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Sensitivity and computational complexity
in financial networks

Brett Hemenway∗,1 and Sanjeev Khanna2

Department of Computer Science, University of Pennsylvania, Philadelphia, PA, USA

Abstract. Determining the causes of instability and contagion in financial networks is necessary to inform policy and avoid
future financial collapse.

In the American Economic Review, Elliott, Golub and Jackson proposed a simple model for capturing the dynamics of
complex financial networks. In Elliott, Golub and Jackson’s model, the institutions in the network are connected by linear
dependencies (cross-holdings) and if any institution’s value drops below a critical threshold, its value suffers an additional
failure cost. This work shows that even in this simple model there are fundamental barriers to understanding the risks that
are inherent in a network.

First, if institutions are not required to maintain a minimum amount of self-holdings, any change in investments by a single
institution can have an arbitrarily magnified influence on the net worth of the institutions in the system. This implies that if
institutions have small self-holdings, then estimating the market value of an institution requires almost perfect information
about every cross-holding in the system.

Second, even if a regulator has complete information about all cross-holdings in the system, it may be computationally
intractable to estimate the number of failures that could be caused by a small shock to the system.
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1. Introduction

The recent financial crisis and subsequent bailout
have highlighted the need for a better understanding
of the dynamics of financial networks. Indeed, the
complexity of modern financial networks has been
blamed for our collective failure to recognize the
presence of serious risks in these systems. In this
work, we show that even in extremely simple financial
networks understanding the risk present in the system
is computationally intractable in general – even in the
presence of perfect information about all participants
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in the system. We hope that these insights will help
regulators and policymakers to better understand the
dynamics of financial networks.

Understanding an individual’s risk in a financial
network is a difficult task, because an institution’s
ability to fulfill its outgoing financial obligations is
not a local property, i.e., it cannot be understood
by examining a single individual in isolation. An
institution’s ability to make its outgoing payments
may depend on whether its incoming payments are
made by its debtors, which in turn may depend on
whether the incoming obligations are made to those
institutions, etc. Thus each institution, acting with-
out a global view of the network, cannot effectively
understand its risk. Nevertheless, one might hope that
a regulator, with a global view of the network could
better understand the opportunities and risks inherent
in the system.

Even with a global view, the situation remains
relatively complex. One complicating factor is the
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existence of cycles in the financial network, for exam-
ple institution A may have obligations to institution
B which has obligations to institution C, which in
turn has obligations to institution A. The existence
of these cyclical interdependencies has been put for-
ward as one of the primary sources of complexity
in financial networks. In this work, we will examine
network dynamics in both cyclic (Theorem 1) and
acyclic networks (Theorem 3).

One of the driving forces in the study of financial
networks is their ability to magnify risk: if an insti-
tution, A, defaults on its obligations to institution B,
this may cause institution B to default on its obliga-
tions to institution C etc. The spread of risk through a
financial network is known as financial contagion and
has been carefully modeled and studied (Allen and
Gale, 2000; Eisenberg and Noe, 2001; Gouriéroux,
Héam, and Monfort, 2012; Acemoglu, Ozdaglar, and
Tahbaz-Salehi, 2015; Glasserman and Young, 2014;
Elliott, Golub, and Jackson, 2014).

This work focuses on quantifying the ability of
financial networks to amplify and conceal risk.

2. Our contributions

In this work, we study two questions related to
the stability of financial networks. First, we look
at how sensitive market valuations can be to small
changes in network structure. Second, we exam-
ine the computational complexity of determining
how far a given network is from a massive failure.
Throughout this work we use the network model put
forward by Elliott (Golub, and Jackson, 2014). In this
model, financial institutions own shares of under-
lying assets, and the institutions are connected by
cross-holdings, which are modeled as linear depen-
dencies. If an institution’s market value drops below
a certain critical threshold, its value suffers a fur-
ther discontinuous shock, modeling the effects of
a loss of investor confidence, or the failure to pay
everyday operating costs. See (Elliott, Golub, and
Jackson, 2014) for an in-depth discussion of the inter-
pretation and real-world validity of this model. The
formal mathematical model is described in detail in
Section 4.

Our first result (Theorem 2), shows that financial
networks can be highly sensitive to small changes
in their link structure. Concretely, we show that if
a single institution changes a single cross-holding
by ε, the market values of institutions in the system
can change by as much as ε/2r, where r ≤ 1 is the

minimum amount of self-holdings of the institutions
in the network. The minimum self-holdings, r, is a
measure of integration of the network, where r = 0
corresponds to a fully integrated network, and r = 1
corresponds to a network with no integration. This
result shows that if each institution retains only, say,
5% self-ownership, a change in a single holding by
ε can result in a 20ε change in an institution’s mar-
ket value. This amplification is directly caused by
cycles in the network, and in acyclic networks this
type of magnification cannot occur (see Lemma 1).
Our bounds are essentially tight, and Theorems 1 and
2, show that the true sensitivity is in fact � (ε/r).

This sensitivity magnification has many conse-
quences. First, it means that in order to estimate
market values of institutions within the system, all
cross-holdings need to be known to an extremely
high degree of precision. Investors or regulators who
wish to calculate market values can be extremely
far off if even a single cross-holding in the network
remains unknown to them. Second, because small
changes in a single institution’s investments can have
large effects on market values throughout the sys-
tem, this indicates a potential for extreme instability
in the system as a whole; the small portfolio changes
in one institution can have a drastically magnified
effect market values of other institutions, and so small
changes by a myopic institution could topple even
seemingly stable institutions. Third, this extreme sen-
sitivity means that calculating market values in a
privacy-preserving manner can be extremely difficult
(Narayan, Papadimitriou, and Haeberlen, 2014). This
is the flip-side of the first point, in order to calculate
market values for institutions in the system, all the
interbank holdings need to be known with high pre-
cision, which means that revealing market prices has
the potential to reveal extremely detailed information
about each institution’s interbank holdings.

