈ A (agent) is acceptable to C iff
for each A′ ∈ A in the case A′ attacks A, then there exists another argument A′′ in C, such that A′

is attacked by A′′ all w.r.t. the database snapshot D.

In security-related information-aggregation systems, such as Metis, any computed assess-
ments need to be justified in order to preserve presumption of innocence of the monitored entities.
That is, the resulting crisp valuation must be traceable to and justifiable by the evidence coming
from the environment. Reasoning of such a system is sceptical in that only conclusions which the
system is sure about can be inferred, given the environment evidence and the system’s design.
The notion of a grounded extension of an argumentation framework based on a fix-point seman-
tics captures this intuition. Besides being capable to articulate their conclusions to its users, these
should also be susceptible for providing insights for the structural explanations, justifications, of
the conclusions. The notion of grounded extension provides a basis for our analysis.

Definition 5.4 A grounded extension of an argumentation framework CAF = 〈A,≺〉, denoted
GECAF, is the least fix-point of its characteristic function FCAF : 2A→ 2A defined as FCAF(C) =
{A | A ∈ AisacceptabletoC}. GECAF is admissible, that is all arguments in GECAF are also accept-
able to GECAF over D, and complete, that is all agents which are acceptable to GECAF also belong
to it.

A grounded extension of CAF always exists and FCAF is monotonous with respect to set inclu-
sion. In general, an argumentation framework can have multiple grounded extensions, a property

16 P. Novák and C. Witteveen

undesirable to security-related systems, where assessments should be unambiguous. Dung (1995)
shows that argumentation frameworks without infinite chains of arguments A1, . . . , An, . . ., such
that for each i, Ai+1 attacks Ai, have a unique grounded extension. A way to ensure that property,
consistent with our earlier observations about systems such as Metis, is to consider only stratified
systems. That is those, for which there exists a stratification, a decomposition into a sequence of
strata (layers) A = A0, . . . ,Ak as defined in Definition 3.8. Furthermore, we say that A is the
most compact stratification of S iff all agents belong to the lowest possible layer of A. Formally,
for all stratifications A′ of S, A ∈ Ai implies A ∈ A′j with j ≥ i.

The following proposition establishes the correspondence between solutions to configuration
problems for stratified systems and grounded extensions of their configuration argumentation
frameworks.

Proposition 5.5 C ⊆ A is a solution of a configuration problem C = (S, φ, D) with a strati-
fied system S if and only if C is also the grounded extension of CAFC (i.e. C = GECAFC

), an
argumentation framework associated with S over the database C∗(D) with φ ∈ outC .

Proof =⇒ : If C is a solution of C, by definition we have that (i) C is normal, (ii) each argument
within C is valid and (iii) φ ∈ outC . As a consequence, the computation of GECAF = F∗CAF(∅) fol-
lows in system’s layers (strata) from the information sources to ever higher ones exactly copying
the inductive argument presented in the proof of Proposition 3.9. Note that there is no execu-
tion of the involved agents, their output only needs to be checked against the database snapshot
C∗(D), which, however, is already a result of their execution. Since C is a solution to C, the
computation must also include computation of a valuation for the query variable.
⇐= : We need to show that C = F∗CAF(∅) is (i) normal, (ii) φ ∈ outC , (iii) all input variables

of agents in C are crisply valued and (iv) there is no larger configuration C′ producing a different
valuation for φ than C does.

(i) The proof of C’s normality follows the inductive argument laid down in the proof of
Proposition 3.9. Thanks to the insight that there is always a unique grounded extension of
a stratified argumentation framework, we have that the computation of F∗CAF(∅) forms a
stable evolution of S from D onwards, moreover, all possible evaluations of agents from
the individual layers must lead to the same outcome;

(ii) φ ∈ outC holds by assumption;
(iii) all inputs to all arguments in C are indeed crisply valued thanks to the requirement of

an argument to be valid and non-controversial in order to be considered acceptable to
F∗CAF(∅); and finally

(iv) C = F∗CAF(∅) is a fix-point of FCAF, hence it is also the maximal set of conflict-free
arguments in CAFC.

