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Natural time analysis in financial markets
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Department of Physics, National and Kapodistrian University of Athens,
Panepistimiopolis, Zografos, Athens, Greece

Abstract. In this paper we introduce natural time analysis in financial markets. Due to the remarkable results of this analysis
on earthquake prediction and the similarities of earthquake data to financial time series, its application in price prediction
and algorithmic trading seems to be a natural choice. This is tested through a trading strategy with very encouraging results.
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1. Introduction

It’s a widespread belief that economic systems,
such as financial markets, constitute one of the most
vivid and rich example of complex systems (Man-
tegna and Stanley, 2000; Sornette, 2002, 2003, 2009;
Yan et al., 2012; Preis et al., 2012; Münnix et al.,
2012; Gvozdanovic et al., 2012; Borland, 2005).
Complex systems are governed by dynamic char-
acteristics which are founded on common and well
established principles used to describe a great variety
of scientific and technological approaches of different
types of natural, artificial and social systems (Tsallis,
2009; Bar-Yam, 1997; Picoli Jr et al., 2007; Sor-
nette and Helmstetter, 2002; Abe and Suzuki, 2004;
Fukuda et al., 2003; Peters et al., 2001).

In order to comprehend the behaviour of finan-
cial markets and acquire a deeper knowledge of the
rules which govern them, experience is drawn from
the study of complex systems in diverse scientific
fields. One of these fields is the field of geophysics
and earthquake prediction.

A lot of articles have contributed to the attempt of
showing the similarities of the dynamic character-
istics of earthquakes to financial markets (Petersen
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et al., 2010; Sornette, 2002; Bhattacharyya et al.,
2007; Chakrabarti et al., 2008). As a representative
example, it is argued that exchange-traded stock
prices follow the dynamics of built-up and release
stress, similar to earthquakes (Andersen et al., 2011).
Moreover, the distribution of market volatility before
and after a stock market crash is well described
by the Gutenberg-Richter law, which reflects the
scale-invariance and self-similarity of the underlying
dynamics by a robust power-law relation (Sarlis
et al., 2010; Varotsos et al., 2004). Finally, the
cascade of volatility “aftershocks” triggered by the
“main financial shock” is quantitatively similar to
earthquakes, which have been described by three
empirical laws, the Omori law, the productivity law
and the Bath law (Petersen et al., 2010).

The aforementioned suggests that methods based
on knowledge of earthquakes’ studies seems to be
very promising in analysing the dynamics of financial
markets and in predicting their evolution.

In the present paper, a new method for analysing
financial markets with the help of Natural time anal-
ysis is proposed. The prime pillar of this theory
is Natural time χ (Varotsos et al., 2001), a new
frame for understanding the timing of the events,
which can help us to analyse financial time series
and reveal hidden dynamic characteristics. Moreover,
the applicability of this theory to financial markets is
demonstrated via the development and the implemen-
tation of a trading strategy.
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Natural time analysis is a well established theory
which has been applied successfully in prediction of
earthquakes (in terms of time and magnitude) for
more than ten years including the strongest earth-
quake that occurred in Greece on 14 February 2008
(Varotsos et al., 2007; Sarlis et al., 2008). Natural
time enables the determination of the occurrence time
of an impending major earthquake (Varotsos et al.,
2011b) since it can identify when a complex system
approaches a critical point (Varotsos et al., 2011c).
With Natural time analysis we are also able to fore-
cast the trajectory of dynamical models and systems
(Ising model, OFC model) (Sarlis et al., 2011) as well
as their transitions to a critical regime.

The rest of this article is constructed as follows. In
Section 2 the concept of Natural time and its basic
features is presented. In Section 3 it is shown how
Natural time can be applied in financial time series.
In Section 4 a trading strategy based on this is applied
on major financial markets (major FX pairs, DJIA

stocks). Also a portfolio implementation of this strat-
egy on the stocks of S&P500 index shows that this
theory can give very promising results. Finally, in
Section 5 conclusions follow.

2. Natural time

Conventional time is modelled as the continuum R

of real numbers. This continuity does not stem from
any fundamental principle. It is rather used for rea-
sons of convenience and mathematical tractability.
On the other hand, Natural time, a new time domain,
is not continuous and its values as well as those of
energy form a countable sets (Varotsos et al., 2001,
2011c).