Our second result addresses the question of how
well a regulator can assess the stability of a network.
Suppose a regulator or oversight agency is presented
with a network in which every bank is solvent, and
suppose the regulator believes that the underlying
assets cannot drop in value by more than some fixed
amount d. What is the maximum number of failures
that can be caused by a drop of this size in asset val-
ues? We emphasize that in this scenario, the regulator
has complete information about the entire structure
of the financial network, and the only uncertainty is
in which specific assets may decline in value. We
show calculating the number of institutions that can
fail in a network is NP-Hard. In particular, we show
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that is as hard as calculating the maximum balanced
clique in a bipartite graph (Theorem 3). The maxi-
mum balanced bipartite subgraph (BCBS) problem
is NP-hard (Gary and Johnson, 1979; D.S. John-
son, 1987), and there is evidence that it is even hard
to approximate. It is known that if 3-SAT is not in

DTIME
(

2n3/4+ε
)

for some ε, then there is no poly-

nomial time algorithm for calculating the maximum
balanced clique to within a factor of 2(log n)δ for some
δ > 0. Feige and Kogan (2004) go further, conjec-
turing that there is no polynomial time algorithm to
approximate the maximum balanced bipartite clique
to within a factor of nδ for some δ > 0. This would
imply that there is no polynomial time algorithm that
can even estimate the maximum number of failures
caused by a drop in asset values of a given mag-
nitude to within a factor of nδ in a network with
2n institutions. In particular, this means that there
are financial networks where stress testing (which
is inherently computationally feasible) cannot hope
to even approximate the magnitude of collapse that
could be caused by some bounded drop in asset
values.

Unlike our first result, which crucially relies on
cycles in the network, this result holds even in acyclic
networks: even when there are no cycles it is computa-
tionally intractable to estimate the maximum number
of failures that could be caused by a bounded drop in
asset values. This complexity arises not from cycles,
but from the nonlinear dynamics that occur when a
bank drops below its critical threshold value.

3. Previous work

Many different models have been proposed to
study financial networks, and specifically models of
stability and contagion.

Allen and Gale (1998) considered a model con-
sisting of depositors and banks. Depositors deposit
their money in the banks, and the banks must choose
between making short-term investments or long-
term investments. This model has three time periods,
t = 0, 1, 2. At t = 0, investments are made, at t = 1
short-term investments pay off, and depositors choose
whether to withdraw their money, and at time t = 2
long-term investments pay off. The banks’ invest-
ment strategies then depend on the probability that
depositors withdraw their money at time t = 1. In a
follow-up work Allen and Gale (2000) introduced
a network component, where banks can exchange

deposits with each other in an effort to mitigate risk,
and they showed simple contagion effects in this
model.

Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)
build on Allen and Gale’s 3 time-step model. At time
t = 0 banks can make a short-term investment, a long-
term investment or loan money to other banks. Long
term investments yield a fixed return at t = 2. Long
term investments that are liquidated at t = 1 receive
a return that is randomly distributed between two val-
ues. Banks whose investments returned the lower of
the two values were said to have received a shock.
Acemoglu, Ozdaglar and Tahbaz-Salehi considered
how two extremal types of networks serve to propa-
gate these shocks. They considered the ring (where
each bank only has debts to its two neighbors) and the
complete network where each bank’s debts are spread
to all other banks, as well as all convex combinations
of these two. They showed that if the magnitude of the
shocks are small then the complete network is more
stable and resilient than the ring, and if the magni-
tudes of the shock are large enough then both the ring
and complete networks are the least stable networks,
thus the complete network exhibits a phase transi-
tion, moving from the most stable to the least stable
network as the magnitude of the shocks increase.

Eisenberg and Noe (2001) developed a very sim-
ple and appealing network model where each bank
has cash reserves and fixed debts to other banks.
Eisenberg and Noe’s work focused on showing that
(under some basic restrictions on the network) there
is always a unique clearing vector (indicating how
much of its debts each bank pays to its creditors), and
they gave a linear program and simple iterative algo-
rithm for calculating this clearing vector and hence
the equilibrium valuation of each bank.

Gai and Kapadia (2010) considered a modification
of Eisenberg and Noe’s network model, forcing all
incoming edges to have the same weight, but allowed
banks to have additional illiquid assets. Gai and Kapa-
dia then considered the question of how a single bank
failure propagates through a network. For this anal-
ysis, they considered different models for generating
the underlying graph topology, and plotted contagion
effects for different network models characterized by
their degree distribution. They found that a single
large shock could have devastating effects on the net-
work, but that this was highly dependent on where in
the network the shock hit.

Gouriéroux, Héam, and Monfort (2012) consid-
ered a model that allows interbank investment via
shares (like (Elliott, Golub, and Jackson, 2014))
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and lending or insurance (like (Eisenberg and Noe,
2001)). Unlike (Elliott, Golub, and Jackson, 2014),
they do not introduce discontinuous failure costs.
Gourieroux, Héam and Monfort extend Eisenberg
and Noe’s uniqueness results to show that (under mild
constraints on the network) this extended model has
a unique equilibrium value for all institutions. They
then examined the effects of exogenous shocks on
the network (i.e., drops in asset values) using syn-
thetic data and data obtained from the French banking
sector.

Morris (2000) studied contagion in local interac-
tion systems. In that model, each node represents a
player, and each player engages in a local game with
each of its neighbors. Morris focused on the case
where each player has a binary strategy space, {0, 1},
and there is a global 2 × 2 payoff matrix, such that
for each edge in the graph, the two neigboring play-
ers receive a payoff according to this global payoff
matrix. In that model, a strategy is said to be “conta-
gious,” if it can spread from a finite set of players to an
infinite set of players by the best-response dynamics
of the underlying local game.

The notion of failure cascades and contagion have
also been studied in the computer science literature by
Blume et al. (2011), Blume et al. considered general
cascades in graphs where the edges were unweighted
and a node was said to fail if some critical threshold
of its neighbors failed. By choosing all edges to have
equal weight, and choosing each institution’s fail-
ure threshold carefully, the failure model of (Elliott,
Golub, and Jackson, 2014) can be made to overlap
with this general network failure model.

In this work, we use the model of Elliott (Golub,
and Jackson, 2014). In this model, institutions can
own shares in each other, or in “primitive assets”
that have intrinsic value outside of the network. The
model is explained in detail in the next section. Elliott,
Golub and Jackson introduced this model to help ana-
lyze and understand contagion effects in networks.
Because a cascade of collapse requires an initial fail-
ure, Elliott, Golub and Jackson began by showing
that the weakest institution can never be made strictly
more stable by any fair trade between the institutions.
Next they examined the contagion dynamics in a
wide class of networks parametrized by “integration”
and “diversification.” Integration increases as insti-
tutions in the network increase their inter-network
holdings, i.e., integration increases as the percentage
of each institution owned by shareholders external
to the network decreases. As integration increases,
the institutions’ fates are more closely tied together.

