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Abstract. Randomness and regularities in finance are usually treated in probabilistic terms. In this paper, we develop a different
approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov
(1965). We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an
iterative “regularity erasing procedure” (REP) implemented to use lossless compression algorithms on financial data. The REP
is found to be necessary to detect hidden structures, as one should “wash out” well-established financial patterns (i.e. stylized
facts) to prevent algorithmic tools from concentrating on these non-profitable patterns. The main contribution of this article
is methodological: we show that some structural regularities, invisible with classical statistical tests, can be detected by this
algorithmic method. Our final illustration on the daily Dow-Jones Index reveals a weak compression rate, once well- known
regularities are removed from the raw data. This result could be associated to a high efficiency level of the New York Stock
Exchange, although more effective algorithmic tools could improve this compression rate on detecting new structures in the
future.

Keywords: Kolmogorov complexity, return, efficiency, compression

Introduction

Consider the following strings consisting of 0 and 1:

A: 01010101010101010101010101010101010101010101010101010101010101010101010101010101

B: 01101001100101101001011001101001100101100110100101101001100101101001011001101001

C: 01101110010111011110001001101010111100110111101111100001000110010100111010010101

D: 11001001000011111101101010100010001000010110100011000010001101001100010011000110

E: 00111110010011010100000000000111001111111001110010011000001001001001011101011011

F: 00100001100000000110010010101000101110111101000011111001001000110111011110010100

Some of these sequences are generated by simple
mathematical procedures, others are not. Some exhibit
obvious regularities, and others might reveal “struc-
tures” only after complicated transformations. Only
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one of them is generated by a series of random draws.
The question is “how to identify this latter” ?

In this paper, a generic methodology will be intro-
duced to tackle this question of distinguishing regular
(structured, organized) sequences from random ones.
Although this method could have a general use, here, it
is geared to regularity detection in finance. To illustrate
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this idea, examples are provided using both simulated
and real-world financial data. It is shown that some
structural regularities, undetectable by classical statis-
tical tests, can be revealed by this new approach.

Our method is based on the seminal works of Andrei
(Kolmogorov 1965) who proposed a definition of ran-
dom sequences in non-statistical terms. His definition,
which is actually among the most general ones, is itself
based on Turing’s and Godel’s contributions to the so-
called “computability theory” or “recursion theory”
(Turing 1937, Gödel 1931). Kolmogorov’s ideas have
been exploited by physicists for a renewed definition of
entropy (Zurek 1989), by biologists for the classifica-
tion of phylogenic trees (Cilibrasi & Vitanyi 2005) and
by psychologists to estimate randomness-controlling
difficulties (Griffth & Tenenbaum 2001).

In finance, Kolmogrov complexity is often used to
measure the possibility to predict future returns. For
example, Chen & Tan (1996) or Chen & Tan (1999)
estimated the stochastic complexity1 of a stock market
using the sum of the squared prediction errors obtained
by econometric models. Azhar, et al. (1994) measured
the complexity of stock markets with the highest suc-
cessful prediction rate2 (SPR) that one can achieve
with different compression techniques. Shmilovici,
et al.(2003) and Shmilovici, et al. (2009) used the Vari-
able Order Markov model (VOM, a variant of context
predicting compression tools) to predict the direction
of financial returns. They found a significant differ-
ence between the SPR obtained from financial data
and that obtained from random strings. To establish a
formal link between this result and the Efficient Market
Hypothesis (EMH), the authors also simulated VOM-
based trading rules on Forex time series and concluded
that there were no abnormal profits.

Exploiting another compression technique, Silva,
et al. (2008) and ranked stock markets all over the
world according to their LZ index, an indicator show-
ing how well the compression algorithm proposed by
Lempel & Ziv (1976) works on financial returns.

Despite the perspectives opened up by these pioneer
works, two main limits in the aforementioned literature
can be highlighted:

1The notion of stochastic complexity is proposed by Rissanen
(1986) in replacing the universal Turing machine in the definition of
Kolmogorov complexity by a class of probabilistic models.

2To obtain this successful prediction rate, at each step, the author
uses compression algorithms to predict the direction of the next
return, and calculates the rate of successful predictions for the whole
series.

1. From a theoretical point of view, the frontier
between the probabilistic framework and the
algorithmic one is not clearly established.

A strength of the algorithmic complexity is that
it tackles one given string at a time, and not nec-
essarily a population of strings with probabilities
generated by a given stochastic process. Hence,
no probabilistic assumption is needed when one
uses algorithmic complexity.

The estimation of successful prediction rates
seems to suggest that price motions follow
a certain distribution law. Despite the use of
compression tools, this technique reintroduces
a probabilistic framework. The general and
non-probabilistic framework proposed by the
algorithmic complexity theory is then weakened.

