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Abstract. We show how Adjoint Algorithmic Differentiation (AAD) can be used to calculate price sensitivities in regression-
based Monte Carlo methods reliably and orders of magnitude faster than with standard finite-difference approaches. We
present the AAD version of the celebrated least-square algorithms of Tsitsiklis and Van Roy (2001) and Longstaff and
Schwartz (2001). By discussing in detail examples of practical relevance, we demonstrate how accounting for the contributions
associated with the regression functions is crucial to obtain accurate estimates of the Greeks, especially in XVA applications.
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1. Introduction

The efficient calculation of the risk factor sensi-
tivities of financial derivatives, also known as the
“Greeks”, is an essential component of modern risk
management practices. Indeed, the aftermath of the
recent financial crisis has seen remarkable changes
in the market practice whereby financial institutions
need to quantify (and risk-manage) counterparty,
funding and capital exposures, collectively known as
XVA, in large portfolios, see e.g., Crépey et al. (2014).

The traditional approach for the calculation of the
Greeks is the so-called bump and reval or bumping
technique. This comes with a significant compu-
tational cost as it generally requires repeating the
calculation of the P&L of a portfolio under hundreds
of market scenarios in order to form finite-difference
estimators. As a result, in many cases, even after
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deploying vast amounts of computer power, these cal-
culations cannot be completed in a practical amount
of time.

Conversely, Adjoint Algorithmic Differentiation
(AAD), a numerical technique recently introduced
to financial engineering (see e.g., Capriotti (2011);
Capriotti et al. (2011); Capriotti and Giles (2012,
2010); Henrard (2014)), has proven to be effective for
speeding up the calculation of risk factor sensitivities,
both for Monte Carlo (MC) and deterministic numer-
ical methods, see Capriotti and Lee (2014); Savickas
et al. (2014); Capriotti et al. (2015); Xu et al. (2016);
Geeraert et al. (2017).

The main ideas underlying AAD can be illustrated
by considering a computer implemented function of
the form

Y = FUNCTION(X) (1)

mapping a vectorX ∈ R
n to a vectorY ∈ R

m through
a sequence of intermediate steps

X → . . . → U → V → . . . → Y. (2)
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Here, the real-valued vectors U and V repre-
sent intermediate variables utilised in the calculation.
Each step may be a distinct high-level function or
even a specific instruction.

AAD, sometimes also simply known as adjoint
mode of Algorithmic Differentiation (AD), results
from “propagating” the derivatives of the final output
with respect to all the intermediate variables – the
so called adjoints – until the derivatives with respect
to the independent variables are formed. Using the
standard AD notation, the adjoint of any intermediate
variable Vk is defined by

V̄k =
m∑
j=1

Ȳj
∂Yj

∂Vk
, (3)

where Ȳ is a vector in R
m. For each of the intermediate

variables Ui, by applying the chain rule, we get

Ūi =
m∑
j=1

Ȳj
∂Yj

∂Ui
=

m∑
j=1

Ȳj
∑
k

∂Yj

∂Vk

∂Vk

∂Ui
,

which corresponds to the adjoint mode equation for
the intermediate step represented by the function
V = V (U). We thus have a function of the form
Ū = V̄ (U, V̄ ) where

Ūi =
∑
k

V̄k
∂Vk

∂Ui
.

Starting from the adjoint of the outputs Ȳ , we may
apply this rule to each step in the calculation, working
from the right to the left,

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ (4)

until we obtain X̄, namely, the linear combination of
the rows of the Jacobian of the function X→ Y :

X̄i =
m∑
j=1

Ȳj
∂Yj

∂Xi
(5)

for i = 1, . . . , n.
One particularly important theoretical result is that

given a computer program performing some high-
level function (1), the execution time of its adjoint
counterpart

X̄ = FUNCTION b(X, Ȳ ) (6)

(with suffix b for “backward” or “bar”) that com-
putes the linear combination (5), is bounded by three
to four times the cost of execution of the original one.
That is,

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA (7)

whereωA ∈ [3, 4], see Griewank and Walther (2008).
In this paper we present the application of AAD

to regression-based MC approaches (also known
as least-square MC) such as those that are widely
utilised for Bermudan-style options, see Carriere
(1996); Tsitsiklis and Van Roy (2001); Longstaff
and Schwartz (2001), or for XVA applications, see
Cesari et al. (2009) and Joshi and Kwon (2016). We
develop the AAD implementation of the well-known
least-square algorithm for the computation of condi-
tional expectations, and we investigate numerically
the impact on the Greeks arising from the sensitiv-
ities of the regression functions, a component that
is generally ignored for Bermudan-style options by
invoking arguments of quasi-optimality of the exer-
cise boundary.

The paper is organised as it follows: In the next
section, the regression-based MC algorithm for both
Bermudan-style options and XVA is presented. In
Section 3 we discusses the AAD algorithms for the
regression-based MC method. We give two numeri-
cal examples, the best of two stocks Bermudan-style
call and its corresponding XVA in Section 4. Here we
show how smoothening out discontinuities associated
with suboptimal exercise boundaries improves the
accuracy of the Greeks of Bermudan-style options,
and why the contribution to the sensitivities aris-
ing from the regression boundaries is essential
for an accurate computation of XVA sensitivities.
The efficiency and accuracy of AAD is also com-
pared with bump and reval approaches in the same
section.

2. Valuation of Bermudan-style options
and XVA by regression-based Monte Carlo

2.1. Bermudan-style options

While European-style options can be exercised
only at final maturity, Bermudan-style options can
be exercised on multiple dates up to trade expiry.