2.1. Definition of Natural time

Specifically, in a time series comprising of N
events, the Natural time is defined as:

χk = k

N
(1)

and serves as the index for the occurrence of the k-th
event. It is smaller than or equal to unity (χk ε (0, 1]).

In Natural time analysis we are concerned about
the evolution of the pair of two quantities (χk, Qk),
where χk is the Natural time as aforementioned, and
Qk is a quantity proportional to the “energy” of the
k-th event. “Energy” constitutes a scientific definition

which is really difficult to describe with one single
comprehensive definition because of its many forms.
Depending on the application, “energy” can take one
of the usual forms encountered in physics or can be
a measure suitable to the modelling purposes. For
example in earthquake prediction, Qk stands for the
duration of the k-th seismic electric signal (SES)1

(Varotsos et al., 2008). In detection of syndrom of
Sudden Cardiac Death (SCD) we use the RR2 interval
as Qk. In other Complex systems, such as Olami-
Feder-Christensen (OFC) model(Olami et al., 1992),
the size of avalanche is used as a quantity proportional
to the “energy” (Qk) (Varotsos et al., 2011c).

In the standard rebound theory of earthquakes,
elastic deformation energy3 is gradually stored in the
crust of earth. As rocks on opposite sides of a fault are
subjected to force and shift, they accumulate energy
and slowly deform until their internal strength thresh-
old is exceeded. This is the critical point at which
energy is suddenly released in an earthquake. In other
words, earthquake is a recurrent phenomenon which
is a result of a continuous built-up stress and release
process of the tectonic plates of the earth.

On the other hand, Andersen et al. (2011) show
that worldâŁ™s stock exchanges follow the dynam-
ics of build-up and release of stress and they have
a non-linear threshold response to events, similar
to earthquakes. The non-linear response based on
change blindness, a phenomenon in which humans
(traders in this case) react disproportionally to big
changes, results in only large changes to be taken
into account whereas small changes go unnoticed.

A key principle in finance states that as new infor-
mation is revealed, it immediately becomes reflected
in the price of an asset and thereby loses its relevance
(Famma, 1969). As a consequence, focusing initially
on stock indices, stress (elastic deformation energy)
enters the system because of price movements of the
indices. The idea is that a large (eventually cumu-
lative) price movement of a given stock index can
induce stresses on other stock indices world-wide
to follow its price movement. Similar to the BK
model of earthquakes (Burridge and Knopoff, 1967),

1SES: Low frequency≤1Hz electric signals that precede earth-
quakes.

2RR is (beat-to-beat) interval time serie of an electrocardio-
gram.

3Elastic energy is the potential mechanical energy stored in the
configuration of a material or physical system as work is performed
to distort its volume or shape. Elastic energy occurs when objects
are compressed and stretched, or generally deformed in any manner
(Landau and Lifshitz, 1986).
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we assume a “stick-slip” motion of the indices so
that only a large (eventually cumulative) movement
of a given index has a direct impact in the pricing
of the remaining indices world-wide. In this line of
thinking, “price-quakes” can happen in the financial
system as cascades of big price movements (Ander-
sen et al., 2011).

Inspired by the aforementioned, we make the
assumption that price can be a natural choice for a
quantity proportional to energy. Various functions of
price, price trend, volume or a suitable combination of
them could be possible canditates as well. The selec-
tion depends on the application and the objectives
pursued.

Equivalently with Qk, we consider the quantities:

pk = Qk∑N
n=1Qn

(2)

N∑
k=1

pk = 1 (3)

where pk is the normalized energy of the k-th event.
An example from the currency markets of how the
data are grouped under the Natural time and conven-
tional time exists in Fig. 1.

2.2. The normalized power spectrum Π(ω) and
the variance κ1 of Natural time

Considering the evolution of the pair (χk, Qk), we
define the function:

F (ω) =
N∑

k=1

Qke
iω k

N (4)

where ω = 2πφ and φ stands for the frequency in
Natural time. We normalize F (ω) dividing by F (0)
and we end up to the following equation:

	(ω) =
N∑

k=1

pke
iω k

N (5)

where pk = Qk∑N

n=1
Qn

. This quantity is always posi-

tive and it can signify probability since pk are positive
and sum up to unity. Function 	(ω) (it should not
be confused with the discrete Fourier transforma-
tion because here ω is a continuous variable) is the
characteristic function of pk for all ω ∈ R.