2. This is not the case with Silva et al. (2008) and
Giglio, et al. (2008). However, the discretization
technique used in these papers remains open to
discussion. Actually, financial returns are often
expressed in real numbers3, while compression
tools only deal with integer numbers. So, regard-
less the use of compression tools, a discretization
process which transforms real-number series into
discrete ones, is always necessary.

To fit this requirement, Shmilovici et al. (2003)
or Shmilovici et al. (2009), as well as Silva et al.
(2008) or Giglio et al. (2008), proposed to trans-
form financial returns into 3 signals: “positive”,
“negative”, or “stable” returns.

Undoubtedly, this radical change leads to a
significant loss of information from the origi-
nal financial series. As Shmilovici et al. (2009)
remarked themselves, “the main limitation of the
VOM model is that it ignores the actual value of
the expected returns (Shmilovici et al. 2009).”

The introduction of algorithmic complexity in
finance could have wider implications. For exam-
ple, Dionisio, et al. (2007) have claimed that the
notion of complexity could become a measure of
financial risk - as an alternative to “value at risk”
or “standard deviation” - which could have gen-
eral implications for portfolio management (see
Groth & Muntermann (2011) for an application
in this sense).

Given these two points, it seems interesting to estab-
lish a general algorithmic framework for price motions.

3For example, continuous returns are computed as the logarithm
of the ratio between consecutive prices : rt = log(pt+1)− log(pt).
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We propose an empirical method that allows to treat
financial time series with algorithmic tools, avoiding
the over-discretisation problem. This method is based
on the initial investigation of Brandouy & Delahaye
(2005) whose idea is developed by Ma (2010) on tack-
ling real-world financial data. In this same framework,
Zenil & Delahaye (2011) fostered future applications
of Kolmogorov complexity in finance.

Using the algorithmic approach, we show that daily
returns of Dow Jones industrial index has a relatively
high Komogorov complexity during the period from
01/02/1928 to 30/08/2010. To a certain degree, this
result supports the Efficient Market Hypothesis (Fama
1970) that attests the impossibilityofoutperforming the
market.

This paper is organized as follows:
A first section formally presents Kolmogorov com-

plexity and provides an elementary illustration of

this concept. A second section proposes a generic
methodology to estimate Kolmogorov complexity of
numeric series. We then show, in a third section, that
some regularities, difficult to detect with traditional
statistic tests, can be identified by compression algo-
rithms. The last section is dedicated to the interests and
limits of our techniques for real financial data analysis.

1. Regularity, randomness and Kolmogorov
complexity

We start this section with traditional interpretations
of randomness in finance in order to contrast them
with their counterpart in computability theory. We then
explicitly present the notion of “Kolmogorov com-
plexity” and illustrate its empirical applications with
simulated data.

Before our formal presentation of Kolmogorov complexity, readers might be interested by the
solution to our initial question: “how to identify, among sequences A, B, C, D, E and F , the
randomly generated one?”

The first four sequences (or strings) are simple in the sense of Kolmogorov, since they can be described
by the following rules:

• obviously, A is a 40 times repetition of “01” .
• B is the so-called “Thue-Morse” sequence (see Allouche & Cosnard (2000), which is iteratively

generated as follows:
1. the initial digit is 0.
2. the negation of “0” (resp. “1”) is “1” (resp. “0”) .
3. to generate B in a recursive way, take the existing digits, and add their negations on the right:

– Step 1: “0”←“1”⇒ “01”
– Step 2: “01”←“10”⇒ “0110”
– Step 3: “0110”←“1001”⇒ “01101001”
– Step 4: “01101001”←“10010110”⇒ “0110100110010110”
– ...

• C is the concatenation of natural numbers written in base 2: 0, 1, 10, 11, 100, 101,
110, 11 1000.... It is known as the “Champernowne (1933) constant” .

• D is generated by transforming the decimals of π into binary digits.

These generating rules make A, B, C and D compressible by the corresponding algorithms. For D,
common compression tools may turn out to be inefficient, but it is easy to write a π-compressing
algorithm, in exploiting the generating function(s) of the famous constant.
E has been drawn from an uniform law which delivers, with a probability of 50% for each, 1 or 0.
The last sequence (F ) corresponds to the daily variations of the Dow Jones industrial index observed
at closing hours from 07/10/1987 to 10/27/1987, with “0” coding the drops and “1” the rises.
One can question here to which extent F is similar to the first four strings, and to which degree
lossless compression algorithms can distinguish them. This question serves as a baseline in this paper
which attempts to provide a new consideration of randomness in financial dynamics.
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1.1. Probabilistic versus algorithmic randomness

Traditionally, financial price motions were modeled
(and are still modeled) as random walks4 (see equa-
tion 1):

pt = pt−1 + εt (1)

In this equation, pt stands for the price of one spe-
cific security at “t” and εt is a stochastic term drawn
from a certain distribution law5. This stochastic term is
often estimated by a Gaussian noise, though it fails to
correctly represent some stylized facts such as the time
dependence in absolute returns or the auto-correlation
involatility (seeforexampleMandelbrot&Ness(1968)
or Fama (1965)). Several stylized facts are taken into
account by volatility models (see, for instance GARCH
models6), while others stay rarely exploited in financial
engineering (for example, multi-scaling laws (Calvet &
Fisher 2002), return seasonality · · · ).

