
Algorithmic Finance 8 (2019) 1–4
DOI:10.3233/AF-190900
IOS Press

1

Editorial

Information leakage in financial machine
learning research

Zachary Davida,b,∗
aUrvin AI, Philadelphia, PA, USA
bNorthwestern University, Evanston, IL, USA

1. Introduction: The research pipeline

Over the past ten years, applications of machine
learning research have steadily shown mastery of
broader and more complex domains, and the tools
to create advanced models have become ubiquitous
and more democratized. During that same time, the
resources for studying algorithmic finance have also
greatly expanded with populous open source com-
munities and more granular time series available to
researchers. However, progress in applying machine
learning to finance has mostly stagnated, and in some
cases regressed. We not only see similar, routine mis-
takes to those made ten years ago, but the complexity
of cutting-edge models and frameworks can easily
hide those mistakes.

Drawing on both referee reports and published
papers, this editorial series will review frequent
problems that occur throughout the ML research
pipeline which lead to invalid results and unwar-
ranted conclusions.1 The pipeline refers to the
series of research stages that are common to all ML
projects and independent of any specific machine
learning technique or architecture. The major stages
are as follows:

• Universe: the set of financial instruments and time
period on which the algorithm operates.

• Targets: the types of predictions or decisions that
the algorithm generates at each step.

∗Corresponding author: Zachary David, Urvin AI, Philadel-
phia, PA, USA. E-mail: zak@urvin.ai.

1 In the interest of maintaining the anonymity of submitters and
reviewers, as well as promoting a constructive environment, we
won’t list any specific papers or authors.

• Features: the set of information inputs that the
algorithm uses to generate the targets.

• Models: the techniques, architectures, and param-
eters that comprise the algorithm.

• Metrics: the criteria on which the fitness and per-
formance of the algorithm is judged.

• Testing & Validation: the procedures used to eval-
uate the performance and generalizability of the
algorithm.

Throughout this series we will stress the delicate,
interdependent relationships between the stages and
show how mistakes made in one can spoil the whole.
For the inaugural edition, we focus on the problem of
“information leakage” and how to prevent it.

2. Information leakage

When simulating predictions or decisions that an
algorithm would have made based on historical data,
it is important to ensure that for each point in the
simulated historical time, the algorithm doesn’t have
access to information from after that time. We say
that “information has leaked” when a predictor or
decision maker has access to information that has not
yet occurred at the simulated time a prediction or
decision is supposed to be made.

Over half of all submissions, and even many
published papers, contain errors resulting from infor-
mation leakage. The good news is that these errors
are primarily mechanical in nature and often can be
avoided with small adjustments to data preparation
procedures or coding practices. This section contains
a broad, albeit non-exhaustive, sample of issues that

2158-5571/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved

mailto:zak@urvin.ai

2 Z. David / Information leakage in financial machine learning research

arise at different points in the research pipeline. For
each issue, after a description and some examples, we
offer a suggestion for how to avoid it in practice.

2.1. Survivorship bias in universe selection

Information often begins leaking as soon as a
researcher selects the universe of securities they’d
like to operate on. Survivorship bias is primarily asso-
ciated with the act of “picking winners while ignoring
losers.” Something as simple as selecting a set of
companies which currently exist means the algorithm
ignores those that have merged or gone bankrupt
over the sample period. More generally, selection bias
occurs when stocks or other financial instruments are
selected based on their current characteristics (e.g.
the current S&P 500 constituents) rather than the
characteristics they had at the time the algorithm is
supposed to simulate a prediction. When that occurs,
any algorithm developed and tested using historical
data contains information about the future.

Similar to conditioning on dependent variables,
this future information risks biasing algorithms and
inhibiting generalizability by overweighting spurious
or unimportant features. For example, if the current
100 largest companies are chosen to develop a daily
trading algorithm using the past 20 years of data,
it’s not only likely to be directionally biased, but
the model might heavily weight any features that are
strongly correlated with the success of the selected
stocks even if the features were identical in companies
that went bankrupt during the sample period.

Suggestion: use a historical database that includes
delisted companies, mergers, and symbol changes.
Construct the algorithm’s logic to apply the selection
criteria to only the universe that is available at the
simulated time.

2.2. Data snooping in feature selection

As the set of all possible features tends to be
unmanageably large, researchers frequently evalu-
ate a large set of candidate features over the entire
time period in order to choose a tractable subset from
which to construct their model. Common techniques
include dimensionality reduction by removing cor-
related features or evaluating which features explain
the most variance in the target set. However, these
processes inevitably imbue the algorithm with the
knowledge of future relationships, either between
features or with the target. In most cases, these
relationships cannot reasonably be assumed to be

stable over time. The risk of spuriousness is further
increased when the features are engineered from the
original time series.

Suggestion: as the algorithm progresses through
simulated historical time, apply feature selection or
dimensionality reduction criteria only to data that
has already been observed by that point in simulated
time. While this could imply that different step sizes
will result in different feature sets, it makes a much
stronger claim to generalizability.

2.3. Preprocessing over the whole data set

Despite their widespread use in published
research, certain data preprocessing techniques leak
information—such as normalizing price returns over
the full data set or bounding factors between -1 and 1
based on the max and min. An algorithm which needs
to simulate a decision at a time t should not use val-
ues which have been normalized by data occurring
later than time t, otherwise the decision will be made
based on information about how the data at time t

relate to future values. For example, a paper studying
US equities returns from 2000 through 2010 might
understate z-scores during the first dotcom collapse
if the data are normalized by data from the future
Great Recession.