Using (5) we compute the normalized power spec-
trum 
(ω) as


(ω) = |	(ω)|2 =
∣∣∣∣∣

N∑
k=1

pke
iω k

N

∣∣∣∣∣
2

(6)

Fig. 1. Upper figure shows the daily closing prices of EUR/USD from 18/7/2013 to 29/7/2013 depicted in conventional time. Qk are the
daily closing prices. Lower figure shows the same data analysed in Natural time.
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According to probability theory (Varotsos et al.,
2011a, 2002), for natural frequencies φ (smaller than
0.5), 
(ω) switches to a characteristic function of the
probability pk. For small values of ω, we consider its
Taylor expansion around 0:


(ω) = 1 − κ1ω
2 + κ2ω

4 + κ3ω
6 + κ4ω

8 + ...

(7)
where

κ1 = −1

2

d2
(ω)

dω2 (8)

The quantity κ1 corresponds to the variance of Nat-
ural time χ. Taking into account Equations (5) and
(8) and along with the fact that 	(0) = 1, we find
(Varotsos et al., 2005):

κ1 =< χ2 > − < χ >2=
N∑

k=1

pk

(
k

N

)2

−
(

N∑
k=1

pk

k

N

)2

(9)

where

< χn >=
N∑

k=1

pkχ
n
k (10)

denotes the moments of the Natural time χ weighted
by pk for each χk. For N → ∞, the discrete prob-
abilities pk are replaced with a probability density
function (PDF) p(χ) in the region of (0,1]. In this
region we expand in a cosine Fourier series for χ

(Varotsos et al., 2011c)

p(χ) = 1 +
∞∑

n=1

pncos(nπχ) (11)

where

pn = 2
∫ 1

0
p(χ)cos(nπχ)dx (12)

are the cosine Fourier series expansion coefficients.
Combining Equations (5), (8), (11) and (12) we end
up to:

κ1 =< χ2 > − < χ >2=⇒ (13)

κ1 = 1

12
+ 1

2π2

∞∑
n=1

p2n

n2
−
[

1

2π2

∞∑
n=1

p2n+1

(n + 1/2)2

]2

(14)

2.3. Uniform distribution in Natural time

A fundamental application of Natural time is the
paradigm of the uniform distribution. The most com-
mon application of this is the emission of uncorrelated
bursts of energy Qk. In this case the expected pk is
E(pk) = 1/N.

We define the uniform distribution:

p(χ) =
N∑

k=1

pkδ(χ − χk) =
N∑

k=1

pkδ(χ − k

N
) (15)

For N → ∞, the PDF p(χ) tends to the PDF of
uniform distribution, loosely written as p(χ) = 1.

Then, we evaluate the mean value of Natural time:

< χ2 > =
N∑

k=1

pkχ
2
k (16)

For N → ∞, p(χ) = 1 and pn = 0. Using Equa-
tion (15), the variance κ1 of Natural time is:

κ1 = κu = 1

12
= 0.0833. (17)

3. Methodology

3.1. Analysing financial time series with Natural
time

We assume that quantity (Qk), in which “market’s
energy” is reflected, is the price of the market. Based
on this assumption we consider the closing price of
financial time series in the chosen time frame (time
frames can be based on one minute, five minutes,
daily, etc.). Usually the closing price is chosen to
be the representative price of the chosen frame, as
it is argued that it encapsulates all the available infor-
mation (Famma, 1969), especially in popular time
frames such as daily, monthly or yearly, but the anal-
ysis can be performed on any other price (e.g. open,
high, low, etc.).

As a first step, we normalize the data to zero mean
and unit standard deviation and then we add the mini-
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Fig. 2. Upper figure shows one minute data of EUR/USD (date: 09/21/2012 from 07:50 until 18:07) in conventional time and the lower
figure shows the evolution of variance κ1 (L=300) also in conventional time.

Fig. 3. Upper figure shows one minute randomly shuffled data of EUR/USD (date: 09/21/2012 from 07:50 until 18:07) in conventional time
and the lower figure shows the evolution of variance κ1 L=300) also in conventional time.

mum value in order to ensure that each point is greater
or equal to zero ( Qk should be a positive quantity).
For each value of the normalized data (Qk) we assign
the index of its occurrence (χk).