In this sense, financial engineering proposes an itera-
tive process which, step by step, improves the quality of
financial time series models, both in terms of describ-
ing and forecasting7. At least from a theoretical point
of view, this iterative process should deliver, at the
end, a perfectly deterministic model8. If this final
stage symbolizes the perfect comprehension of price
dynamics, each step in this direction can be consid-
ered as a progress of our knowledge on financial time
series. With an imperfect understanding of this latter,
the iterative process will stop somewhere before the
determinist model. Meanwhile, wherever we stop in
this process, the resulting statistical model is a “com-
pressed expression” (some symbols and parameters) of
the long financial time series (hundreds or thousands
of observations).

“To understand is to compress” is actually the main
idea in Kolmogorov complexity (Kolmogorov 1965)
whose definition is formally introduced as follows:

4These processes correspond to the so-called “Brownian
motions” in continuous contexts. In this paper, as real-world financial
data are always discrete and algorithmic tools only handle discrete
sequences, our theoretical developments will lie in a discrete frame-
work.

5Up to now, there is no consensus in the scientific community of
finance concerning the driving law behind εt series.

6Generalized Auto Regressive Conditional Heteroscedasticity
Models, Bollerslev (1986)

7It is clear that “description” is the easier part of the work, with
forecasting being far more complicated.

8Which is simply impossible for the moment, because of our
imperfect comprehension of financial time series.

Definition 1.1. Let s denote a finite binary string
consisting of digits from {0, 1}. Its Kolmogorov com-
plexity K(s) is the length of the shortest program
P generating (or printing) s. Here, the length of P

depends on its binary expression in a so-called “uni-
versal language”9.

As a general indicator of randomness, Kolmogorov
complexity of a given string should be relatively sta-
ble to the choice of universal language. This stability
is shown in the following theorem (see (Kolmogorov
1965) or (Li & Vitányi 1997) for a complete proof)
according to which, a change in the universal language
has always a bounded impact on a string’s Kolmogorov
complexity.

Theorem 1.2. Let KL1 (s) and KL2 (s) denote the
Kolmogorov complexities of a string s respectively
measured in two different universal languages L1
and L2. The difference between KL1 (s) and KL2 (s) is
always a constant c which is completely independent
of s:

∃c∀s |KL1 (s)−KL2 (s)| ≤ c (2)

According to this invariance theorem, one need not
pay too much attention to the choice of universal lan-
guage in Kolmogorov complexity estimations, since its
intrinsic value (the part depending on s) remains stable
with regard to programming technics in use.

Besides the invariance theorem, another prop-
erty of Kolmogorov complexity, firstly proved in
(Kolmogorov 1965), makes it a good randomness mea-
sure: a finite string’s Kolmogorov complexity always
takes a finite value.

Theorem 1.3. If s is a sequence of length n then:

K(s) ≤ n+O(log(n)) (3)

In equation 3, O(log(n)) only depends on the uni-
versal language in use. This property comes from the
fact that all finite strings can at least be generated by
the program, “print (s)”, whose length is close to
the size of s.

Remark that most n-digit strings (provided that n

is big enough) have their Kolmogorov complexity
K(s) close to n. K(s) << n implies the existence of

9A universal language is a programming language in which one
can code all “calculable functions”. “Calculability” is often related
to the notion of “effectiveness” in computer science (see for exam-
ple Velupillai (2004)). Most modern programming languages are
universal (for example C, Java, R, Lisp · · · ).
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a program P which can generate s and is much shorter
than s. In this case, P is said to have found a structural
regularity in s, or P has compressed s.

On the contrary,

Definition 1.4. If for an infinite binary string denoted
by S:

∃C∀n K(S � n) ≥ n− C

where S � n denotes the first n digits of S and C a
constant in the natural number set N, then S is defined
to be a “random string”.

This definition of random strings, proposed by
Martin-Löf (1966), reformulated by Chaitin (1987) and
reviewed in Downey & Hirschfeldt (2010), is irrele-
vant to any probability notion, and only depends on
structural properties of S.