�

Proposition 5.5 can be applied to static databases only. Note that execution of agents con-
sidered for acceptance to a candidate solution does not modify the database fragment computed
in previous iterations, which also remains stable in further computation. In turn, a naive con-
figuration algorithm utilising Proposition 5.5 would iteratively proceed in three steps following
the inductive argument presented in the proof of Proposition 3.9. In every ith iteration, it would
(i) execute all the agents from stratum Ai of the most compact stratification of S, (ii) select the
non-controversial ones and finally (iii) add them to the candidate solution. To ensure non-validity
of arguments from higher strata that utilise controversial inputs derived in this iteration, these
should be set to ∅.

Argument and Computation 17

The naive algorithm, while correctly computing a solution to a given configuration problem,
is rather inefficient in terms of the overall run-time cost. It targets computation of a grounded
extension of the whole framework, instead of only answering the query of the given configuration
problem. First, in the initial iteration the algorithm considers and executes all information-source
agents. Besides that it also potentially executes information-processing agents, which do not
contribute to answering the query. In both cases, it thus incurs unnecessary run-time cost. In fact,
only arguments relevant to derivation of the configuration problem query need to be considered.

Let S = (A,D) be a stratified system and φ ∈ D be a query. The agents relevant to φ include
Aφ(∅) = {A ∈ A | φ ∈ outA}. Given a set of agents C relevant to φ, all the agents computing the
input for those in C are relevant to φ too, that is Aφ(C) = {A ∈ A | outA ⊆ inC}. The set of all
agents relevant to φ is the (unique) fix-point of Aφ(∅) denoted A∗φ . The following proposition
formalises the intuition.

Proposition 5.6 Let C = (S, φ, D), CAFC and C = GECAFC
be as in Proposition 5.5. Then C ∩

A∗φ is also a solution to C.

Proof Observe that since C is a solution to C, every fragment C′ ∈ C which still satisfies φ ∈
outC′ and the condition that for each variable x ∈ inC′ , also x ∈ outC′ with C∗(D)|x
= ∅ must also
be a solution to C. From the definition of A∗φ and the fact that C is a normal configuration the
two conditions are satisfied in C ∩A∗φ . Finally, since C is already a solution to C, by definition no
agent from C \A∗φ attacks the valuation of C∗(D)|φ, hence C ∩A∗φ also satisfies the condition (3)
of Definition 4.2. �

Finally, the naive algorithm does not terminate early enough but rather computes the grounded
extension to its full extent, despite the fact that in the course of its computation it might turn
out that the query is (i) either already derived in a justified manner, or that (ii) its computa-
tion is hopeless. The former is relatively easy to detect. After all the agents relevant to φ were
considered for inclusion to the candidate solution, further computation will consider only irrel-
evant arguments as implied by the proof of Proposition 5.6. To detect the latter case, we need
to closely inspect the current candidate solution with respect to the interdependencies among
the agents of the system. Given a configuration C, let’s define Aφ

∗
(C) as the fix-point of the

operator Aφ(C) = C ∪ {A ∈ Aφ | inA ⊆ outC and inA
= ∅}. Aφ

∗
is complementary to Aφ in that

given a configuration C, it collects all agents dependent solely on the output of C and thus works
bottom-up along the system’s strata, while Aφ worked top-down from the query down to the
relevant information source in the system’s bottom layer. Consequently, Aφ

∗
(FCAF(C)) contains

C, together with all the arguments which can be still eventually considered for accepting to the
candidate solution in future iterations of FCAF. In the case φ ∈ outAφ

∗
(C) ceases to hold during

computation, the algorithm can terminate, since none of the arguments capable to compute the
query solution can be added to C in the future. A straightforward corollary of this line of reason-
ing is the following proposition, which formalises the relationship between the operator and the
structure of the grounded extension.

Proposition 5.7 Let C = (S, φ, D), CAFC and GEC be as in Proposition 5.5. We have φ ∈
outGEC

if and only if φ ∈ outAφ
∗
(FCAF(C))

for every C ⊆ GEC.