Similarly, denoising and filtering methods (e.g.
wavelet transforms) have become a part of the data
processing pipelines for many financial machine
learning papers in the past few years. This typically
involves operating on the full data set to obtain a
denoised time series prior to the model training and
prediction steps. As a result, predictions will be made
based upon values which are influenced by and con-
tain characteristics of future data.

Suggestion: one way to avoid these types of leaks is
to only normalize, create bounds, or apply denoising
to data at a time t using data prior to that time.

2.4. Off-By-One Errors

The simplest form of information leakage com-
monly occurring in code is an off-by-one error, where
the feature and target sets are misaligned so that
the values going into the model were constructed
from the same information as the target values. This
frequently affects papers which attempt to predict
an instrument’s future price return or direction. For
example, if the feature set is constructed from values
using a stock’s daily closing price and the target set is
the sign of the difference between the closing prices

Z. David / Information leakage in financial machine learning research 3

at a time t and t–1, then the feature set at a time t will
contain the target information unless one of the sets
is shifted.

Suggestion: to fix the above example, we can either
shift the features set forward by one so that the inputs
only use variables from time t–1 or shift the target
set back by one so that the targets are always from
time t + 1. Overall, how we fix this type of error will
depend on the relationship between the feature and
target sets. For algorithms concerned with predicting
future values, the general rule is that the time period of
the target should not overlap with that of the features.

2.5. Time traveling in fundamentals and
accounting databases

While this a problem that has historically affected
factor analysis research, more machine learning
papers have started integrating information from
company filings and other fundamental databases.
Information is leaked when algorithms assume that
quarterly reports were available on the closing day of
the reporting period rather than on the day that they
were actually released. As Marcos Lopez de Prado
writes in Advances in Financial Machine Learning:

For example, fundamental data published by
Bloomberg is indexed by the last date included in
the report, which precedes the date of the release
(often by 1.5 months). In other words, Bloomberg
is assigning those values to a date when they were
not known.

Indeed, throughout “earnings season,” companies
not only report earnings on different days, but also
at different times of the day (e.g. pre- or post- mar-
ket hours). High-quality research which incorporates
fundamental factors will be keenly aware of these dif-
ferences and explicitly account for them in both the
manuscript and code.

Suggestion: first, ensure that the fundamentals
database provides the dates for when the reports were
publicly available. Next, as there likely won’t be a
single date on which everything can be rebalanced,
consider how to structure the algorithm so that it uses
the most available information up to a given time.

2.6. Training/Test sets and cross validation

The most subtle and challenging forms of informa-
tion leakage occur during the testing and validation
steps. In order to illustrate a few common exam-
ples, let’s consider a scenario where our feature set

consists of quarterly fundamental and accounting
factors from various companies over time, and for
each quarter we’re trying to target something about
each company—e.g. stock performance, merger, or
bankruptcy in the following quarter. We’ll refer to
the individual entries of features and corresponding
targets by a tuple of (company, quarter), and for a
visual aid, we can consider the entries as if they were
organized in the table depicted by Fig. 2.6.1.

One way training data can wind up in the test set
is during rolling-window recalibrations. Say we want
to train and test a model using the previous year of
data, then advance one quarter and repeat. Then in
2018Q4, we’ll take from the set of tuples of all compa-
nies going back to 2018Q1 and randomly split the data
80% and 20% between training and test sets respec-
tively. When we advance to 2019Q1 and repeat the
same steps, it’s possible that the randomly divided
test set contains values that were used in the training
set in the previous step. When this occurs, the model
is merely reusing training data.

Another form of information leakage affecting
techniques which randomly split data has to do with
the relative stability of features. Say our training set
contains

(
A, 2018Q1

)
and

(
A, 2018Q3

)
. If the test

set contains
(
A, 2018Q2

)
then it’s likely that all the

test features are in the neighborhood established by
the training features from the quarters on either side.
This is problematic when we want to talk about gen-
eralizability and the usefulness of the algorithm in
true out-of-sample scenarios.

Lastly, future information leaks into the model
training when there are two correlated com-
panies and one of them contains training data
which occurs after another. Say A and B are
correlated and in the same sector and the train-
ing set contains

(
A, 2018Q1

)
. . .

(
A, 2019Q2

)
,(

B, 2018Q1
)
. . .

(
B, 2019Q1

)
. If we test on(

B, 2019Q2
)

then the model is already aware of
the likely path of the features for B via the 2018Q2
information in A — we could probably even predict
the features of B with high accuracy. Again, this
implies that the model might underperform on true
out-of-sample data (e.g. 2019Q3) when the model
wasn’t trained on information from that quarter.

Suggestion: how we structure our tests should
reflect what we ultimately want to be able to say
about the efficacy of the algorithm. In most cases,
a time-based hold-out is preferable. Ensure that the
time range of the test period does not overlap with
the time range of the training period — including any
periods where data is fed into the algorithm with-

4 Z. David / Information leakage in financial machine learning research

Fig. 2.6.1. The hypothetical data set of features and targets used for the examples in Sec. 2.6.

out explicitly triggering a prediction (e.g. “warm-up
periods”).

3. Conclusion

In this editorial we looked at several ways
information leaks throughout the research pipeline.
Preventing these problems will improve the reliabil-

ity and generalizability of a paper’s results, and we
look forward to reviewing submissions that explicitly
address these issues.

In future editions we’ll discuss topics like the
importance of domain knowledge with respect to
market hours and contract-based instruments, select-
ing appropriate measurements, simulating trading
activity, and the perpetually looming question of mul-
tiple hypothesis testing.