Following definition 1.4, the best compression rate
one can get from the n first digits of a random string is
calculated by

rate = n−K(S � n)

n
= C

n

As n→∞, rate→ 0. In other terms, random
strings are incompressible ones.

Contra-intuitively, compressible strings are rela-
tively seldom. For example10, among all n-digit
strings, the proportion of those verifying K(s) < n−
10 does not exceed 1/1000.

To illustrate the relation between compressibility
and regularity, let’s consider two compressible (reg-
ular) strings:

a : 01101110010111011110001001101010

111100110111101111100001000110010

100111010010101

b : 111110011110011001111011100111011

010101011101111101111011011111111

11101001101110

The first string, known as Champernowne sequence
(i.e. string C on page 159), is generated with a quite
simple arithmetic rule: it is the juxtaposition of natural
numbers written in base 2. The optimal compression
rate on the first million digits of is above 99% (c.f.

10The probability to observe K(s) < n− 20 is less than
1/1000000. Proof for this results are provided in appendix A.

annex B), which indicates that can be printed by a short
program.

The second string was independently drawn from
a random law (with the help of a physical procedure)
delivering “1′′ with a 2/3 probability and “0′′ with a
1/3 probability. The computer program generating b
can be much shorter than it. In fact, classical tools can
obtain on b a compression rate calculated as follows11:

−(1/3)log2(1/3)− (2/3)log2(2/3) = 91.8% (4)

While b is drawn from a random law, its compress-
ibility remains perfectly compatible with statistical
conjectures: composed by definitively more 1 than 0,
b should not be considered as the path of a standard
random walk.

Face to rare events, algorithmic and statistical
approaches also deliver similar conclusions. Let c
denote a 100-digit string exclusively composed of 0.
To deduce whether c was generated by tossing a coin,
one can make 2 kinds of conjectures:

1. according to computability theory, c has a rela-
tively negligible Kolmogorov complexity12 and
can not be the outcome of a coin tossing
procedure.

2. in statistical terms, as the probability of obtaining
100 successive “heads” (or “tails”) by tossing a
coin is not more than 7.889e− 31, c is probably
not the result of such a procedure.

However, despite the two preceding arguments, c could
always have been generated by tossing a coin, since
even with a zero probability, rare events do take place.
This phenomenon is often referred to as “black swans”
by financial practitioners.

In this section, Kolmogorov complexity is presented
by comparing it with the statistical framework in regard
to randomness consideration. Two properties - invari-
ance theorem and boundedness theorem - of the former
concept are stressed in this theoretical introduction
since they allow Kolmogorov complexity to be a good
indicator of the distance between a given sequence and
random ones.

Based on this theoretical development, we will show
in the following sections how Kolmogorov complexity
can be used in empirical data analysis.

11This compression rate is related to the Shannon’s entropy of b.
12As c can be easily generated with a short command in most

programming languages.

a
a
b
b
b
b
c
c
c
c
c
b
c


164 O. Brandouy et al. / Estimating the algorithmic complexity of stock markets

Fig. 1. Simulated series e1.

1.2. Kolmogorov complexity of price series: a
basic example

After the theoretical introduction of Kolmogorov
complexity, we illustrate with the following exam-
ple how to search structural regularities in certain
sequences behind their complex appearance. This
example is developed with a simulated price series
which is plotted in Figure 1. The first 14 values of
the simulated series are:

e1,t = 1000, 1028, 1044, 1015, 998, 1017, 1048,

1079, 1110, 1090, 1058, 1089, 1117, 1100, ...

One apparent regularity in e1,t is that all prices seem
to be concentrated around 1000. One can “erase” this
regularity on taking the first order difference of e1,t

with equation: e2,t = pt − pt−1. This process delivers
the following sequence:

e2,t = 28, 16,−29,−17, 19, 31, 31, 31,−20,

−32, 31, 28,−17,−17...

As positive series can be transformed into base 2
more easily, each element of e2,t is added by 32, which
gives:

e3,t = 60, 48, 3, 15, 51, 63, 63, 63, 12, 0, 63, 60, 15, 15, ...

Then, e3,t is coded with binary numbers of 6 bits:

e4,t = 111100, 110000, 000011, 001111, 110011,

111111, 111111, 111111, 001100, 000000,

111111, 111100, 001111, 001111, ...

Without commas, e4,t becomes:

e5 = 111100110000000011001111110011111

111111111111111001100000000111111...