We denote by T1, . . . , TM the exercise dates of the
option and define D(t) = {Tm ≥ t}. We denote byη(t)
the smallest integer such that Tη(t)+1 > t. An exercise
policy is represented mathematically by a stopping
time taking values in D(t). We denote by T(t) the
set of stopping times taking values in D(t), see e.g.,
Andersen and Piterbarg (2010).
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A rational investor will exercise the option that he
holds in such a way as to maximise its economic
value. As a result, the value of a Bermudan-style
option is the supremum of the option value over all
possible exercise policies. With the notation intro-
duced above, the value of a Bermudan-style option at
time t can thus be expressed by

V (t)

N(t)
= sup
τ∈T(t)

Et

[
E(τ)

N(τ)

]
, (8)

where E(t) is the exercise value of the option, and
N(t) is the chosen numéraire1, see Andersen and
Piterbarg (2010). In this equation, V (t) is to be inter-
preted as the value of the option conditional on
exercise not having taken place strictly before time t.
Here and below we indicate with Et the expectation,
under the risk-neutral measure, conditional on the fil-
tration of the random process driving the option price,
up to time t. For notations and standard mathemati-
cal assumptions of this conventional setting see, e.g.,
Wilmott et al. (1995).

A useful concept is the hold value of the
Bermudan-style option: We denote byH(t) the value
of the Bermudan-style option when the exercise dates
are restricted to D(Tη(t)+1), that is

H(t)

N(t)
= Et

[
V
(
Tη(t)+1

)
N
(
Tη(t)+1

)
]
, (9)

where we have assumed, for simplicity of exposition,
no cashflow between t and Tη(t)+1.

The option holder, following an optimal exercise
policy, will exercise his option if the exercise value
is larger than the hold value, i.e.,

V
(
Tη(t)
) = max

(
E
(
Tη(t)
)
, H
(
Tη(t)
))
. (10)

This, when combined with Equation (9), leads to
the so-called dynamic programming formulation:

H(t)

N(t)
= Et

[
max

(
E
(
Tη(t)+1

)
N
(
Tη(t)+1

) , H
(
Tη(t)+1

)
N
(
Tη(t)+1

)
)]

,

(11)
for Tη ≤ t < Tη+1, and η = 1, . . . ,M − 1. Starting
from the terminal condition H(TM) ≡ 0, Equa-
tion (11) defines a backward iteration in time for
H(t). By definition, this is also equal to V (t) if t
is not an exercise date, i.e., if Tη(t) < t < Tη(t)+1.
Conversely, if t is an exercise date, t = Tη(t), then
V (Tη(t)) = max(E(Tη(t)), H(Tη(t))).

1In the following, for simplicity of notation, we will set
N(0) = 1.

The dynamic programming formulation above
implies that the stopping time, defining the optional
exercise date as seen at time t, is given by

τ� = inf[Tm ≥ t : E(Tm) ≥ H(Tm)]. (12)

The optimal exercise strategy defined by Equa-
tion (12) requires the computation of the hold value
H(t),m = η(t)+ 1, . . . ,M − 1. In a setting in which
the underlying risk factor process {X(t)}0≤t≤T is
a generic k-dimensional Markov process, the hold
value H(t) is a function of the state vector at time t.
That is,

Ht(x) := E

[
N (X(t))

N (X(Tm+1))
V (X (Tm+1))

∣∣∣X(t) = x
]
.

(13)
When the dimension of the Markov process k

is small enough, the conditional expectation value
in Equation (13) can be computed in a straight-
forward way by discretising the risk-factor process
and performing standard backward induction on a
tree or a grid, or by discretising an associated Par-
tial Differential Equation (PDE). Here we refer to,
e.g., Wilmott et al. (1995). However, the complex-
ity of grid-based calculations is exponential in the
dimension of the Markov process and numerical
implementations become infeasible when k ≥ 4.

As we will review in Section 2.3, regression-based
MC techniques provide an effective way of comput-
ing conditional expectation values of the form (13).

2.2. XVA

We next consider the computation of the Credit
Valuation Adjustment (CVA) and the Debt Valua-
tion Adjustment (DVA) as the main measures of a
dealer’s counterparty credit risk, see e.g., Crépey et al.
(2014). For a given portfolio of trades with the same
investor or institution, the CVA (resp. DVA) aims to
capture the expected loss (resp. gain) associated with
the counterparty (resp. dealer) defaulting in a situa-
tion in which the position, netted for any collateral
posted, has a positive mark-to-market for the dealer
(resp. counterparty).

This can be evaluated at time T0 = 0 by

XVA = − E

[
I(τc ≤ T )

Lc

N(τc)
(V (τc))

+

+I (τd ≤ T )
Ld

N(τd)
(V (τd))−

]
, (14)
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where τc (resp. τd) is the default time of the counter-
party (resp. the dealer),V (t) is the net present value of
the portfolio or netting set at time t from the dealer’s
point of view (the so-called conditional future expo-
sure), Lc (resp. Ld) is the loss given default of the
counterparty (resp. the dealer), and I(τc ≤ T ) (resp.
I(τd ≤ T )) is the indicator that the counterparty’s
(resp. dealer’s) default happens before the longest
deal maturity T in the portfolio. Here, for simplic-
ity of notation, we consider the unilateral CVA and
DVA, the generalization to the bilateral formulation,
see e.g., Crépey et al. (2014), being straightforward.

Equation (14) is typically computed on a discrete
time grid of “horizon dates” 0 = T0 < T1 < . . . <

TM = T . For instance, we may have

XVA

	 −
M∑
m=1

E

[
Lc(SPc(Tm−1)− SPc(Tm))

(V (Tm))+

N(Tm)

+Ld(SPd(Tm−1)− SPd(Tm))
(V (Tm))−

N(Tm)

]
, (15)

where SPc(t) (resp. SPd(t)) is the survival probabil-
ity of the counterparty (resp. the dealer) up to time t,
e.g., conditional on a realization of the default inten-
sity (or hazard rate) process in a Cox framework, see
Lando (1998). Here we assume that the default times
τc and τd are independent of the portfolio values Vτc
and Vτd , respectively. In general, the right hand side
of Equation (15) depends on several correlated ran-
dom market factors, including interest rate, recovery
amounts, and all the market factors the net condi-
tional future exposure of the portfolio, V (t), depends
on. As such, its calculation typically requires a MC
simulation.