Diversification measures how risk is spread within
the network. Diversification increases as institutions
increase their number of cross-holdings. Neither inte-
gration nor diversification have strictly positive or
negative effects on network stability, but instead have
slightly more complex non-monotonic effects.

The notion of computational complexity has been
studied in the context of financial products by Arora
et al. who showed that banks can create derivatives
that are computational intractable to price accu-
rately (Arora et al., 2010, 2011). The result of Arora
et al. crucially relies on the information asymmetry
between the institution the seller (who creates the
derivatives) and the buyer who only sees their result-
ing composition. Braverman and Pasricha (2014)
show that even in the full information setting pricing
compound options is PSPACE complete.

4. Model

We use the model put forward by Elliott (Golub,
and Jackson, 2014). In this model there are n finan-
cial institutions, these can be viewed as countries,
banks or private firms, and m underlying assets, that
can be viewed as any object or project with intrin-
sic value. The financial institutions own shares of the
underlying assets which impart value into the system.
The values of the institutions themselves are intercon-
nected via a network (modeled as a weighted, directed
graph). The interdependencies (cross-holdings)
between the institutions are modeled as simple linear
dependencies. These linear cross-holdings can model
simple equity stakes (one institution owning shares in
another) or they can be viewed as an approximation of
more complicated debt contracts between the institu-
tions (see (Elliott, Golub, and Jackson, 2014, Section
2.5) for a more thorough discussion of the validity
and generality of this model).

Although institutions invest in one another, all
value in the system originates from the underlying
assets. The price of asset k is denoted by pk, and we
use Dik ≥ 0 to denote the percentage of asset k owned
by institution i. The n × m matrix of ownership is
denoted by D = (Dik).

We defineC = (Cij) to be then × nmatrix indicat-
ing the cross-holdings of institutions. Thus institution
i owns a Cij fraction of institution j. It will be be use-
ful to view the network of cross-holdings as a directed
graph with n nodes representing the financial insti-
tutions, and an edge from institution j to i of weight
Cij whenever Cij > 0. Following (Elliott, Golub, and
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Jackson, 2014), we set Cii = 0 for all i. Now,
∑

i Cij

is the fraction of institution j that is owned by insti-
tutions external to j. The remainder, the amount of

self-ownership, is denoted by Ĉjj
def= 1 −∑

i Cij . The
matrix Ĉ will be a diagonal matrix with Ĉii on the
diagonal.

As noted by Brioschi (Buzzacchi), this type of
model introduces two types of valuations, the equity
valuation ( �V ) and the market valuation (�v). The
equity valuation of institution i is denoted by

Vi =
∑

k

Dikpk︸ ︷︷ ︸
Value of assets held by i

+
∑

j

CijVj

︸ ︷︷ ︸
Values of institutions held by i

(1)

In matrix notation, this becomes �V = D�p + C �V
which implies �V = (I − C)−1D�p. The matrix I − C
is guaranteed to be invertible because we assume that
Ĉjj > 0, so the column sums of C are all strictly less
than one (see Lemma 2). In fact, the matrix I − C,
is an M-Matrix (Poole and Boullion, 1974), and so
(I − C)−1 is an inverse M-Matrix, about which many
properties are known (Willoughby, 1977; Johnson,
1982).

This equity valuation significantly overvalues the
institutions. In particular, we can see that ‖ �V‖1 ≥
‖�p‖1, so the total value of the institutions in the sys-
tem will (in general) be much larger than the total
value of the underlying assets. This occurs because
each asset counts towards the equity value of the insti-
tution that owns it and also to the institutions that have
an equity stake in the asset’s owner. The network’s
inflation of equity values is well-known and vali-
dated both theoretically and empirically (French and
Poterba, 1991; Fedenia, Hodder, and Triantis, 1994).

To find an institution’s market value, we must scale
the institution’s equity value by the percent stake it
has in itself, thus the market value of institution i is
vi = ĈiiVi, so the market values are the solution to
the system

�v = Ĉ �V = Ĉ(I − C)−1D�p (2)

The matrix C is column sub-stochastic because
column i sums to 1 − Ĉii. The system can also be
viewed as a flow, where at each time step money flows
between banks according to the link structure of the
network (see Appendix A).

5. Sensitivity

Our first result concerns concerns the sensitivity of
valuations to small changes in the structure of the net-
work. Suppose a single institution shifts its holdings
by a small quantity, ε, how much can this small change
affect the market valuations in the network? This
question is motivated by questions about network
stability, and the possibility of privacy-preserving
oversight. If small changes in network holdings can
lead to large changes in the market values of the insti-
tutions, this indicates a fundamental instability in the
financial network. Additionally, if small changes in
interbank holdings can lead to large changes in mar-
ket values, then any attempt at financial oversight
must incorporate all the interbank holdings to a high
degree of accuracy in order to predict market values.

A high sensitivity also has implications towards
privately computing network statistics. Flood et al.
(2013) proposed using tools from differential privacy
(Dwork, 2006; Dwork et al., 2006) to provide a means
of computing global network characteristics while
preserving the privacy of each individual institution’s
holdings. A high sensitivity implies a worse trade-
off between privacy and accuracy when calculating
network statistics.

We begin our sensitivity analysis with a simple
observation: if the total value of the underlying assets
is ‖�p‖, then an ε change in holdings can easily change
the market valuations by ε‖�p‖ (see Fig.1). We show
that if the network is acyclic, then this is the largest
change possible, but if there are cycles in the network,
the sensitivity can be much larger.

Throughout this section, we use r (for “reserve”)
to measure the fraction of each institution held by
investors outside the system.1 We define r = mini Ĉii.
Using the terminology of (Elliott, Golub, and Jackson,
2014), r is just a concrete metric of the integration
of the network, and integration increases as r → 0.
Another interpretation of reserve is the discrepancy
between equity valuation ( �V ) and market valuation
(�v). Since �v = Ĉ �V , we have that r = mini

vi

Vi
.

5.1. Sensitivity in acyclic networks

We begin by noting that in the acyclic case, there is
a strong bound on each institution’s equity valuation,

1The reserve, or self-holdings, can be viewed as the amount
of an institution that is not sold, or is held by private sharehold-
ers, who retain complete ownership of themselves. These private
shareholders buy shares of institutions in the network, but no entity
in the network owns shares of the private shareholders.