Is e5 compressible? In other terms, will there remain
structures in e5 after the preceding transformations?
Before answering these questions, one must notice that

the binary expression of e2 is already shorter than that
of e1. Our first transformation actually corresponds to
a first compression by exploiting the sequential, con-
centrated aspect of e1

13.
Were e5 incompressible, our “regularity erasing pro-

cedure” (thereafter, REP) would have attained its final
stage. However, it is not the case. In e5, there remains
another structure which can be described as follows: if
the (2n− 1)th term is 1 (resp. 0), so will be the (2n)th
term. By exploiting this regularity, e5 can be com-
pressed to e6 which only carries every second element
of e5:

e6 = 110100001011101111111111010000111

110011011...

At this step of REP, have we got an incompress-
ible (random) string? Once again, this is not the case.
e6 is actually produced by a pseudo-random generator
which theoretically, can be reduced to its seed! Thus,
e5 is compressible in principle. However, it should
be admitted that this ultimate compression is almost
infeasible in practice, given the available range of com-
pression tools.

This basic example highlights how three impor-
tant regularities14 can hide behind the rather complex
appearance of e1,t , and how these structures can be
revealed by a mere deterministic procedure.

In the next sections, with the help of classical
compression algorithms15, we show how REP can
be implemented on both simulated (c.f. Section 3)
and real-world financial time series (c.f. Section 3).

13e1 requires 56 decimal digits for the first 14 prices, whereas e2
only needs 30. Of course, we have to store “1000” somewhere in e2
to keep a trace of the first price. Measured in base 2, the length of
e1 turns from 4× 56 = 224 bits into 4× 30 = 120 bits, since each
decimal digit ranging from 0 to 9, is coded with at least 4 bits.

14(i) Concentrated price values, (ii) particular structure in the
binary digits and (iii) pseudo-random generator.

15We will use algorithms named Huffman, RLE and Paq8o8
which are presented in Annexe C.
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In particular, we highlight that REP can be used to
discover regularities actually undetectable by most sta-
tistical tests.

2. A methodological point

The punch-line of this paper is to show how lossless
compression algorithms can be used to measure the
randomness level of a numeric string. This requires a
series of special transformations. Initial data must go
through two consecutive operations: discretization and
REP.

To concentrate on the relation between compression
and regularity, in the last section, we show with a con-
crete example how REP can reveal structures in integer
strings. However, to apply this latter procedure to real-
world data, a discretization is necessary since financial
returns are often considered to be Real numbers, while
computer tools only work with discrete ones.

One can therefore query the effect of such dis-
cretization on financial series’ randomness. To answer
this question, we introduce the principle of lossless
discretization.

2.1. The lossless discretization principle

In this section, we propose a generic methodology
to estimate Kolmogorov complexity of a logarithmic
price series16 , as what one can observe in real-
world financial markets. As mentioned in Section 1.2,
a first “compression” consists of transforming the
logarithmic price sequence into returns. This opera-
tion, familiar to financial researchers, actually delivers
unnecessarily precise data: for example, no one would
be interested by the 18th decimal place of a finan-
cial return. Thus, without sensitive information loss,
one can transform real number series into integer ones
by associating to each integer a certain range of real
returns.

We also posit that integers used for discretization
belong to a subset of N whose length is arbitrarily fixed
to be powers of 2. The total number of integers should
be powers of 2, since this allows to re-code the dis-
cretization result in base 2 without bias17. Once written

16The reason why we use logarithmic price (pt) here is that
returns (rt) in finance are usually defined as continuously com-
pounded returns, i.e. rt = ln(pt)− ln(pt−1)

17Integer subsets fixed like this could be, for example, from 0 to
255 or from −128 to +127.

in binary base, financial returns become a sequence
consisting of 0 and 1, which is perfectly suitable for
compression tools.

After presenting the main idea of discretization,
three points must be discussed concerning this latter
procedure:

1. Why not compress real returns in base 10
directly?
Had price variations been coded in base 10 and
directly written in a text file for compression, each
decimal digit in the sequence would have occu-
pied 8 bits (one byte) systematically. As decimal
digits vary from 0 to 9 by definition, coding them
with 8 bits would cause a suboptimal occupation
of stocking space: only 10 different bytes would
be used among the 28 = 256 possibilities.18

Thus, even on random strings, spurious com-
pressions would be observed because of the
suboptimal coding.19 Obviously, this kind of
compression is of no interest in financial series
studies, and the binary coding system is necessary
to introduce Kolmogorov complexity in finance.

2. Is there any information loss when transforming
real-number innovations into integers? Obvi-
ously, on attaching the same integer, for instance
“134”, to two close variations (such as “1,25%”
and “1,26%”), we reduce the precision of the ini-
tial data.
However, as mentioned above, the range of inte-
gers used in the discretization process can be
chosen from [0, 255], [0, 511], · · · , [0, 2n − 1]
to obtain the “right” precision level: neither illu-
sorily precise nor grossly inaccurate.
This principle is shared by numerical photogra-
phy: on choosing the right granularity of a picture,
we stock relevant information and ignore some
insignificant details or variations.
Following this principle, to preserve the fourth
decimal place of each return, one needs to use
integers ranging from 0 to 8192.