Then, we calculate the evolution of variance of Nat-
ural time χ, κ1 (as a function of conventional time)
using overlapping rolling windows with step 1 of the
past L values of the data (1 : L, 2 : L + 1, ..., L :
L + n − 1), where n is the number of data under
study.

An illustrative example of one minute data of
EUR/USD (date:09/21/2012 from 07:50 until 18:07)

with the evolution of the data and the evolution of
variance κ1 with a rolling window of 300 values exists
in Fig. 2.

In the example above we randomly shuffle the
EUR/USD data and recalculate the variance of κ1 as
shown in Fig. 3. Upper panel shows the shuffled data
and the lower panel shows the evolution of variance
of κ1, both in conventional time. We observe that the
variance of Natural time κ1 in Fig. 3 displays a dif-
ferent trajectory in comparison with the evolution of
κ1 in Fig. 2. In particular κ1, after initial fluctuations,
stabilizes to a value around κ1 = κu = 0.083 which



42 A. Mintzelas and K. Kiriakopoulos / Natural time analysis in financial markets

Fig. 4. Upper figure shows one minute data of EUR/USD (date: 09/21/2012 from 07:50 until 18:07) in conventional time and lower figure
shows the evolution of variance κ1 (L=300) also in conventional time. Green and red boxes show areas in the data of consecutive local
extrema.

is indicative for the case of uniform distribution as
shown is subsection 2.3. This reveals that the exact
sequence of the events (Qk) and not the events them-
selves, determine the evolution of variance κ1. This
is very encouraging for the selection of the variance
of κ1 as a candidate metric for developing trading
strategies.

Focusing on Fig. 2, we divide κ1 curve into seg-
ments based on local minima and maxima. Each
segment starts from the detection of a local mini-
mum (maximum) and ends up to the detection a local
maximum (minimum) as shown in Fig 4.

In order to ensure the detection of local extrema
we need to track the κ1 curve’s evolution in the right
neighbourhood of the local extrema which inevitably
introduces a time lag. That is why the green and red
boxes are displaced from five to ten minutes (basic
time unit in our case is the minute) relative to the
actual points of minima (maxima). This allows us to
track the evolution of both time series, EUR/USD and
κ1 curve, simultaneously in each separate segment.

We observe that the division of upward and down-
ward trends of κ1 curve coincides with upward and
downward trends of EUR/USD (green and red boxes
respectively).

We also see that variance of Natural time χ spots
local minimums or maximums on the data. This
seems to be unexpected but welcomed since the intro-
duction of a short lag for local extrema detection is
unavoidable. Actually κ1 predicts the minimum or
maximum of data and that makes Natural time analy-

sis’ prediction of trend to coincide with the actual
one. So if we detect a local minimum(maximum)
in the evolution of κ1 in conventional time, we
are able to infer that it signifies a forthcoming
upward(downward) trend in the original data, from
which κ1 is calculated.

4. Trading strategies based on Natural time

This particular characteristic of Natural time anal-
ysis allows us to create trading strategies with
acceptable risk return characteristics. The key for a
trading strategy lies in the successful determination
of future trends in the market. As shown in Fig. 4, the
blue κ1 curve depicts downward (upward) trend and
helps us to divide the time series to short(long)areas.

A natural extension to this, is the simultaneously
use of two, instead of one, different time windows.
For example, a large one (Lb = 300) and a smaller
one (Ls = 30) as it is shown in Fig. 5. The use of
multiple time windows allows us to consider data
variations that emerge in different time scales simul-
taneously. So, with the introduction of the second
(smaller) time window we manage to compartmen-
talize the original data in a deeper level, taking into
account the data microstructure characteristics.

The core of this strategy is the evolution of vari-
ance of Natural time κ1 in two time windows.
Specifically, κ1 curve (blue), which comes from the
larger time window, is used as an indicator for an
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Fig. 5. Upper figure shows one minute data of EUR/USD (date: 09/21/2012 from 07:50 until 18:07) in conventional time. Lower figure
shows the evolution of variance of κ1 in different time windows (blue curve: larger time window (Lb = 300), green curve: smaller time
window (Ls = 30)), also in conventional time.

upward(downward) trend and helps us to divide the
time series into short(long) trading areas. The κ1
curve (green) which comes from the smaller time
window serves as a position indicator in the market.

In Fig. 5, a local maximum (minimum) of the blue
curve signifies the upward trend until the next local
minimum (maximum) of the same curve. During this
period, when a local maximum (minimum) of the
green curve is detected, the opening of a short (long)
position is suggested. This position will be closed
when the next minimum (maximum) of the green
curve is identified.