Finally, the naive algorithm considers arguments for accepting the candidate solution in sets,
subsets of the system’s layers. Considering arguments for acceptance one by one would facilitate
even earlier detection of hopeless computations and thus further reduction of run-time costs. It
could even consider arguments across strata, however, in that case, in line with the sceptical

18 P. Novák and C. Witteveen

inference strategy, the accepted arguments can only use input variables which are a part of the
already stabilised fragment of the database. An alternative definition of (safe) acceptability of an
argument A to a conflict-free configuration C is when all its input variables are (i) crisply valued,
(ii) already derived by C and (iii) there are no arguments outside of C which can potentially
threat the valuations of its input variables. More formally, we require (i) inA ⊆ outC , (ii) there is
no x ∈ inA with D|x = ∅, and (iii) there is no A′ ∈ A \ C, such that inA ∩ outA
= ∅. Evaluation
of this alternative definition of acceptability does not require execution of the agent A and thus
can be used in the context of an evolving database, as is the case in Metis.

Algorithm 1 provides a pseudocode for continuous reconfiguration of information-
aggregation systems based on the aforementioned principles. Upon every environment update,
in a step j, the algorithm tries to compute the minimal solution to the current configuration prob-
lem. Either it succeeds and informs the operator about the query solution, or detects that a solution
cannot be computed and proceeds. Function Configure computes the grounded extension of the
current configuration problem Ci = (S, φ, D⊕ Ei|DE

in) restricted to the arguments relevant to φ

and considers potentially acceptable arguments individually one by one.

Algorithm 1 Algorithm computing weak-solutions to a reconfiguration proble
Require: R = (λE ,S, φ) with environment evolution λE = E0, . . . , Ek , . . ., a stratified system

S = (A,D) and a query φ ∈ D

1: C← ∅; D = D∅

2: loop (start with j = 0)
3: D⊕ ← the next environment update Ej|DE

in
4: (C, D)← Configure(C, D⊕ D⊕)
5: if φ ∈ outC then inform operator about φ and D|φ
6: end loop (increment j)

7: function Configure(C, D) � returns (Configuration, Database)
8: C← C ∩ F∗CAF(∅)
9: loop

10: Cacc ← {A ∈ (A∗φ) \ C | A is safely acceptable to C}
11: if Cacc = ∅ or φ
∈ outAφ

∗
(C∪Cacc)

then return (C, D)

12: select A ∈ Cacc

13: D← A(D) if D|inA changed since the last execution of A
14: if A attacks {A′1, . . . , A′k} ⊆ C then
15: C← C \ {A′1, . . . , A′k} and set x �→ ∅ for all x on which A attacks C
16: else C← C ∪ {A}
17: end loop
18: end function

Given a configuration, without executing the agents, the algorithm strips C of all arguments
which might need reconsideration (line 8), due to the last environment update (line 4), or because
they depend on such arguments. Starting from an empty candidate solution C, in every iteration,
the algorithm first identifies among the arguments relevant to φ (Proposition 5.6) those potentially
acceptable to C (line 10). Before considering their execution, it checks whether a solution can
still be computed and should this not be the case, it terminates the procedure. To detect the con-
dition, it exploits the principles presented in Proposition 5.7. Furthermore, the algorithm selects

Argument and Computation 19

a potentially acceptable information-processing agent A (line 12) and executes it (line 13). In the
case A does not attack the current candidate solution C (line 14), it is accepted to C (line 16). Oth-
erwise, the arguments attacked by A were previously accepted to C prematurely and thus need to
be removed. We also need to set the variables on which they disagree to ∅ so as to ensure that
all agents dependent on controversial valuations will be deemed non-valid in the future iterations
(line 8). To further reduce the run-time costs incurred by the algorithm, we assume that each agent
keeps track of changes to its input, so the algorithm executes it only in the case its re-execution
is really needed (line 13).

For simplicity, we do not specify the particular strategy in which the potentially acceptable
arguments are selected from Cacc (line 12). One possible heuristic strategy could be to pick the
arguments which can result in a conflict with other arguments first. This would lead to an early
detection of hopelessness of the computation of a solution to the given configuration problem.
Another strategy could be to select the arguments in a greedy manner according to estimation of
the run-time costs incurred by executing the argument agent.