3. If each return is coded with one single byte20, dis-
cretized financial series can be transformed into
ASCII characters. Lossless compression algo-
rithms such as Huffman, RLE and PAQ8o8 can

18Each byte can represent 28 = 256 different combinations of 1
and 0. Thus, we can potentially get 256 different byes in a text file.

19Low (used-bytes) / (possible-bytes) rate.
20This implies that Real-number returns are discretized with

integers ranging from 0 to 255.

ASCII
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be used to search patterns in the corresponding
text files.

2.2. REP: an incremental procedure for pattern
detection

As shown in Section 1.1, a generic methodology
to capture financial dynamics requires to identify the
underlying random process structuring εt (for example,
i.i.d. Gaussian random innovations).

On introducing Kolmogorov complexity in finance,
we want to consider whether it is possible or not to
find, besides the well-documented stylized facts, other
structures more subtly hidden in financial returns. In
other terms, we try to find new and fainter regularities
at the presence of more apparent ones.

If one uses compression methods on return series
directly, algorithms would only catch the “main struc-
tures” in the data, and could potentially overlook
weaker (but existing) patterns.

To expose these latters, we suggest an iterative
process that, step by step, erases the most evident
structures from the data. Resulting series are subject
to compression tests for unknown structures. Due to
this process, even if financial returns witness obvious
patterns such as stylized facts, compression algorithms
can always concentrate on unknown structures, since
once erased, identified patterns would no longer be
mixed with unknown structures, and any further com-
pression could be related to the presence of new
patterns.

To interpret the compression results from REP, we
distinguish 3 situations:

1. The original series, denoted by s, is reduced to a
perfectly determinist procedure that can be actu-
ally detected by compression tools. In this case,
s is a regular series.

2. s is reduced to an incompressible “heart”. In this
case, s is a random string.

3. s has a determinist kernel, but this latter is
too complexe to be exploited by compres-
sion tools in practice. In this case, s should
be considered as random. For example, it is
the case with normal series generated by a
programming language like “R”21. REP’s first
step is to erase the distribution law and to
deliver a sequence produced by the program-
ming language’s pseudo-random generator. This

21R Development Core Team (2005)

generator, which is a perfectly determinist algo-
rithm, is a theoretically detectable and erasable
structure. Nevertheless, to our knowledge, no
compression algorithm explores this kind of
structures. So, in practice, a binary series drawn
from an uniform law in “R” is considered as “per-
fectly random”, though this is not the case from
a theoretical point of view.

Actually, given a finite time series, it is just impos-
sible to attest wether it is a regular or random one with
certainty. At least two arguments support this point:

1. As statistical conjectures are based on samples
instead of populations, Kolmogorov complexity
is estimated with finite strings. Thus, none can
tell in a certain way if a finite string is a part of
a random one.

2. The function attaching to s the true value of
its Kolmogorov complexity cannot be calculated
with a computer. In other terms, except in some
very seldom case, one can never be sure if a given
program P is the shortest expression of s.

So, compression tools only estimate Kolmogorov
complexity, none of them should be considered as an
ultimate solution that will detect all possible regular-
ities in a finite sequence. This conclusion is closely
related to the Gödel undecidability.

In this sense, compression algorithms share the same
shortfall with statistical tests: both approaches are
inept to deliver certain statements. Nevertheless, as
statistical tests are making undeniable contributions to
financial studies, compression algorithms can also be
a powerful tool for pattern detection in return series.

To illustrate this point, we will compare algorithmic
and statistical methods in the next section with regard
to structure detection in numeric series.

3. Non-equivalence between algorithmic and
statistical methods

In this section, we illustrate with stimulated data
how compression algorithms can be used to search
regular structures. Statistical and algorithmic tools are
compared in these illustrations to show how some pat-
terns can be overlooked by standard statistical tests but
identified by compression tools.

To be more precise, with simulated data we will
show:
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Table 1

Unit root test for simulated returns

Test Val. statistical order p-value

ADF −32.7479∗∗∗ 31 0.01
PP −178.52949∗∗∗ 16 0.01

H0: the simulated series has a unit root.

Table 2

Autocorrelation tests for simulated returns

Series χ− square deg. lib. p-value

baseline 0.1838 1 0.668
36.9157 36 0.4264

H0: the simulated series is i.i.d..

Table 3

BDS test for simulated returns, m = {2, 3}
ε 0.5012 1.002 1.5035 2.0047

m = 2 –0.2082 –0.2987 –0.5232 –0.7221
p-value 0.8351 0.7651 0.6009 0.4702
m = 3 0.8351 0.7651 0.6009 0.4702
p-value 0.9503 0.9803 0.9344 0.8600

H0: the simulated series is i.i.d..