The above strategy suggests a simple example how
the Natural time analysis can be used in order to profit
from the markets.

This strategy has also been implemented on major
currency pairs (Table 1) and on the 30 stocks of Dow
Jones Industrial Average Index (DJIA) (Table 2).

We see that this strategy delivers results that have
a stable profitability whereas its overall return can be
characterized as promising. For all the major currency
pairs the returns were positive for the whole trading
period (2010–2013) and the equal weight portfolio of
currency pairs has positive results for every trading
year. In addition only 7 out of 30 stocks of the DJIA

delivered negative results for the whole trading period
(2011–2014). Another significant feature is that the
results are uncorrelated with the returns and with the
volatility of DJIA. To show this an equal weight port-
folio with the stocks of DJIA based on this strategy
is implemented. The results are shown in Table 3.

The above strategy was also implemented and back
tested to the universe of the stocks of S&P500 index
and a portfolio of 20 stocks was constructed with
the help of a ranking algorithm. The algorithm took
into consideration the persistence and the constant
behaviour of stock returns in various time frames and
their interaction with strategy characteristics (returns,
max draw down, percentage of winning trades, etc.).
Out-of-sample portfolio were run (for one trading
year) and the results are shown in Table 4.

As the results show, strategy’s portfolio is char-
acterized by promising metrics (satisfactory yearly
returns, index out performance in five out of six years
and acceptable VAR and expected value at risk of
1.2% (on average) at 95% significance level4. Agian
the portfolio’s results have no correlation with the
returns of S&P500 or with volatility of S&P500
(Table 5).

It is also important to note that in this strategy we
do not use any traditional trading rules, such as trail-
ing stops, stop loss, etc. We only use signals which
are generated exclusively from Natural time analysis
in stock’s time series in order to take our trading deci-
sions. This is done intentionally so that the strength
of the analysis to be shown5.

4Other popular metrics useful for evaluating algorithms such
as average winning to losing days, average size of winning and
losing trade, etc. are available from the authors upon request.

5Despite the conventional belief, trailing stops do not neces-
sarily improve the results of a strategy.
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Table 1
Results for trading strategy based on Natural time analysis on major currency pairs (Trading

Period: 1/1/2010 to 31/12/2013)

Forex Returns
Instrument P&L

2010 2011 2012 2013 2010–2013

AUD-USD 13.80% 7.67% −4.03% 4.65% 22.09%
EUR-CHF 13.26% 8.97% 3.18% 0.70% 26.10%
EUR-GBP −0.36% 5.90% 3.18% 11.83% 20.55%
EUR-JPY −0.26% 6.29% 15.41% 20.82% 42.26%
EUR-USD 4.10% −0.37% −1.74% 6.70% 8.70%
GBP-USD −0.96% 5.90% 1.41% 11.83% 18.17%
USD-CAD 0.51% 2.25% −2.34% 10.71% 11.12%
USD-CHF 6.39% 26.27% −1.09% 19.62% 51.19%
USD-JPY 3.25% 5.16% 3.15% 12.26% 23.82%

AVERAGE 4.42% 7.56% 1.90% 11.01% 24.89%

Table 2
Results for trading strategy based on Natural time analysis on the 30 stocks of DJIA (Trading Period: 1/1/2011 to 31/12/2014)