Metis 5.8 Consider the example configuration problem C = (SMetis, isSmuggling, D∅ ⊕ E1).
In subsequent iterations, Algorithm 1 could execute the agents as follows. The + super-
script represents agents accepted to the candidate solution: AIS+, FairPlay+, MyShip,
CheckDefault+, MarineTraffic+, etc. However, already after execution of MyShip,
it would detect hopelessness of further computation and would terminate. The valuation of
myShipID is vital to computation of the query solution.

Let us conclude the section with a brief remark on explanations, or justifications, which can
be extracted from grounded extension of configuration argumentation frameworks as solutions
to configuration problems. As articulated in Algorithm 1, provided a system infers a solution
to a given configuration problem, it should inform the operator about its query answer. One of
the benefits of exploiting the argumentation optics on system reconfiguration is that the grounded
extension reduced to only relevant arguments directly also provides a notion of justification of the
system’s conclusions. In particular, it only includes the arguments supporting the query answer,
while excluding all the irrelevant ones. Given a stratified system, the query answer can thus be
justified by a tree of crisp valuations of the database’s variables connected by the information-
processing agents providing the relationships between them. Assuming that from the perspective
of its user, a coastguard officer in the case of Metis, the system is designed intuitively and the
information-aggregation agents embody a relatively encapsulated and single-purpose computa-
tion procedure, ideally, these relationships will be comprehensible and plausible explanations of
the query answer for the system’s user. In effect, instead of focusing on the conflict-resolution
strengths of Dung’s abstract argumentation approach, we exploit the mutual support relation-
ships we enforced by requiring argument validity as a precursor for acceptability to the grounded
extension.

6. Context-dependent information sources and queries

Information-source agents of a system provide an interface to the system’s environment.
Algorithm 1 presented in the previous section assumed that all information sources are constantly
available. While this assumption is plausible for automatic sources such as physical sensors (e.g.
a thermometer or a radar), other information sources might not be always available and can be
only utilised depending on the system’s context. As a consequence of the need to handle also

20 P. Novák and C. Witteveen

such information sources with context-dependent availability, the system should be able to regu-
larly retrieve the currently available information sources and perform its computation over these
sources only.

Metis 6.1 Since Metis should be deployable also on board a seagoing ship, access to informa-
tion sources such as coastguard patrol rapports or unmanned aircraft is reasonable only with the
explicit approval of a human officer and also only in the range of utilisation of such a sensor,
such as close to major harbours. Also, some sensors, such as stationary cameras, are typically
available at harbour entrances, but not on arbitrary locations along the coastline.

The main purpose of information-processing systems is to perform continuous surveillance of
their environment and attempt to infer valuation of a distinguished indicator, a query. However,
queries of the system can also be a subject to change over time as the system’s focus shifts
according to the particular context of the monitored entities. To account for such dynamic changes
of the information-processing system’s focus, the system needs to be able to accept changes in
its currently relevant query and perform computations relevant to the actual query in a timely
manner.

Metis 6.2 In the specific example of Metis, a seagoing ship continuously moves in the zone
of under system’s surveillance. While detection of smuggling intent of a given ship might be
highly relevant while the vessel is approaching a major harbour, near a protected natural habitat,
the system might focus rather on its cargo and kinematic behaviour in order to detect whether it
might pose a hazard to the environment, or whether it might be involved in malicious activities,
such as dumping garbage or chemical waste to the sea.

Algorithm 2 reformulates and extends Algorithm 1 to facilitate continuous reconfiguration of
information-aggregation systems with information sources with context-dependent availability,
as well as with dynamic, context-dependent queries. We expose Algorithm 2 as an event-driven

Algorithm 2 Event-driven algorithm computing weak-solutions to a reconfiguration problem
with context-dependent queries and information sources availability
Require: R = (λE ,S, φ) with environment evolution λE = E0, . . . , Ek , . . ., a stratified system

S = (A,D) and an initial query φ ∈ D

1: C← ∅; D← D∅; Aenabled ← Asrc;
2: forever handle events (start with j = 0)
3: on environment update (increment j)
4: D⊕ ← the next environment update Ej|(DE

in ∩ inAenabled)

5: (C, D)←Configure(C, D) over the fragment S ′ = (Aφ

∗
(Aenabled),D)