1. how statistical and algorithmic methods perform
on random strings,

2. how some statistically invisible structures can be
detected by algorithmic tools,

3. and that compression tests have practical limits
also.

3.1. Illustration 1: Incompressible randomness

In this section, we simulate a series of 32000
i.i.d.N(0, 1) returns with the statistical language “R”,
and examine the simulated data with statistical tests
and compression algorithms respectively. We show
that compression algorithms cannot compress random
strings, and sometimes they even increase the length
of the initial data.

The simulated series is quite similar to “consecu-
tive financial returns” and can be used to generate an
artificial “price sequence”. Figure 2 gives a general
description of the data.

Statistical tests do not detect any specific structure
in the normally distributed series, as we can witness in
Tables 1, 2 and 3.

To check the performance of the algorithmic
approach, we implement compression tools on the sim-
ulated data. As explained in the last section, before

using compression algorithms, we should firstly trans-
form the simulated real-number returns into integers
(discretization). In other terms, we must associate
to each return an integer ranging from 0 to 255,
with “0” and “255” corresponding to the lower and
upper bounds of the simulated data respectively. Here,
instead of a “one to one” correspondence, each integer
from 0 to 255 must represent a range of real num-
bers. The size of the interval associated to each integer
(denoted by e) is fixed as follows:

e = (M −m)/256 (5)

where M and m represent the upper and lower bounds
of the simulated returns.

Provided the value of e, we can divide the whole
range [m, M] into 256 intervals, and associate, to each
return (denoted by x), an integer k satisfying:

x ∈ [m+ (k − 1)× e, m+ k × e[ (6)

In other terms, after sorting the 256 “e-sized” inter-
vals in ascending order, k is the rank of the one
containing x. As k varies from 0 to 255, it should be
coded with 8 bits, since 28 = 256. Here, by dividing
the real set [m, M] into 256 identical subsets, we will
obtain a series of regular bounds on X-axis under the
standard normal distribution curve, as represented by
Fig. 3(a).

Using this discretization method, we obtain nor-
mally distributed integers: values close to 128 are much
more frequent than those close to 0 or 255. An efficient
compression algorithm will detect this regularity and
compress the discretized data.

However, this normal-law-based compression is of
little interest for financial return analysis. According
to REP, the normal distribution should be erased from
the simulated data in order to expose more sequential
structures.

To do this, we propose a second discretization pro-
cess that will deliver uniformly distributed integers,
instead of normally distributed ones.

In this second process, the main idea stays the same:
real number returns can be discretized in dividing the
whole interval [m, M] into 256 subsets22, and then
in associating to each return x the rank of the subset
containing x.

22Here, one can choose a power of 2 large enough to preserve all
necessary information in the initial sequence. This is possible since
the initial data have a limited precision.
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Fig. 2. Return series simulated from the standard normal distribution and the price motion corresponding to the simulated returns. Top-left:
histogram of simulated returns. Middle: price sequence generated from simulated returns, with an initial price of 100. Bottom: time series plot
of simulated returns.

Fig. 3. Data discretization: how to place bounds?

However, this time, instead of getting equal-size
subsets, we will fix the separating bounds in such a
way that probability surface of the normal distribution
would be divided into equal parts (c.f. Fig. 3(b)). To
be more precise, we want to define 257 real-number
bounds, denoted by flag(0), flag(2), ..., flag(256), to
make sure that each value draw from N(0, 1) has
the same probability (1/256) to fall in each interval
[flag(i), flag(i+ 1)]. Subsets defined like this don’t
have the same size: as illustrated in Fig. 3(b), the more
a subset is close to zero, the smaller it becomes.

The discretization process described in Fig. 3(b) is
implemented to simulated returns. Discretized returns
are presented in Fig 9. The ith point in this figure rep-
resents the integer associated to the ith return. One can
notice that the plot of the discretized returns is rela-

tively homogeneous without any particularly dense or
sparse area (see Figure in appendix D).23 This rapid
visual examination confirms the uniform distribution
of discretized returns.

When lossless compression algorithms are used on
the ascii text obtained from the uniformly discretized
returns (c.f. Fig. 10 in appendix D), these algorithmic
tools turn out to be inefficient (c.f. Table 4).

This example clearly shows that normally dis-
tributed returns can be transformed into an uniformly
distributed integer string whose length is entirely
irreducible by lossless compression tools. We can con-
jecture from this experiment, that the initial series has
a Kolmogorov complexity close to its length.