In the k-dimensional Markov setting introduced
above the conditional future exposure V (Tm) is a
function V (X(Tm)) of the state vector at time Tm.
However, only for vanilla securities and simple
models for the evolution of the risk factors, such con-
ditional future exposures can be expressed in closed
form, and regression based Monte Carlo is commonly
employed to produce approximate estimators see,
e.g., Cesari et al. (2009).

2.3. Conditional expectation values and
Bermudan-style options by regression

Regression methods are based on the observation,
see e.g., Friedman et al. (2001), that given a real-
valued random input vector X ∈ R

d and Y a real

valued random output, the conditional expectation
E[Y |X] is the function of X that best approximates
in the least-square sense the output Y . That is,

E[Y |X] = argmincE
[
(Y − c)2

]
. (16)

In particular, assuming that the conditional expec-
tation is a linear function of some unknown vector of
parameters β,

E[Y |X] = βTX, (17)

Equation (16) reduces to the well-known linear
regression conditions, giving for the optimal vector
of parameters

β = E
[
XXT

]−1
E[XY ]. (18)

In the context of the valuation of Bermudan-style
options, the hold value (13) on an exercise date Tm is
assumed to be of the form

Ĥm(x) := ĤTm (x) = βTmψ(x) (19)

where ψ(x) = (ψ1(x), . . . , ψd(x))T is a vector of
d basis functions and βm = (β1m, . . . , βdm)T is
the vector of coefficients to be determined by
regressing N(X(Tm))/N(X(Tm+1))V (X(Tm+1)) ver-
sus ψ(X(Tm+1)). This gives

βm = 	−1
m 
m, (20)

where we define the d × d matrix

	m = E

[
ψ(X(Tm))ψT (X(Tm))

]
(21)

and the d × 1 vector


m = E

[
N(X(Tm))V (X(Tm+1))

N(X(Tm+1))
ψ(X(Tm))

]
.

(22)
These equations provide a straightforward recipe

to compute the regression coefficients βm by substi-
tuting 	m and 
m with their sample average over
NMC MC replications, namely:

(R1) Simulate NMC independent MC paths X(n)
m

of X(Tm) by the recursion

X
(n)
m+1 = F

(
Tm,X

(n)
m , θ

)
(23)

for m = 0, . . . ,M − 1, and n =
1, . . . , NMC. Here F is a function based on
the chosen models for the risk factors, and
θ ∈ R

Nθ is a vector of Nθ model parameters.
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(R2) For n = 1, . . . , NMC, compute the terminal
payoff of the contract by setting

V
(n)
M = E(n)

M , (24)

where EM := E(X(n)
M ) is the final exercise

value of the option.
(R3) Apply the following backward induction

steps for m = M − 1, . . . , 1:
(a) Compute the MC sample average of

	m and 
m2 by

	m = 1

NMC

NMC∑
n=1

ψ(n)
m (ψ(n)

m )T , (25)


m = 1

NMC

NMC∑
n=1

ψ(n)
m

N(n)
m V

(n)
m+1

N
(n)
m+1

, (26)

where ψ(n)
m := ψ (X(n)

m

)
and N(n)

m :=
N(X(n)

m ).
(b) Compute the regression coefficients

βm by matrix inversion and multipli-
cation:

βm = 	−1
m 
m. (27)

(c) For the estimate of the hold value
H (n)
m := Hm

(
X(n)
m

)
, set

H (n)
m = βTmψ(n)

m , (28)

for n = 1, . . . , NMC.
(d) For the estimate of the Bermudan-style

option value at time Tm, set

V (n)
m = max

(
E(n)
m ,H

(n)
m

)
, (29)

where E(n)
m := E(X(n)

m ) is the exercise
value at time Tm, for n = 1, . . . , NMC.

(R4) Compute the MC estimate of the Bermudan-
style option at time T0 by

V0 = 1

NMC

NMC∑
n=1

V
(n)
1

N
(n)
1

. (30)

This approach was introduced by Tsitsiklis and Van
Roy (2001) and they showed that the estimator V0
converges for n→∞ to the true valueV (0) provided
that the representation (19) holds exactly.

2Here and in the following, to keep the notation simple, we do
not introduce different symbols for expectations and the respective
sample averages.

A modification of this algorithm was proposed by
Longstaff and Schwartz (2001) and it entails replac-
ing Equation (29) in Step R3 (d) with

V (n)
m =

{
E(n)
m if E(n)

m > H (n)
m ,

N(n)
m V

(n)
m+1/N

(n)
m+1 otherwise,

(31)

which, in the examples considered, was shown to
lead to more accurate results. In the following, how-
ever, for simplicity of exposition, we will consider
the estimator in Equation (29).

2.4. Lower bound algorithm for Bermudan-style
options

The hold value obtained by regression as described
in the previous section defines an exercise policy
whereby on each exercise date Tm the option is exer-
cised if

E(X(Tm)) > βTmψ(X(Tm)). (32)

Such policy, being an approximation of the solu-
tion of the dynamic programming Equation (11),
will in general correspond to a suboptimal stopping
time. As a result, when utilised in a second, indepen-
dent, MC simulation, the exercise policy obtained by
regression, will result in a lower-bound estimator for
the Bermudan-style option value. The correspond-
ing algorithm can be schematically described as it
follows.

For each MC replication indexed by n =
1, . . . , NMC perform steps (L1) to (L4) below:

(L1) Simulate the pathX(n)
m of the risk factor vector

X(Tm) as in (R1).
(L2) For m = 1, 2, ...,M − 1, compute the

approximate hold value of the option at time
Tm using the associated regression vector
βm, and regression functions ψ, by

H (n)
m = βTmψ(n)

m (33)

with the hold value at expiry TM set to zero.
(L3) Compute the path-wise estimator for the dis-

counted cash-flows of the option

P (n) =
M∑
m=1

[
1(n)(t1, tm)1

(
E(n)
m > H (n)

m

) E(n)
m

N
(n)
m

]
,

(34)
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where

1(n)(t1, tm) =
(
m−1∏
i=1

1
(
H

(n)
i > E

(n)
i

))
,

(35)
for m > 1, and the convention 1(n)(t1, t1)
= 1.