DJIA stocks’ returns
Instrument P&L

2011 2012 2013 2014 2010–2014

AA 78.7% 14.6% 47.0% 38.9% 179.2%
HPQ 34.7% 36.1% 18.8% −9.6% 80.0%
BAC 41.2% 18.2% 19.2% −5.6% 73.0%
MSFT 10.4% 17.0% 28.7% 16.9% 72.9%
DD 27.7% 23.7% −4.9% 16.0% 62.5%
UTX 38.7% 4.3% 11.9% 6.0% 60.9%
BA 37.3% −16.5% 18.2% 12.8% 51.9%
MRK 18.4% −14.5% 17.5% 18.5% 39.9%
CVX 0.3% 8.0% 23.2% 4.2% 35.7%
MMM 15.1% −7.5% 24.1% −4.2% 27.5%
CAT 20.9% 18.1% 21.2% −33.6% 26.6%
HD −22.9% 18.3% 25.0% 6.1% 26.4%
INTC 21.3% −2.0% 29.8% −23.6% 25.5%
IBM 21.3% 1.8% −9.7% 6.4% 19.8%
T −3.5% 14.1% 3.2% 0.9% 14.7%
PG 23.4% −8.4% 0.1% −7.4% 7.7%
DIS 24.0% 0.4% −11.2% −5.7% 7.4%
WMT 0.2% −1.4% 2.1% 2.4% 3.3%
KFT 0.7% 0.5% 0.9% 1.1% 3.2%
XOM 15.2% −12.8% 1.5% −1.2% 2.7%
JNJ 14.6% −21.6% 4.5% 5.1% 2.6%
VZ 0.1% 6.9% −12.6% 6.2% 0.6%
AXP −3.4% 2.6% 0.9% 0.1% 0.2%
JPM 0.2% −26.9% −17.4% 40.8% −3.4%
GE −0.4% −12.2% 1.3% 3.2% −8.1%
MCD −18.8% 14.2% −5.0% −1.7% −11.4%
CSCO 12.9% 0.8% −17.2% −8.9% −12.3%
PFE −2.1% −22.2% −0.2% 10.7% −13.8%
KO −5.4% −2.2% −11.7% 2.1% −17.3%
TRV 12.3% −27.4% 4.3% −10.2% −21.0%

AVERAGE 13.8% 0.8% 7.1% 2.9% 24.6%

5. Conclusions

A new way of analysing financial time series based
on Natural time analysis, a theory of physics with

remarkable results on earthquake prediction has been
proposed. This theory treats time with a different
manner in contrast with the standard model of contin-
uous time. In this framework, the implementation of
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Table 3
Correlation coefficients of an equal weight portfolio with stocks of DJIA versus index returns

and index volatility of DJIA

Correlation Coefficients
Year DJIA portfolio returns DJIA portfolio returns

vs vs
DJIA volatility index DJIA index returns

2011 −0.65 0.27
2012 −0.09 −0.36
2013 0.10 0.35
2014 0.03 0.28
2011–2014 −0.35 0.25

Calculated metrics based on monthly results

Table 4
S&P500 portfolio based on Natural time Strategy

Year P&L Sharpe max Value at Expected S&P 500
Ratio Drawdown Risk Value at risk

2008 20.46% 1.12 −15.98% −2.03% −2.47% −38.49%
2009 25.22% 2.21 −6.53% −1.06% −1.86% 23.45%
2010 2.11% 1.01 −6.89% −1.42% −2.08% 12.78%
2011 17.81% 1.92 −6.36% −1.33% −2.04% 0.00%
2012 19.42% 2.16 −4.86% −0.73% −1.12% 13.41%
2013 19.85% 2.28 −3.49% −0.62% −0.77% 29.60%

Calculated metrics based on Leverage 1:1

Table 5
Correlation coefficients of a portfolio constituting of 20 stocks of S&P500 versus returns

of S&P500 index returns and versus S&P500 volatility index

Correlation Coefficients

Year S&P 500 portfolio returns S&P 500 portfolio returns
vs vs

S&P 500 volatility index S&P 500 index returns

2008 0.04 0.27
2009 0.01 0.21
2010 0.27 − 0.11
2011 −0.61 0.29
2012 −0.19 0.17
2013 0.01 −0.03
2008–2013 −0.03 0.18

Calculated metrics based on monthly results

variance of Natural time κ1 in a time serie results in
successful prediction of the upcoming trend. This fea-
ture can be used to develop winning trading strategies
based on variance of Natural time κ1. Since Natural
time analysis was developed for physical phenomena,
strategies based on this theory are difficult to be char-
acterized with the usual terms found in the finance
jargon like trending strategies, volatility strategies,
etc. Another important feature of this is that it is pos-
sible to construct profitable trategies based on Natural
time that give results uncorellated to the returns and
to the volatility of indices. This is very useful for rea-

sons of diversification. We suspect that Natural time
analysis has also many other useful applications in
finance. Our future work will focus on phases of the
markets, their transitions form one phase to another
and the finding of stationary regimes in financial time
series (choppy market periods) via the parameters of
Natural Time. In an upcoming article we show how
Natural time analysis, in a more microstucture level,
can reveal information for impending large finan-
cial events using the variability of κ1 and how this
information can be used for the production of trading
strategies.
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