100 B. Hemenway and S. Khanna / Sensitivity and computational complexity in financial networks

Fig. 1. An ε change results in an ε‖�p‖ change in market values.
Banks are in blue, external shareholders are in green, and the asset

is shown in red. In this example D�p =
[

1

0

]
, and C = 0. Thus

�v =
[

1

0

]
. Changing C to C̃ =

[
0 ε

0 0

]
leads to a valuation of

�̃v =
[

1 − ε

ε

]
, thus the market valuation of B2 changes by ε‖�p‖.

i.e., the equity valuation cannot be too much larger
than the market valuation.

Lemma 1. If the banking network has no cycles, then
every institution’s equity valuation is at most ‖�p‖1
where �p is the vector of asset values.

Proof. Organize the financial network into layers, so
that each institution only owns shares of institutions
at lower layers. Thus institutions at level 1 do not
have any cross-holdings, they only own the under-
lying assets. This means that the incoming edges to
level one carry a total weight of at most ‖�p‖1. By
adding fictitious institutions that pass on all of their
incoming wealth, we can also ensure that every insti-
tution only owns shares in the entities at the preceding
level, i.e., institutions at level i only own shares in
institutions (or fictitious institutions) at level i − 1.

Now each institution’s equity value is the sum of
the values on all incoming edges. Since outgoing
edges carry a value that is a percentage of equity
value, the sum of the values on each institution’s
outgoing edges is at most the sum of the values on
its incoming edges. (For real institutions the out-
going sum will be strictly less because the reserve
rate r > 0, but for the fictitious institutions it can be
exactly equal.)

Now, the sum of the values coming into layer 1 is at
most the sum of the assets, ‖�p‖1. Thus the outgoing
edges from level 1 to level 2 carry a total weight of at
most‖�p‖1. Proceeding inductively through the levels,

we see that the sum of the values on the incoming
edges at level i is at most ‖�p‖1. Thus the equity value
of all the institutions on level i is at most ‖�p‖1 and in
particular the equity value of any given institution is
at most ‖�p‖1.

Corollary 1. If the banking network is acyclic, and
one edge changes by at most ε, then no institution’s
market value can change by more than ε‖�p‖1.

Proof. Since each institution’s equity value is at most
‖�p‖1, an ε change in any edge corresponds to an
absolute change of at most ε‖�p‖1.

5.2. Sensitivity in general networks

In this section, we explore how much the mar-
ket valuations can change when one bank changes
its holdings by a small amount in the presence of
cycles in the network graph. We begin by showing
an upper bound on the change in market valuations
that depends on the minimum self-ownership (Ĉii)
of the institutions. For our upper bound, we do not
require changes to occur in the holdings of a single
bank. Instead, we allow any change in network struc-
ture, as long as the total (�1) change is bounded by
ε. Formally, this means that we have two network
matrices C and C̃ such that ‖C − C̃‖ ≤ ε, and we
would like to bound how much the market valuations
can change between these two situations. Because we
are showing an upper bound, allowing more general
perturbations only strengthens our result.

Theorem 1. If ‖C − C̃‖ < ε, then ‖�v − �̃v‖ <
ε
r
‖D�p‖, where r = mini(

˜̂
Cii, Ĉii) is the minimum

reserve or “self-holdings” of the financial institutions.
In addition, it is always true that ‖�v − �̃v‖ ≤ 2 ‖D�p‖,
thus

‖�v − �̃v‖
‖D�p‖ ≤ min

(ε

r
, 2
)

Proof. Let C̃ = C + E, and ˆ̃C = Ĉ + Ê. By
hypothesis ‖E‖ + ‖Ê‖ < ε. Then we have

ˆ̃C(I − C̃)−1 − Ĉ(I − C)−1

=
[
(Ĉ + Ê) − Ĉ(I − C)−1(I − C̃)

]
(I − C̃)−1

=
[
(Ĉ + Ê) − Ĉ(I − C)−1(I − C − E)

]
(I − C̃)−1

=
[
(Ĉ + Ê) − Ĉ(I − (I − C)−1E)

]
(I − C̃)−1

=
[
Ê + Ĉ(I − C)−1E

]
(I − C̃)−1
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Fig. 2. The initial configuration, banks are in blue, external shareholders are in green, and the asset is shown in red.

Now, we notice that

∥∥∥(I − C̃)−1
∥∥∥ =

∥∥∥∥∥
∞∑

k=0

C̃k

∥∥∥∥∥ ≤
∞∑

k=0

∥∥∥C̃k
∥∥∥

≤
∞∑

k=0

(1 − r)k = 1

r

Because money is never created or destroyed, we
have ∥∥∥Ĉ(I − C)−1�v

∥∥∥
1

= ‖�v‖1

Thus we have∥∥∥ ˆ̃C(I − C̃)−1 − Ĉ(I − C)−1
∥∥∥

=
∥∥∥[Ê + Ĉ(I − C)−1E

]
(I − C̃)−1

∥∥∥
≤ ∥∥Ê∥∥ ·

∥∥∥(I − C̃)−1
∥∥∥

+
∥∥∥Ĉ(I − C)−1

∥∥∥ · ‖E‖ ·
∥∥∥(I − C̃)−1

∥∥∥
Thus we immediately get the bound∥∥∥ ˆ̃C(I − C̃)−1 − Ĉ(I − C)−1

∥∥∥ ≤ ε

r

Since
∥∥Ĉ(I − C)−1

∥∥ ≤ 1, we also have the trivial
bound ∥∥∥ ˆ̃C(I − C̃)−1 − Ĉ(I − C)−1

∥∥∥ ≤ 2

The multiplicative bound of ε/r in Theorem 1
is much weaker than the bound of ε in the acyclic
case (Corollary 1), as the minimum self-holdings
approaches 0, this difference tends towards infinity.
This discrepancy is not a limitation of our proof,
but arises as an artifact of the effect that holdings

cycles can have on the equity (and market) valua-
tions of the institutions in the network. In Theorem 2
we show that there exist networks where changing a
single institution’s holdings by ε results in a change
of ε

2r+ 1−r
2 ε

‖D�p‖ in one of the institution’s market

values, where r is the minimum self-holdings in the
network.

Theorem 2. There exist networks where ‖C − C̃‖ ≤
ε, and ‖�v − �̃v‖ ≥ ε

2r+ 1−r
2

‖D�p‖, where

�v = Ĉ(I − C)−1D�p

and r = mini(
˜̂
Cii, Ĉii) is the minimum “self-

holdings” of the financial institutions.