(L4) Compute the MC estimate of the Bermudan-
style option at time T0 = 0 by

V0 = 1

NMC

NMC∑
n=1

P (n). (36)

2.5. XVA by regression

As described in Section 2.2, the calculation of
the XVA in Equation (15) requires the conditional
future exposure V (t) on a set of dates determined by
a discretisation time grid T1 . . . TM . The regression
algorithm described in the previous section can be
easily adapted to compute such quantity. Indeed, the
conditional value of each of the options contained
in the netting set can be obtained using the same
least-square procedure.

Once the regression algorithm is completed, we
can use the regression functions to compute the hold
value of each option in the portfolio on the discreti-
sation time grid byHm = βTmψm. If the discretisation
time Tm is not an exercise opportunity for the option
under consideration, then this is also its condi-
tional future exposure. Conversely, the conditional
future exposure is obtained by comparing the hold
value to the exercise value as in Equations (29) and
(31). These observations translate in the following
algorithm.

For each MC replication indexed by n =
1, . . . , NMC perform steps (X1) to (X3) below:

(X1) Simulate the pathX(n)
m of the risk factor vec-

tor by the recursion:

X
(n)
m+1 = F

(
Tm,X

(n)
m , θ

)
, (37)

for m = 0, . . . ,M − 1. Simulate the path of
the counterparty’s and the dealer’s default
intensity, λd,cm = λd,c(Tm) by the recursions

λ
c,(n)
m+1 = Gc

(
Tm, λ

c,(n)
m , θ

)
, (38)

λ
d,(n)
m+1 = Gd

(
Tm, λ

d,(n)
m , θ

)
, (39)

form = 0, . . . ,M − 1, whereGc (resp.Gd)
is the function describing the dynamics of
the counterparty’s (resp. the dealer’s) hazard
rate.

(X2) Compute the (discretised) path-wise survival
probabilities for the counterparty and the
dealer by

SPc,(n)
m = exp

⎡
⎣−m−1∑

j=0

λ
c,(n)
j

(
Tj+1 − Tj

)⎤⎦ , (40)

SPd,(n)
m = exp

⎡
⎣−m−1∑

j=0

λ
d,(n)
j

(
Tj+1 − Tj

)⎤⎦ , (41)

for m = 1, 2, ...,M.
(X3) For m = 1, 2, ...,M − 1, approximate the

hold value of the p-th option in the portfo-
lio at time Tm using the associated regression
vector βp,m and regression functions ψp by

H (n)
p,m = βTp,mψp,m, (42)

with p = 1, . . . , P . The hold value at the
expiry date TM is set to zero. The conditional
expectation value of the portfolio is given by
V (n)
m =

∑P
p=1 V

(n)
p,m, where

V (n)
p,m =

⎧⎨
⎩max

{
H (n)
p,m,E

(n)
p,m

}
, if Tm is an exercise date for the p-th option

H (n)
p,m, otherwise,

(43)

form = 1, 2, ...,M, where E(n)
p,m is the exer-

cise value of the p-th option at time Tm on
the n-th path.

(X4) Compute the path-wise XVA by

XVA(n) = −
M∑
m=1

[
Lc

(
SPc,(n)

m−1 − SPc,(n)
m

) (V (n)
m

)+
N

(n)
m

+ Ld
(

SPd,(n)
m−1 − SPd,(n)

m

) (V (n)
m

)−
N

(n)
m

]
. (44)
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(X5) Form the MC estimator

XVA = 1

NMC

NMC∑
n=1

XVA(n). (45)

3. The AAD algorithm for regression-based
Monte Carlo

3.1. Function regularizations

In the context of MC methods, Capriotti and Giles
(2012) show that AAD allows to calculate the sensi-
tivities by differentiating the relevant estimator on a
path by path basis. As a path-wise method, the MC
estimators must satisfy specific regularity conditions,
see Glasserman (2003). For instance, all the functions
appearing in each step leading to the computation of
the payout estimator must be Lipschitz continuous.
A practical way of addressing non-Lipschitz estima-
tors is to smoothen out the singularities they contain.
This can be achieved by observing that in most cases
the singularities in the payout functions, although not
necessarily implemented as such, can be expressed in
terms of Heaviside functions. For instance, the pay-
off function of a digital option (for a one-dimensional
underlying asset) is,

P(X(T )) = 1(X(T ) > K), (46)

while the payoff of a knock-out, path-dependent
option with barrier monitored at the time T1, . . . , TM
is of the form

P(X(T1), . . . , X(TM)) =
M∏
m=1

1(X(Tm) > Bm)

(47)
where Bm is the the barrier level at time Tm.

The singularities in such payoff functions can be
regularized by replacing the indicator function with
one of its smoothened counterparts. A very common
choice, for instance, is to approximate the step func-
tion with a “call spread” payoff functions,

1 (x > K) ≈ Hδ (x−K)

=
(

min

(
x− (K − δ)

2δ
, 1

))+
, (48)

where 0 < δ� K. This is a standard choice for dig-
ital options, because it has a useful interpretation
in terms of the hedging portfolio of a long and a
short position in two calls with strike price K − δ
andK + δ. This regularization gives rise to functions
that are Lipschitz continuous with respect to x and

can be differentiated in a straightforward manner. In
particular, the adjoint regularized Heaviside function
(48) is given by

H̄δ(x−K, x̄) =
{
x̄/2δ if K − δ ≤ x ≤ K + δ
0 otherwise

(49)
where x̄ is the adjoint of the input variable. When
δ→ 0, (48) gives the correct derivative of the Heav-
iside function in the distributional sense, i.e., the
Dirac delta function. However, while approaching
this limit, its derivative is zero or vanishingly small,
apart from a very small portion of the sample space
where instead it is very large. This leads to exceed-
ingly large variances in the MC sampling of the
estimators expressed in terms of such functions, sig-
nalling the breakdown of the Lipschitz continuity
condition. Hence, the choice of the smoothening
parameter δ is necessarily a tradeoff between the bias,
vanishing for δ→ 0, and the statistical errors of the
MC sampling, diverging in the same limit.