6: if φ ∈ outC then inform operator about φ and D|φ
7: on info-sources update
8: Aenabled ←RetrieveCtxEnabledSources()
9: recompute Aφ

∗
(Aenabled)

10: on query update
11: φ←RetrieveCtxQuery()
12: recompute Aφ

∗
(Aenabled)

13: end
14: end

Argument and Computation 21

algorithm sequentially reacting to three main types of events which can occur. Most importantly,
upon an update of the system’s environment (line 3), the algorithm effectively reconfigures the
system by first retrieving the environment database update and subsequently invoking the func-
tion Configure from Algorithm 1, thus updating the system’s configuration. If necessary, the
algorithm informs the system user about the computed answer to the currently relevant query.
Note that the configuration function is, however, always invoked only on the currently relevant
fragment of the original system S relevant to the currently enabled information sources Aenabled

and the currently relevant query φ. The fragment is precisely defined as Aφ

∗
(Aenabled). That is, all

the information-processing agents depending on the currently enabled information sources and at
the same time relevant to the actual query.

Upon detecting a contextual change in either the currently available information sources
(line 7) or the currently relevant query (line 10), the algorithm retrieves the set of enabled
information sources or the query, and subsequently recomputes the currently relevant fragment
Aφ

∗
(Aenabled) of the system S.

Finally, observe that the retrieval of an environment update D⊕ (line 4) is restricted only to
the currently available information sources and as a result, the system ignores the changes of the
environment which it cannot observe.

7. Discussion and final remarks

Earlier, we presented an approach for modelling information-processing systems geared towards
continuous surveillance of a mixed physical and software environments largely inspired by
Dung’s approach to argumentation Dung (1995). We also demonstrated the usefulness of mod-
elling such systems in terms of arguments and analysing their interrelationships with respect to
potential conflicts between outputs of their computations. The conceptual formal framework pro-
vides a sound and flexible basis for a rigorous formulation of (re-)configuration problems and
their various extensions are also demonstrated in Section 6, where we present an approach to
handle not only the dynamics of an environment, but also that of the system itself, as dictated
by its changing context. We argue that sceptical semantics of argumentation frameworks is a
natural fit for modelling systems such as Metis and our approach paves the way for further
study of their properties, as well as development of algorithms for their continuous adapta-
tion on the solid basis of the existing body of research in argumentation theory and logic
programming.

In our future work, we intend to explore these relationships, specifically to study further
extensions of reconfiguration problems, including optimisation of run-time costs with respect to
explicit costs incurred by the system computation, or reconfiguration with respect to ageing infor-
mation in the system’s database. In the argumentation-relevant terminology, this means studying
extensions of abstract argumentation to include notions of a cost of an argument and its inclu-
sion in an extension, or time-dependent strength of argument’s attacks, etc. Further inspirations
stemming from the dynamic nature of such systems also invite to study links between their evo-
lution and standard results from theories of evolving knowledge bases (e.g. Leite, 2003), logic
programme updates, belief revision, etc. In particular, among other challenges, we are also inter-
ested in dynamic run-time changes of the system’s structure, in other words dynamic changes
of the underlying configuration argumentation framework. We also aim at studying extensions
and applications of the presented approach towards lifting structural constraints imposed on
systems, such as stratification and inclusion of cyclic, or more involved dependencies among
information-aggregation agents.

22 P. Novák and C. Witteveen

Figure 3. Metis system screenshot. The background map imagery, courtesy of c© 2013 Google, c© 2013
Aerodata International Surveys, Data SIO, NOAA, US Navy, NGA and GEBCO.

Throughout this paper we have introduced example fragments inspired by the actual imple-
mentation of Metis demonstrators delivered to the Metis project’s industrial partners in spring
and autumn 2013. Figure 3 provides a screenshot of the operator’s view in the prototype. It shows
several vessels (circular glyphs) in a selected monitored coastal area with indication of the most
likely values of their selected attributes. The pop-up inspection window shows the likelihoods
of the vessel satisfying the target indicators, such as suspicion of a smuggling intent, or envi-
ronmental hazard as discussed throughout this paper. An extended account of the Metis system
functionality as of 2014 and AI-related technologies employed in its implementation can be found
in Velikova et al. (2014).