Proof. We exhibit an initial network in Fig. 2 and its
perturbation in Fig. 3.

In Fig. 2, the equity values for the banks satisfy

B1 = (1 − r − ε)B2

B2 = v + (1 − r)B1

B3 = εB2

B4 = 0

So

B2 = v + (1 − r)B1

= v + (1 − r)(1 − r − ε)B2

= v + (1 − r − ε − r + r2 + rε)B2

Rearranging gives
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Fig. 3. The perturbed configuration, where one link of weight ε has been moved from B3 to B4.

B2 = v + (1 − r − ε − r + r2 + rε)B2

⇓
v = (2r + ε − r2 − rε)B2

⇓

B2 = v

2r + ε − r2 − rε

= v

r(2 − r) + (1 − r)ε

≥ 1

2

(
v

r + 1−r
2 ε

)

Thus the market valuation of B3 is εB2 which is at

least 1
2

(
εv

r+ 1−r
2 ε

)
.

If the link from B2 → B3 were moved to B2 → B4
(as in Fig. 3) then B3’s value drops to zero and B4’s
value increases to εB2.

Thus the change in �1 norm of the market valua-
tions between the two situations is at least

εv

r + 1−r
2 ε

Writing this in matrix notation, we have

C =

⎡
⎢⎢⎢⎣

0 1 − r − ε 0 0

1 − r 0 0 0

0 ε 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

C̃ =

⎡
⎢⎢⎢⎣

0 1 − r − ε 0 0

1 − r 0 0 0

0 0 0 0

0 ε 0 0

⎤
⎥⎥⎥⎦

Ĉ = ˆ̃C =

⎡
⎢⎢⎢⎣

r 0 0 0

0 r 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

Note that increasing one link by ε and decreas-
ing another by ε is actually a change in 2ε in the
‖C − Ĉ‖. Letting ε′ = ε

2 , we have a change of ε in
‖C − Ĉ‖ yields a change of at most ε

2r+ 1−r
2 ε

. Notice

that as r → 0, this is approaches 2, i.e., the resulting
valuation is as far as possible in terms of the �1 norm
of the market values of the institutions.

The type of equity amplification necessary for
the lower bound in Theorem 2 cannot happen in an
acyclic network (see Corollary 1).

Now, we compare the upper and lower bounds on
sensitivity. We have an upper bound of max(2, ε

r
) and

a lower bound of ε

2r+ 1−r
2 ε

. The lower bound implies

the following.

� For any ε, δ > 0, there exists an r with
0 < r < 1 and a network with minimum reserve
r such that a change in edge weights of ε can
lead to a change in market valuations of at
least (1 − δ)2. Thus the upper bound cannot be
decreased below 2.

� For any r, δ, with 0 < r < 1, and 0 < δ there
exists an ε with 0 < ε < 1 and a network with
minimum reserve r such that a change in edge
weights of ε can lead to a change in market
valuations of at least (1 − δ) ε

2r
, thus the upper

bound cannot be decreased below ε
2r

.

Together, these show that the upper bound cannot
be decreased below max(2, ε

2r
), so our upper bound of

max(2, ε
r
) is essentially tight. Another interpretation

of the lower bound is that for any n > 0, there exists
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an ε, r > 0 and a network such that an ε change in
one edge weight can cause a multiplicative change of
nε in market malues of the institutions.

6. Bank failures

6.1. Losses caused by failure

The model of (Elliott, Golub, and Jackson, 2014)
includes a notion of “failure,” whereby institutions
whose market value drops below a certain critical
threshold suffer a further (discontinuous) loss in mar-
ket value. These discontinuous penalties capture the
notion that if an institution cannot pay its operating
costs, it may see a further drop in revenues. Similarly,
if confidence in the institution is shaken, and its debt
rating is downgraded, it may see spike in the cost of
capital, and hence see a further drop in value.

These discontinuous penalties are operationalized
by a threshold value vi, such that if institution i’s
market value, vi, drops below vi then it incurs a failure
cost and its market value drops by an additional βi(�p).

Defining Ivi<vi
to be the indicator variable which

is 1 if vi < vi and 0 otherwise, and bi(�v, �p) =
βi(�p)Ivi<vi

, the market value of the institutions sat-
isfies the equation

�v = Ĉ(I − C)−1(D�p − �b(�v)) (3)

Compare Equation 3 to the linear system given by
Equation 2. The introduction of non-linear terms into
the model adds significant complexity to the dynam-
ics of the system, and can lead to failure cascades.
One of the primary goals of (Elliott, Golub, and Jack-
son, 2014) was to characterize what network features
affect the likelihood and severity of failure cascades.

6.2. Overview of our complexity results

Suppose a regulator has complete information
about a financial network, including all cross-
holdings and the prices of all underlying assets.
Further, suppose that at equilibrium, this network
has no failures. If the regulator believes that tomor-
row, asset prices may drop by some fixed amount d,
(i.e., the sum total of asset prices may drop by d, but
the exact drop of each asset price is unknown), what
is the maximum number failures that could occur as
a result of this drop? In other words, tomorrow, when
the new equilibrium is calculated based on the new,

lower, asset prices, what is the maximum number of
banks that could have failed?

Our primary result is that the introduction of dis-
continuous failure costs increases the computational
complexity of calculating basic network dynamics. If
the complete network, as well as the price of all under-
lying assets is known, then the number of failures
can be computed efficiently (Elliott, Golub, and Jack-
son, 2014, Section 3.2.3). If, on the other hand, there
is some uncertainty in the prices (or future prices)
of the underlying assets, calculating the maximum
number of failures that could occur in the network is
computationally intractable.

Thus we address the following question: given a
stable network (where no banks have failed), if the
total prices of the assets drop by some small amount,
what is the maximum number of failures that occur
at equilibrium? One potential complication is that in
networks with discontinuous failure penalties, there
may not be a unique equilibrium, and hence the
number of failures may not be uniquely defined. To
address this, for any fixed set of asset prices, we use
standard practice and only consider the “best-case”
equilibrium (the one with fewest failures). On the
other hand, we consider the worst drop in asset prices
(i.e., the drop in asset prices that causes the most
failures in its best-case equilibrium). Thus the “max-
imum” number of failures means the maximum over
all bounded drops in asset values, of the minimum
number failures that could occur at this each fixed
drop in asset values (i.e., the minimum over all equi-
libria at these new, lower values). We discuss the issue
of multiple equilibria in more detail in Section 6.3.