In general, the payoff estimator for Bermudan-
style options (34) is not differentiable with respect
to the pathwise value of the approximate exercise
boundary H (n)

m , and it requires the regularization
described above. A common approximation among
practitioners, see e.g., Leclerc et al. (2009), is to
assume that that exercise boundary implied by the
rule (32) is close to optimality so that the value of
the contract is approximatively continuous across the
exercise boundary and no regularization is required.
Under this assumption, no contribution to the sen-
sitivities is associated with the perturbations of
the exercise boundary, and one can therefore keep
the regression coefficients fixed while calculating the
sensitivities, see Andersen and Piterbarg (2010). As
discussed in Section 4, depending on the accuracy
of the basis functions in representing the exercise
boundary, this may or may not be an accurate
approximation.

3.2. AAD for the lower bound algorithm
for Bermudan-style options

The AAD implementation of the lower bound
algorithm for Bermudan-style options described in
Section 2.4, producing the MC estimators for the
sensitivities of the estimator (36) with respect to a
set of model parameters θk, k = 1, . . . , Nθ , given
by
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θ̄k = ∂V (θ)

∂θk
, (50)

consists of the adjoint of steps (L1) to (L4) executed
backwards for each MC replication n = 1, . . . , NMC.
After setting the adjoint of the option value V̄0 =
1, the adjoint of the model parameters θ̄ = 0, and
the adjoint of the regression coefficients β̄m = 0, the
steps to perform are:

(L4) Set

P̄ (n) = V̄0
1

NMC
. (51)

(L3) Assuming the indicator functions in the esti-
mator in (34) have been regularized as
discussed in Section 3.1, compute

H̄ (n)
m = H̄δ

(
H (n)
m − E(n)

m , P̄
(n)
)(
J (n)
m −Q(n)

m

)
,

Ē(n)
m = P̄ (n)R(n)

m + H̄δ

(
E(n)
m −H (n)

m , P̄ (n)
)

(
J (n)
m −Q(n)

m

)
, (52)

N̄(n)
m = −P̄ (n)Q

(n)
m Hδ

(
E(n)
m −H (n)

m

)
N

(n)
m

for m = M, . . . , 1 and where

J (n)
m =

M∑
k=m+1

E
(n)
k

N
(n)
k

1
(
E

(n)
k > H

(n)
k

)

k−1∏
j=2,j /= m

1
(
H

(n)
j > E

(n)
j

)
,

Q(n)
m =

E(n)
m

N
(n)
m

1(n)(t1, tm),

R(n)
m =

1

N
(n)
m

1
(
E(n)
m > H (n)

m

)
1(n)(t1, tm).

Here we also adopt the conventions∏1
j=2,j /= m . . . = 1,

∑M
M+1 . . . = 0. Initialise

the adjoints of the risk factors so that

X̄(n)
m = Ē(n)

m

∂E(n)
m

∂X
(n)
m

+ N̄(n)
m

∂N(n)
m

∂X
(n)
m

. (53)

(L2) For m = M, . . . , 1, update the adjoint of the
regression coefficients βm to give

β̄m+ = ψ(n)
m H̄

(n)
m , (54)

as well as the adjoints of the basis functions
ψ(n)
m ,

ψ̄(n)
m = βmH̄ (n)

m , (55)

and update the adjoints of the state
vector

X̄(n)
m + = (ψ̄(n)

m )T
∂ψ(n)

m

∂X
(n)
m

, (56)

where we use the standard notation “+ =” for
the addition assignment operator.

(L1) For m = M, . . . , 0 compute the adjoint of the
risk factor evolution such that

X̄(n)
m + = X̄(n)

m+1
∂F

∂X
(n)
m

(
Tm,X

(n)
m ; θ

)
,

θ̄+ = X̄(n)
m+1

∂F

∂θ

(
Tm,X

(n)
m , θ

)
, (57)

where the gradients are computed by applying
the rules of adjoint differentiation follow-
ing the instructions that implement the
function F . Finally, the adjoint X̄0 is
utilised to populate the component of θ̄

corresponding to the adjoint of the model
parameter X0.

3.3. AAD for XVA by regression

The AAD implementation of the algorithm for the
calculat ion of XVA described in Section 2.5, pro-
ducing the MC estimators for the sensitivities of the
estimator (45) with respect to a set of model param-
eters θk, k = 1, . . . , Nθ , given by

θ̄k = ∂XVA(θ)

∂θk
, (58)

consists of the adjoint of steps (X1)-(X5) exe-
cuted backwards for each MC replication n = 1,
. . . , NMC:

(X5) Set the adjoint of the XVA value, XVA = 1,
the adjoint of the model parameters θ̄ = 0
and

XVA
(n) = XVA

1

NMC
. (59)
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(X4) For m = M, . . . , 1 compute:

V̄ (n)
m = −

XVA
(n)

N
(n)
m

[
Lc

(
SPc,(n)

m−1 − SPc,(n)
m

)
1(V (n)

m > 0)

+Ld
(

SPd,(n)
m − SPd,(n)

m

)
1(V (n)

m < 0)
]
, (60)

N̄(n)
m =

XVA
(n)(

N
(n)
m

)2

[
Lc

(
SPc,(n)

m−1 − SPc,(i)m

)(
V (n)
m

)+

+Ld
(

SPd,(n)
m−1 − SPd,(n)

m

)(
V (n)
m

)− ]
, (61)

SP
c,(n)
m = XVA

(n)

[
V (n)
m

N
(n)
m

(1− δm,0)− V
(n)
m+1

N
(n)
m+1

]
1(V (n)

m > 0), (62)

SP
d,(n)
m = XVA

(n)

[
V (n)
m

N
(n)
m

(1− δm,0)− V
(n)
m+1

N
(n)
m+1

]
1(V (n)

m < 0), (63)

where δm,n is the Kronecker symbol, and
V

(n)
M+1/N

(n)
M+1 = 0.