Conflict of interest disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Dutch national programme COMMIT. The research was carried
out as a part of the Metis project under the responsibility of the TNO-Embedded Systems
Innovation, with Thales Nederland B.V. as the carrying industrial partner.

Note
1. Without loss of generality we may assume that for all variables X ∈ D it holds that there exists an agent

A ∈ A such that X ∈ in(A) ∪ out(A).

ORCID

Peter Novák http://orcid.org/0000-0002-7015-4297

http://orcid.org/0000-0002-7015-4297

Argument and Computation 23

References
Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence, 77(2), 321–357.
Hendriks, T., & van de Laar, P. (2013). METIS: Dependable cooperative systems for public safety. Procedia

Computer Science, 16, 542–551.
IEC. (2007). International standard IEC 62320-1: Maritime navigation and radiocommunication equip-

ment and systems – Automatic Identification System (AIS) – Part 1: AIS Base Stations. International
Electrotechnical Commission, February.

IHS. (2013). IHS Fairplay bespoke maritime data services. Retrieved from http://www.ihs.com/products/
maritime-information/data/

IMO. (1974). International Convention for the Safety of Life at Sea (SOLAS). Retrieved from
http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-
Safety-of-Life-at-Sea-(SOLAS),-1974.aspx.

Jamshidi, M. (2008). System of systems engineering – New challenges for the 21st century. Aerospace and
Electronic Systems Magazine, IEEE, 23(5), 4–19.

Klein, H.-J. (2001). Null values in relational databases and sure information answers. In L. E. Bertossi,
G. O. H. Katona, K.-D. Schewe, & B. Thalheim (Eds.), Semantics in databases (pp. 119–138). Lecture
Notes in Computer Science, Vol. 2582. Springer.

Leite, J. A. (2003). Evolving knowledge bases. Frontiers in Artificial Intelligence and Applications, Vol. 81.
IOS Press.

Maltenoz Limited. 2013. MarineTraffic.com. Retrieved from http://www.marinetraffic.com/
MyShip.com 2013. MyShip.com – Mates, ships, agencies. Retrieved from http://myship.com/
Novák, P., & Witteveen, C. (2013, September 16–18). Reconfiguration of large-scale surveillance systems.

In J. Leite, T. C. Son, P. Torroni, L. van der Torre & S. Woltran (Eds.), Computational Logic in Multi-
Agent Systems, 14th International Workshop, CLIMA XIV, Corunna, Spain, Proceedings, Lecture Notes
in Artificial Intelligence (Vol. 8143, pp. 1–17). Berlin: Springer-Verlag.

TNO Embedded Systems Innovation. (2013). METIS project. Retrieved from http://www.esi.nl/research/
applied-research/current-projects/metis/

Velikova, M., Novák, P., Huijbrechts, B., Laarhuis, J., Hoeksma, J., & Michels, S. (2014, August 18–22).
An integrated reconfigurable system for maritime situational awareness. In T. Schaub, G. Friedrich &
B. O’Sullivan (Eds.), ECAI 2014 – 21st European Conference on Artificial Intelligence, Prague, Czech
Republic – Including Prestigious Applications of Intelligent Systems (PAIS 2014). Frontiers in Artificial
Intelligence and Applications (Vol. 263. pp. 1197–1202). Amsterdam: IOS Press.

http://www.ihs.com/products/maritime-information/data/
http://www.ihs.com/products/maritime-information/data/
http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx
http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx
http://www.marinetraffic.com/
http://myship.com/
http://www.esi.nl/research/applied-research/current-projects/metis/
http://www.esi.nl/research/applied-research/current-projects/metis/

	1. Introduction
	2. Information-aggregation systems
	3. Configurations and database evolution
	4. Configuration and reconfiguration problems
	4.1. System and its environment
	4.2. Configuration problem
	4.3. Reconfiguration problem

	5. Solving configuration and reconfiguration problems using argumentation theory
	6. Context-dependent information sources and queries
	7. Discussion and final remarks
	Conflict of interest disclosure statement
	Funding
	Note
	ORCID
	References