In real-world financial networks, regulators, as
well as the institutions themselves routinely perform
“stress-tests” to assess the robustness of the network
to financial shocks. Our results indicate that there are
financial networks where no (computationally feasi-
ble) stress test, will ever be able to even approximate
the maximum number of failures that could occur
from some small shock to the system.

Note, however, that our results are not probabilis-
tic, in the sense that we do not model the probability of
a specific drop in asset prices, instead we just impose
a bound on the magnitude of the total drop in asset
values. Without assigning probability distributions
to the asset prices, we cannot assess the probabil-
ity that such a cascade could occur, only that it is
feasible. Thus our question is whether there exists a
small specific drop in asset prices that could cause a
huge failure cascade – whether this drop is probable
is outside the scope of our model. Thus, if a stress-test
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could accurately model the probability distribution of
asset prices, it may be able to assess the likely number
of failures caused by a shock to the system, but any
computationally feasible stress test will not be able to
identify whether a small (but possibly unlikely) shock
to the system could cause a far greater failure cascade.

6.3. Multiple equilibria

When discontinuous failure penalties (�b(�v)) are
introduced into the system, then there may be mul-
tiple equilibrium values for the institutions in the
system, i.e., the market values may not be uniquely
defined (Elliott, Golub, and Jackson, 2014, Section
2.6 and Appendix A). As noted (Elliott, Golub, and
Jackson, 2014), there are two distinctly different ways
a network can have multiple equilibria. The first type
falls into the standard theory of bank runs (Diamond
and Dybvig, 1983), and this type of multiplicity can
occur even in an acyclic network. For example sup-
pose there is a network consisting of single institution
holding a single asset of value p. Let v denote the
value of the institution and v denote its failure thresh-
old, and β its failure penalty. If p > v > p − β, then
a valuation of v = p, and v = p − β are both consis-
tent with Equation 3. The second type of multiplicity
is caused by cycles in the network. See Fig. 4 for a
simple (cyclic) network that has multiple equilibria.

In a network with multiple equilibria, we can talk
about the “best-case” equilibrium (the one with the
fewest failures) and the “worst-case” equilibrium (the
one with the most failures). As in (Elliott, Golub,
and Jackson, 2014), we focus on the best-case equi-
librium, thus when we refer to the “the number of
failures” we mean the number of failures in the best-
case equilibrium.

6.4. The Balanced Complete Bipartite Subgraph
(BCBS) problem

Our hardness result is based on the hardness of
finding a maximum balanced clique in a bipartite
graph. This is known as Balanced Complete Bipartite
Subgraph (BCBS) problem.

Definition 1 (BCBS). Given a bipartite graph G =
(V1, V2, E) with |V1| = |V2| = n, the Balanced Com-
plete Bipartite Subgraph (BCBS) problem is to find
the largest integer K such that there exists sets
C1 ⊂ V1 and C2 ⊂ V2 with the properties that |C1| =
|C2| = K, and the induced graph on C1 ∪ C2 is a
complete bipartite subgraph of G.

Fig. 4. Banks are in blue, external shareholders are in green, and

the asset is shown in red. In this example D�p =
[

1 0

0 1

]
, and C =[

0 1
2

1
2 0

]
. If vi = 2, and bi = 1, then two equilibria are: �v =

[
1

1

]
,

and �v =
[

0

0

]
.

The BCBS problem is known to be NP-hard
(Gary and Johnson, 1979; D.S. Johnson, 1987). This
provides strong evidence that there is no scalable
algorithm that it that can find the size of the maximum
balanced clique in a bipartite graph.

In fact, there is significant evidence that even
approximating the size of the largest balanced clique
is hard. Feige showed that for some δ > 0 it is Ran-
dom 3-SAT hard to approximate BCBS to within a
factor of nδ (Feige, 2002, Theorem 3).

Feige and Kogan showed that if BCBS can be
approximated to within a factor of 2(log n)δ for every
δ > 0 then 3-SAT can be solved in time 2n3/4+ε for
every ε > 0 (Feige and Kogan, 2004, Theorem 1.3).

Feige and Kogan go on to conjecture that for
some δ > 0, there is no polynomial-time algorithm
to approximate BCBS to within a factor of nδ (Feige
and Kogan, 2004, Conjecture 1.1).

Our primary hardness result shows that there are
networks where calculating the maximum number
of bank failures that can result from a small shock
is equivalent to solving the BCBS problem. Thus
there are financial networks where even approxi-
mately estimating the number of bank failures that
can result from an arbitrarily small drop in asset prices
is a computationally intractable problem.

6.5. The complexity of calculating the maximum
number of failures

In this section, we give our main result concern-
ing the computational complexity of estimating the
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maximum number of failures that can occur given a
small drop in values of the underlying assets.

In particular, this hardness result applies finding the
number of failures that occur at equilibrium when the
institutional cross-holdings are fixed, and completely
known, but there is some small uncertainty in the
prices of the underlying assets.

In the situation that the cross-holdings and the
assets are fixed, it is straightforward to calculate
the market values of the institutions at equilibrium
(Elliott, Golub, and Jackson, 2014, Section 3.2.3).
Note that the network we construct is acyclic.

Theorem 3. For every bipartite graph G on 2n nodes,
and every ε > 0, there is a financial network with
�(n) institutions, and a d > 0 such that computing
the maximum number of institutions that could fail
following a shock of dε in asset prices is as hard as
solving the BCBS problem in G.

Proof. Let � > 0 be any integer.
Our starting point is the following hardness result

for the BCBS problem. Given an n × n balanced
bipartite graph G, it is hard to decide whether the
largest balanced bipartite clique size in G is at least
K × K or at most K/g × K/g for some gap function
g. For instance, g = 2(log n)δ under the assump-

tion that 3-SAT /∈ DTIME
(

2n3/4+ε
)

for some

ε > 0.
Given an n × n balanced bipartite graph G, we will

construct a financial network with (2 + �)n institu-
tions such that if G has a balanced bipartite subgraph
of size K, then a drop in asset prices by Kε can cause
at least (2 + �)K failures. On the other hand, if the
largest balanced bipartite subgraph of G is of size
K
g

, a drop in asset prices of Kε can cause at most

K + K
g

(� + 1) failures.
This shows that estimating the maximum number

of failures induced by a fixed drop in asset prices is at
least as hard as estimating the size of the maximum
balanced bipartite clique. Without loss of general-
ity, we assume that every vertex in G has degree at
least K.