(X3) For m = M, . . . , 1, set V̄ (n)
p,m = V̄ (n)

m and com-
pute the adjoint of Equation (43) by

H̄ (n)
p,m = V̄ (n)

p,m1
(
H (n)
p,m > E(n)

p,m

)
,

Ē(n)
p,m = V̄ (n)

p,m1
(
H (n)
p,m < E(n)

p,m

)
, (64)

if Tm is an exercise date for the p-th option,
and

H̄ (n)
p,m = V̄ (n)

p,m, Ē(n)
p,m = 0, (65)

otherwise. Initialise the adjoints of the risk
factors,

X̄(n)
m = Ē(n)

p,m

∂E(n)
p,m

∂X
(n)
m

+ N̄(n)
m

∂N(n)
m

∂X
(n)
m

. (66)

Initialise the adjoint of the regression coeffi-
cients βp,m, and update them together with the
adjoints of the basis functions ψp,m, and the
adjoints of the state vector as in Equations (54)
to (56).

(X2) Update the adjoint of the simulated hazard
rates according to

λ̄c,(n)
m + =− (Tm+1 − Tm)

M∑
j=m+1

SP
c,(n)
m SPc,(n)

m , (67)

λ̄d,(n)
m + =− (Tm+1 − Tm)

M∑
j=m+1

SP
d,(n)
m SPd,(n)

m . (68)

(X1) For m = M, . . . , 0 compute the adjoint of the
hazard rate evolution

λ̄c,(n)
m + =λ̄c,(n)

m+1
∂Gc

∂λ
c,(n)
m

(
Tm, λ

c,(n)
m ; θ

)
,

λ̄d,(n)
m + =λ̄d,(n)

m+1
∂Gd

∂λ
d,(n)
m

(
Tm, λ

d,(n)
m ; θ

)
, (69)

θ̄+ = λ̄c,(n)
m+1

∂Gc

∂θ

(
Tm, λ

c,(n)
m ; θ

)
,

θ̄+ = λ̄d,(n)
m+1

∂Gd

∂θ

(
Tm, λ

d,(n)
m ; θ

)
, (70)

where the gradients can be computed through
the AAD implementation of the functionG and
of the risk factor evolution as in step (L1).

3.4. AAD for the regression algorithm

In the AAD implementations presented in Sec-
tions 3.2 and 3.3 the adjoint of the regression
coefficients in Equation (54) do not contribute to
the calculation of sensitivities. As mentioned in Sec-
tion 3.1, and illustrated with numerical examples in
Section 4, this can be justified as a reasonable approx-
imation in the case of Bermudan-style options when
the exercise boundary approximated by regression is
close to the optimal one. However, such arguments
are generally approximations for Bermudan-style
options, and cannot be invoked at all when regression
is utilised for XVA. In this case, the contributions
associated with the sensitivities of the regression
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coefficients must be taken into account in order to
obtain accurate estimates of the model parameters
sensitivities.

In this section, we discuss how these contributions
can be computed by the AAD implementation of the
least-square MC algorithm described in Section 2.3.

(R4) Skip this step if the regression algorithm is
utilised in conjunction with a second indepen-
dent simulation for Bermudan-style options
or in the context of XVA. Initialise the
adjoint of the option value V̄0 = 1, the adjoint
of the model parameters θ̄ = 0, the adjoint
of the regression coefficients β̄m = 0, m =
1, . . . ,M − 1 and set

V̄
(n)
1 =

V̄0

NMC

1

N
(n)
1

,

N̄
(n)
1 = −

V̄0

NMC

V
(n)
1(

N
(n)
1

)2 , (71)

for n = 1, . . . , NMC.
(R3) For m = 1 to M − 1, we have:

(d) For n = 1, . . . , NMC, compute

Ē(n)
m = V̄ (n)

m 1
(
E(n)
m > H (n)

m

)
,

H̄ (n)
m = V̄ (n)

m 1
(
E(n)
m < H (n)

m

)
, (72)

and initialise the adjoint of the risk fac-
tor path value X(n)

m by

X̄(n)
m = Ē(n)

m

∂E(n)
m

∂X
(n)
m

. (73)

(c) Set:

β̄m+ =
NMC∑
n=1

ψ(n)
m H̄

(n)
m , (74)

and initialise the adjoint of the basis
functions ψ as in Equation (55)

(b) Compute the adjoint of the two inter-
mediate variables 
m and 	m in
Equation (27) using the results in Giles
(2008) by


̄m = 	−Tm β̄m, 	̄m = −
̄mβTm.
(75)

(a) For n = 1, . . . , NMC compute the
adjoint of Equation (26) by

ψ̄(n)
m + =

1

NMC
N(n)
m V

(n)
m+1
̄m,

V̄
(n)
m+1 =

1

NMC
N(n)
m (ψ(n)

m )T 
̄m, (76)

N̄(n)
m =

1

NMC
V

(n)
m+1(ψ(n)

m )T 
̄m,

where N(n)
m = N(n)

m /N
(n)
m+1, and com-

pute the adjoint of Equation (25) by

ψ̄(n)
m + =

1

2NMC

(
	̄(n)
m +

(
	̄(n)
m

)T)
ψ(n)
m . (77)

Then update the adjoint of the risk
factor vectors by

X̄(n)
m + =

N̄ (n)
m

N
(n)
m+1

∂N(n)
m

∂X
(n)
m

+ ψ̄T ∂ψ̄

∂X
(n)
m

,

X̄
(n)
m+1+ =−

N̄ (n)
m N (n)

m

N
(n)
m+1

∂N
(n)
m+1

∂X
(n)
Tm+1

. (78)

(R2) Compute the adjoint of the risk factor vector at
expiry by

X̄
(n)
M = V̄ (n)

M

∂E
(n)
M

∂X
(n)
M

, (79)

for n = 1, . . . , NMC.
(R1) Form = M, . . . , 0, compute the adjoint of the

risk factor evolution as in step (L1).