Let D denote the maximum degree of any vertex
in G. Let 0 < ε < 1 be an arbitrary parameter, and
let 0 < r < 1 denote the minimum amount of self-
holdings of the institutions in the network we are
constructing. (The reduction will hold for any choices
of 0 < ε, r < 1.)

For each node in the graph G, we will associate a
financial institution. Let institutions 1, . . . , n corre-
spond to the left-hand nodes of G, and institutions

n + 1, . . . , 2n correspond to the right-hand nodes
of G.

We will also generate n underlying assets, labelled
a′
i, . . . , a

′
n and institution i will complete own asset a′

i

for i = 1, . . . , n. Institutions n + 1, . . . , 2n will own
none of the underlying assets. All assets will initially
be valued at 1. Thus

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

0

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Define N = D
1−r

(recall D is the maximum degree
of G, and r is an arbitrary parameter that will
determine the integration of the resulting financial
network). We will use �(j) to denote the neighbors of
vertex j in G. Notice that our definition of N ensures
that

1 − r = D

N
≥ |�(j)|

N

for all j = 1, . . . , 2n. This means that if institution j

sells an equal 1
N

stake in itself to all of its neighbors, it
will be left with at least an r fraction of self ownership.
To operationalize this, we define

cij =
{

1
N

if i > j and (i, j) an edge of G

0 otherwise

For 1 = 1, . . . , n let vi = 1 − |�(i)|
N

− ε, so if insti-
tution i’s asset drops in value by ε then institution i

will fail. Let the failure penalty βi = 1 − |�(i)|
N

− ε

for i = 1, . . . , n. Thus if asset i drops in price by ε,
institution i fails and its value immediately drops to 0.
For i = n + 1, . . . , 2n let rvi = |�(i)|−d

N
. Notice that

if all assets are initially valued at 1 then

vi =

⎧⎪⎨
⎪⎩

1 − |�(i)|
N

if 1 ≤ i ≤ n

|�(i)|
N

if n < i ≤ 2n

This financial network has the following proper-
ties:

1. If j > n and d of bank j’s neighbors fail, i.e., d

of the assets ai (i ∈ �(j)) drop in value by ε, then
bank j will fail.
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2. If j > n and the total drop in value of bank j’s
neighbors is less than d

N
then bank j will not fail.

Now, we examine the properties of this system
when the assets are allowed to drop in price by total
amount dε. A drop of dε can always cause d insti-
tutions on the left-hand side of the network to fail,
simply by dropping the value of each of their assets
by ε.

What happens if the price drop is not concentrated
among exactly d assets? Let t denote the number of
assets that drop in value by at least ε. If t < d, then
at least tε from the “shock budget” of dε was used to
lower the price of these t assets, which leaves a budget
of (d − t)ε remaining. Now, consider how much this
drop can affect one of a right-hand institutions, j.
Even if this drop is concentrated entirely among the
left-hand neighbors of j, the drop j feels is at most

1

N
(t + (d − t)ε) <

1

N
(t + (d − t)) = d

N

Thus institution j cannot fail, since the failure of
a right-hand institution requires a drop in value of at
least d

N
. This means that in this case exactly t < d

institutions fail. Since we are interested in the max-
imum number of failures that can arise from a drop
in asset value of dε, we can, without loss of gen-
erality, assume that exactly d assets drop in value
by ε, causing exactly d failures among the left-hand
institutions.

Now, suppose there is a biclique of size K in G. If
d = K, then causing d failures among the left-hand
members of this biclique will cause d = K failures
among the right-hand members.

On the other hand, suppose the largest biclique
is of size K

g
. If the failure of d left-hand institu-

tions causes the failure of P right-hand institutions,
then each of the P failed institutions on the right
must be connected to each of the d failed institu-
tions on the left. Thus there must be a biclique of size
min(d, P) = P .

Thus in the “yes” case (G has a biclique of size
K) we can cause at least K right hand failures with
a failure budget of Kε. In the “no” case (the largest
biclique in G is of size K

g
) the maximum number of

failures of right-hand institutions is bounded by K
g

.
Now, to amplify this discrepancy, we add a chain of

� institutions connected to each right hand institution.
Thus for every right-hand institution, bi, it will have
a chain of institutions b

(1)
i , . . . , b

(�)
i where b

(j)
i owns

a 1 − r fraction of b
(j−1)
i and has no other holdings.

Thus if bi fails, then b
(1)
i through b

(�)
i fail as well (see

Fig. 5).
This new network has (� + 2)n banks, and has the

following properties. Given a failure budget of Kε, if
the largest balanced clique in G is a K × K, a drop
in value by Kε causes at most (2 + �)K, but if the
largest biclique is of size K

g
, then a drop in asset values

of at most Kε can cause at most K + (� + 1)K
g

=
(g + � + 1)K

g
failures.

Note that when the gap, g = nδ, choosing � =
poly(n), we obtain a gap of ((� + 2)n)δ

′
for some

δ′ < δ.
Applying a result of Feige and Kogan (2004), we

obtain the following Corollary.

Corollary 2. If 3-SAT /∈ DTIME
(

2n3/4+ε
)

for some

ε > 0, then there exists a δ > 0 such that there is
no polynomial time algorithm that can calculate the
maximum number of failures in a financial network
caused by a drop in asset prices of dε to within a factor

of 2(log n)δ
′

for some δ′ > 0.

7. Conclusion

This work highlights two distinct sources of insta-
bility in financial networks, instability arising from
fluctuations in cross-holdings and instability arising
from fluctuations in asset prices. More specifically,
we show that there are networks where small fluc-
tuations in cross-holdings or asset prices can have
striking consequences, and these consequences have
numerous implications.