4. Numerical results

4.1. Best of two assets Bermudan-style option

As a first example, we consider the classical case
of a Bermudan-style option on the maximum of two
assets under a standard lognormal model for the asset
price processes {X1(t)} and {X2(t)}. The payoff func-
tion at exercise time t is given by

(max {X1(t), X2(t)} −K)+ , (80)

whereK is the strike price. A similar example is also
studied in Glasserman (2003); Broadie and Glasser-
man (1997) and Broadie and Glasserman (2004).
Andersen and Broadie (2004) obtain nearly exact
estimates for this example using twelve basis func-
tions, including the value of a European-style option.
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Table 1
Prices, Deltas and Vegas for the Bermudan-style option in (80)
with three different strike values. The smoothening parameter in
the call spread regularization (48) is δ = 0.005. The number of

MC paths employed in the AAD approach is 400,000. The results
are obtained with the setting (81) and (82). The MC uncertainty

(in parenthesis) is computed using the binning technique of
Capriotti and Giles (2010) with 20 bins for each set of simulations

K = 0.9 Price Delta Vega

AAD 0.2012(2) 0.415(3) 0.456(2)
PDE 0.20107 0.41423 0.45740

K = 1.0

AAD 0.1396(1) 0.337(2) 0.486(2)
PDE 0.13959 0.33588 0.48440

K = 1.1

AAD 0.0941(2) 0.258(1) 0.463(2)
PDE 0.09431 0.25635 0.46253

We assume the option can be exercised every three
months up to 3 years. We assume the underlying
assets are independent geometric Brownian motion
processes with the same initial values X(0), volatili-
ties σ, and dividend rates d. In particular, we choose
X1(0) = X2(0) = 1, σ1 = σ2 = 0.2 and d1 = d2 =
0.1 and the risk-free rate r = 0.05. We compute the
Bermudan-style option prices, the Deltas (i.e., the
sensitivity with respect to the spot values, Xi(0))
and the Vegas (i.e., the sensitivity with respect to
the volatilities σi) for K = 0.9, 1.0 and 1.1 with
AAD and bumping. We also compare these with their
“exact” value, which is obtained by a PDE approach
(using finite differences to estimate sensitivities).
The numerical results are found in Table 1 and in
Fig. 1 demonstrating an excellent agreement between
the AAD and PDE results. The regression basis

functions we adopt are the terms of the third-order
polynomial{

1, x1, x2, x
2
1, x

2
2, x1x2, x

3
1, x

2
1x2, x1x

2
2, x

3
2

}
(81)

and the payoff functions up to power three, i.e.,{
(max(x1, x2)−K)+ ,

(
(max(x1, x2)−K)+

)2
,

(
(max(x1, x2)−K)+

)3}
. (82)

Here the smoothening parameter for the calcula-
tion of the Greeks, discussed in Section 3.1, δ =
0.005, was chosen as a reasonable compromise
between variance and bias of the estimator. This is
illustrated in Fig. 2, showing how for δ = 0.005 the
bias introduced by the finite δ is of the same order of
magnitude of the statistical uncertainty for the cho-
sen computational budget, and is negligible for any
practical application.

As discussed in Section 3.1, neglecting to
smoothen out the exercise boundary, although com-
mon in the financial practice, introduces a bias in
the computation of sensitivities because the exer-
cise boundary is in general not optimal. This is
illustrated in Fig. 3, in which we compare the
Delta, with and without smoothening, for differ-
ent choices of the basis functions. These results are
obtained with the inputs (81) and (82). Here for
Delta, the smoothened estimator turns out to be
more accurate, especially when the exercise boundary
obtained by regression is a less accurate approxi-
mation of the real one. However, it is difficult to
establish a priori whether the unsmoothened esti-
mator provides a smaller or a larger bias than the

Fig. 1. Deltas (left panel) and Vegas (right panel) for the Bermudan-style option in (80) as a function of strike. The smoothening parameter
in the call spread regularization (48) is δ = 0.005. The number of MC paths is 400,000. The results are obtained with the setting (81) and
(82). The MC uncertainty (in parenthesis) is computed using the binning technique with 20 bins for each set of simulations.
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Fig. 2. AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80) for K = 1 vs the smoothening parameter δ for
the call spread regularization (48). The number of simulated paths is 3,000,000 for δ = 0.01 and is increased as δ is decreased in order to
keep statistical uncertainties roughly constant. The results are obtained with the setting (81) and (82). The values in the graphs are fitted
based on a quadratic polynomial function (green lines).

Fig. 3. AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80) for K = 1 as obtained with the unsmoothened
and the smoothened estimators with the call-spread regularization (48) for five choices of the regression basis functions. The number of
simulated paths is 1,000,000 with 20 bins and the smoothening parameter is δ = 0.005.

smoothened one. This is because the bias introduced
by the lack of smoothening may be offset by the
bias arising from the sub-optimality of the exercise
boundary. This is illustrated in the right panel of
Fig. 3 showing that for Vega the smoothened and
unsmoothened estimators have a comparable accu-
racy. In any case, a consideration to keep in mind
is that smoothening the exercise boundary is gen-
erally required to obtain stable second-order risk
values.

The quasi-optimality of the exercise boundary is
also generally invoked among industry practition-
ers as a justification for neglecting the contributions
to the sensitivities arising from the exercise bound-
ary. Clearly, the quality of this approximation is

dependent on the accuracy of the regression func-
tions in reproducing the actual exercise boundary.
This is illustrated in Fig. 4 where we plot Delta and
Vega of the Bermudan-style option (80) for different
choices of the regression basis functions. Here we
compare the results obtained by the AAD algorithm,
as described in Section 3.4, in the case where a) the
exercise boundary is kept fixed, and b) when account-
ing instead for its contributions to the sensitivities. As
expected, the difference between the two approaches
vanishes as the regression functions become more
accurate. However, as it is shown for the Vega, it can
lead to a significant bias if a simple (e.g., linear or
quadratic) representation of the exercise boundary is
adopted.
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Fig. 4. AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80) for K = 1 as obtained by keeping the exercise
boundary fixed (Fixed) and accounting instead for its contributions to the sensitivities (Flexible). The number of simulated paths is 1,000,000
with 20 bins and the call-spread smoothening parameter is δ = 0.005.

Fig. 5. XVA sensitivities with respect to the piecewise volatility (left panel) and hazard rate (right panel), computed by AAD keeping into
account of the contributions of the regression coefficients (Flexible), by AAD keeping the regression coefficients fixed (Fixed), and by
finite-differences (Bumping). The number of MC paths is 1,000,000 and the number of bins is 25. The results are obtained with the setting
(81) and (82).

Fig. 6. Ratio of the CPU time required for the calculation of the
XVA, and its sensitivities, and the CPU time spent for the compu-
tation of the XVA alone.

4.2. XVA sensitivities

As another example, we compute the sensitivities
of XVA (14) for the same option defined in Equa-
tion (80). Here, for simplicity, we assume that the
hazard rate and the volatility are piecewise constants.
The following results are obtained with the speci-
fications (81) and (82). The XVA sensitivities with
respect to some of the model parameters, namely the
term structure of hazard rates of the counterparty and
of volatilities of the underlying, obtained with the
AAD algorithm described in Section 2.5 are com-
pared with the ones obtained by standard bumping
in Tables 2 and 3. As expected, the AAD sensitivi-
ties are in excellent agreement with those obtained
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Table 2
The XVA sensitivities with respect to the piecewise volatility. The results are obtained with the setting (81) and (82). Both sets of the

results are computed with 1,000,000 MC paths and 25 bins

σ0 σ1 σ2 σ3 σ4 σ5

AAD 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1) 0.00271(1) 0.00255(1)
Bumping 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1) 0.00271(1) 0.00255(1)

σ6 σ7 σ8 σ9 σ10 σ11

AAD 0.00236(1) 0.00218(1) 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)
Bumping 0.00236(1) 0.00218(1) 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)

Table 3
The XVA sensitivities with respect to the piecewise hazard rates. The results are obtained with the setting (81) and (82). Both sets of the

results are computed with 1,000,000 MC paths and 25 bins

λ0 λ1 λ2 λ3 λ4 λ5

AAD 0.03337(1) 0.03336(2) 0.03329(2) 0.03306(3) 0.03269(3) 0.03218(3)
Bumping 0.03337(1) 0.03336(2) 0.03329(1) 0.03306(3) 0.03269(3) 0.03218(3)

λ6 λ7 λ8 λ9 λ10 λ11

AAD 0.03151(3) 0.03074(4) 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)
Bumping 0.03151(3) 0.03074(3) 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)

by bumping with any discrepancies attributable to
the bias of the finite-difference approach completely
masked in this example by the MC uncertainties.

Similar to the case of Bermudan-style option
Greeks, keeping the regression boundary fixed while
computing the sensitivities, introduces a bias. How-
ever, for XVA, this issue is much more severe
than in the case of the Bermudan-style option
Greeks because no quasi-optimality argument can be
invoked. As shown in Fig. 5, the volatilities sensi-
tivities obtained by bumping and AAD keeping into
account of the regression contributions are almost
identical. Instead, the results of AAD keeping the
regression coefficients fixed are remarkably differ-
ent and, if utilised for risk management, would lead
to significant mis-hedging. On the other hand, as
expected, the XVA sensitivities with respect to the
hazard rates are not affected by the contribution aris-
ing from the regression functions. This is because the
hazard rates do not enter the computation of the port-
folio value conditional on default, and hence do not
appear in the regression parameters.

Finally, the remarkable computational efficiency
of the AAD approach is illustrated in Fig. 6. Here
we plot the cost of computing the XVA sensitivities
with respect to the term structure of the counterparty
hazard rate and the underlying volatility, relative to
the cost of performing a single valuation. The calcu-
lation of the sensitivities by means of AAD can be
performed in about three times the cost of computing
the XVA value, that is, well within the theoreti-
cal bound (7). In contrast, the cost of bumping, for
one-sided finite-difference estimators, is in general

(1+N) times the cost of as single valuation, where
N is the number of model parameters, i.e., in this case
over 20 times the cost of computing the value of the
XVA.

5. Conclusions

We have shown how Adjoint Algorithmic Dif-
ferentiation (AAD) can be utilised to implement
efficiently the computation of sensitivities in
regression-based MC methods. We have derived
the AAD version of the celebrated least-square
algorithms of Tsitsiklis and Van Roy (2001) and
Longstaff and Schwartz (2001) and, by discussing
in detail examples of practical relevance, we have
demonstrated how accounting for the sensitivities
contributions associated with the regression functions
is crucial to obtain accurate estimates of the Greeks
in XVA applications and for Bermudan-style options,
especially when the exercise boundary is not particu-
larly accurate. We have also shown how smoothening
out the discontinuities associated with suboptimal
exercise boundaries can lead in some situations to
more accurate estimates of the sensitivities.

From a computational stand point, similarly to
what was previously found in other MC and PDE
settings, see e.g., Capriotti and Giles (2012); Capri-
otti et al. (2015), the proposed method allows the
computation of the complete first-order risk at a cost
which is at most four times the cost of calculating the
value of the portfolio itself. This typically results in
orders of magnitude of savings in computational time
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with respect to standard finite-difference approaches,
thus making AAD an ever so indispensable technique
in the toolbox of modern financial and insurance
engineering.
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