Our first result (Corollary 1, Theorems 1, 2) shows
that the effect of small changes in cross-holdings is
strongly tied to the integration of the network. In
highly integrated networks small changes in cross-
holdings can have potentially unbounded effects on
market valuations, while in networks with low inte-
gration, changes in cross-holdings have more tightly
bounded effects on the market values of the institu-
tions in the network. These results can be interpreted
in many ways. From a regulatory perspective, in
a highly integrated network, any regulator must
know the entire cross-holdings network to a very
high degree of accuracy in order effectively under-
stand the market values of the institutions. From
an institution’s perspective, small changes in invest-
ment by individual institutions can have their effects
greatly magnified throughout the network. From a
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Fig. 5. There are n assets, {a′
i}, shown in red. Each asset a′

i is fully owned by institution ai. Institutions {ai}, {bi} correspond to a hard instance

of balanced bipartite clique. Institutions
{

b
(j)
i

}
serve to amplify the failures that occur in the first level.

predictivity perspective, if one wishes to forecast
market values into the future, any small forecasting
uncertainty in the cross-holdings can have enor-
mous effects on the (predicted) market values of the
institutions. From a privacy perspective, institutions
cannot maintain any privacy in their investment port-
folios without compromising the ability of outsiders
(e.g. other institutions, outside investors or regula-
tors) to calculate the market value of the institutions.
These problems arise only in highly integrated net-
works (Theorem 1), and they can all be mitigated
by imposing a cap on integration. If institutions
are required to maintain some fixed percentage of
their ownership outside of the network, the sensitiv-
ity to changes in cross-holdings can be drastically
reduced.

Our second result shows that small changes in
the prices of the underlying assets can have unpre-
dictable effects on the number of failures in the
system. Specifically, we show that there are networks
where it is computationally intractable, even with
perfect information about the cross-holdings, to esti-
mate the number of failures that can occur after some
small drop in asset prices. This result too can be inter-
preted from different perspectives. This result implies
that a regulator (with perfect information about the
network cross-holdings) who believes there may be
some bounded fluctuation in asset prices cannot be
expected to distinguish a network where these fluc-
tuations cause a small number of failures, from a
network where fluctuations of the same magnitude
can cause a massive number of failures. Institutions
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face the same computational challenge. An institu-
tion may wonder whether its investment portfolio will
protect it from a bounded shock in asset prices, and
our results show that even with complete informa-
tion about the investments of all other agents in the
system, it may be infeasible to determine whether a
specific portfolio is safe.

Previous works have imposed specific probabilistic
models on fluctuations in asset prices, and for a given
probabilistic model the number of failures can usually
be estimated. But what if the model is incorrect (e.g.
the asset prices do not fluctuate independently)? Our
results show that there are situations where changes
in the distribution of fluctuations (but not their overall
magnitude) can have huge and unpredictable effects
on the number of failures.

Moving forward, it is an important research ques-
tion to understand what constraints on the network
will allow institutions and regulators to perform these
stability analyses.
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Appendix

A. A flow model of the system

It is often instructive to create a stochastic matrix
representing the system, which models money flow-
ing through the network.

There are n financial institutions, and we introduce
n addition entities, the “shareholders.” In this model
shareholder i owns a Ĉii fraction of institution i and
has no other financial ties to the system. This defines
a 2n × 2n matrix, A, defined as

A =
[
C 0

Ĉ I

]

The augmented matrix A is now column stochastic,
i.e., its columns sum to 1. The ijth entry of the matrix
A represents the fraction of “agent” j owned by agent
i. There are 2n agents because there are n finan-
cial institutions (agents 1, . . . , n) and n collections of
shareholders (agents n + 1, . . . , 2n). The lower right
corner of A is the identity matrix because the share-
holders are completely self-owned. The columns of
A sum to one because for each agent, j, its entire
value is owned by the other financial institutions or
the external shareholders.

Initially, the banks are assumed to have some
intrinsic value D�p, which indicates the value
of underlying assets owned by each institution.
Without loss of generality, we will assume that
all assets are completely owned by the institu-
tions in the network (otherwise, we can simply
rescale the value of each asset). This assump-
tion is equivalent to saying that D is column
stochastic.

The 2n × 2n matrixA allows us to view the market
valuations of each institution as the steady state of a
dynamical process. Money flows into the system from
the underlying assets, and at each time step, the value
residing in each financial institution is distributed to
its stakeholders according to their stake. This process
terminates when all the money in the system (coming
from the underlying assets) has been distributed to the
external shareholders. Algebraically, this process can
be viewed as follows: given a vector �W ∈ R

2n, where
Wi denotes the value of the underlying assets owned
by i, for i = 1, . . . , n and Wi = 0 for n < i ≤ 2n,
then

lim
t→∞ At �W = lim

t→∞ At

[
�w
�0

]
=
[ �0

�v

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

v1

...

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where vi will denote the market value of institution
i, i.e., vi is the value of institution i owned by its
external shareholders. Now, basic linear algebra tells
us that

At =
[

Ct 0

Ĉ
(
Ct−1 + Ct−2 + · · · + I

)
I

]

Throughout this work, we will use the standard
operator norm for a matrix (in the L1 sense),

‖A‖ = ‖A‖1 = sup
�x

‖A�x‖1

‖�x‖1
.

Because the columns of A sum to one, we have
‖A�x‖1 = ‖�x‖1 for any �x. In particular, this means
that ∥∥∥∥∥A

[
D�p
�0

]∥∥∥∥∥
1

= ‖�p‖1 (5)

This is the algebraic statement that the total market
value of all the institutions is exactly the total value
of the underlying assets in the system.

To analyze Equation 4 we recall the standard fact
about matrix series

Lemma 2.
IfC is a matrix with ‖C‖ < 1, then I − C is invert-

ible and

(I − C)−1 =
∞∑

k=0

Ck

Proof. First, note if �v /= �0, then ‖C�v‖ < ‖�v‖, so

‖(I − C)�v‖ ≥ ‖I�v‖ − ‖C�v‖ > 0

so I − C has a trivial kernel, and hence is invertible.
Then, the result follows just as in the scalar

case: Letting S = ∑N
k=0 Ck, we have S(I − C) =

I − CN+1. Thus

N∑
k=0

Ck = (I − C)−1(I − CN+1)
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Letting N → ∞, and noting that CN+1 → 0 gives
the result.

This leads to the closed formula used in (Elliott,
Golub, and Jackson, 2014):

�v = Ĉ(I − C)−1D�p (6)

Where the n × 1 vector �p represents the values of
the underlying assets and the vector �v represents the

market value of the financial institutions (as measured
by their external shareholders). Equations 4 and 5
then tell us that ‖D�p‖1 = ‖�p‖1 = ‖�v‖1, which is just
the simple statement that the total value of the agents
is the same as the total value of the underlying assets,
in other words value is never created or destroyed by
the network.