23It will be shown that the plot of discretized returns is not always
as homogeny as this, especially when the initial data are not i.i.d..

ascii
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Table 4

Compression tests

Algorithm file size compression rate

32000 0%
Huffman 32502 –1.57%
Gzip 32073 –0.23%
PAQ8o8 32118 –0.37%

Interpretation: discretized returns seem to be incompressible.

With data simulated from the standard normal law,
we show that statistical and algorithmic methods
deliver the same conclusion on random strings.

In a further comparison between the 2 approaches,
we will “hide” some structures in an uniformly dis-
tributed sequence, and show that the hidden regularity
is detectable by compression algorithms but not by
statistical tests.

3.2. Illustration 2: Statistically undetectable
structures and compression algorithms

In this section, we make a further comparison
between statistical and algorithmic methods with simu-
lated series. More precisely, instead of random strings,
we generate structured data to check the power of these
two methods in pattern detection.

A return series can carry many types of structures.
Some of them are easily detectable by standard sta-
tistical tests (for example, auto-regressive process or
conditional variance process). However, to distinguish
compression algorithms from statistical tests, this kind
of regularities will not be the best choice. Here, we want
to build statistically undetectable regularities that can
be revealed by compression tools.

In this purpose, the return series is simulated as
follows:

1. Draw 32000 integers from the uniform distrib-
uton unif {0, 255}24, and denote by text the
sequence containing these integers. text is then
submitted to several transformations to “hide”
statistically undetectable regularities behind its
random appearance.

Let text′ denote the biased series which should
be distinguished from the uniformly distributed
one, text.

text′ is obtained from text by changing the last
digit (resp. last 3 digits) of the binary expression
of each integer in text.

24unif {0, 255} denotes a discret uniform distribution on the inte-
gers 0,1,2,· · · , 255.

To be more precise, in case 1, text′ exhibits an
alternation between 0 and 1 on the last digit of
each term. In case 2, elements from text′ repeat
the cycle 000, 001, 010, 011, 100, 101, 110, 111
on the last 3 digits.

For example, in coding each integer in text′
with 8 bits, we could get, in case 1, a sequence as
follows:

{00000001, 000110110, 11101001,

100001110, 10000111, ...}
This regularity is actually a “parity alternation”,
since binary numbers ended by 1 (resp. 0) are
always odd (resp. even).

In case 2, we could get a sequence like:

{01010000, 11101001, 01101010,

01101011, ..., 11100111, 00011000}
2. The biased integer sequence text′ is what we want

to obtain after the discretization of real number
returns. So, the second step of our simulation
process is to transform text′ into return series.

In other terms, we should associate to each
integer in text′ a real number return. This associa-
tion is based on the separating bounds calculated
in the last section (c.f. flag(0), flag(2), · · · ,
flag(256) described in paragraph 1). To each
integer in text′, denoted by text′[i], we attach a
real number that is independently drawn from the
uniform law unif {flag(text′[i]), flag(text′[i]+
1)}, Let chron denote the return series obtained
from this transformation.

By construction, chron has two properties:
(a) globally, its terms follow a normal law;
(b) if we discretize chron with the process

described in paragraph 3.1, the resulted
integer sequence will be exactly text′.

So, by construction, chron is a normally distributed
series that will exhibit patterns after discretization. Are
these structures detectable by both statistical and algo-
rithmic methods? Or only one of these approaches can
reveal the hidden regularities? That’s what we want to
see with the following tests.

Simulated returns are plotted in Fig. 4, with Fig. 4(a)
corresponding to case 1, and Fig. 4(b) to case 2.

As shown in Tables 5, 6 and 7, statistical tests detect
no structure in chron.
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Fig. 4. Simulated returns with two important structures. On the top of each figure, we plotted the pseudo price series obtained from chron with
an initial price of 100. At the bottom, we plotted the simulated return series chron.

Table 5

Unit root tests for chron

case 1 case 2

Test Val. statistic order p-value

ADF −31.5598∗∗∗ 31 0.01 −31.2825∗∗∗ 31 0.01
PP −178.797∗∗∗ 16 0.01 −179.9449∗∗∗ 16 0.01

H0: chron has a unit root.

Table 6

Autocorrelation tests for chron

case1 case2

χ− square deg. lib. p-value χ− square- deg. lib. p-value

0.0096 1 0.9219 1.1169 1 0.2906
29.6655 36 0.7629 45.4802 36 0.1337

H0: chron is not autocorrelated.

After statistical tests, the REP is applied to chron.
From a theoretical point of view, regularity hidden in
case 1 implies a compression rate of 12.5%. This rate
is calculated as follows: each integer in the discretized
chron (which is actually text′) is coded with 8 bits,
while only 7 of them are necessary. Actually, given the
“parity alternation”, the last digit of each byte in text′
is determinist. In other terms, we can save 1 bit on

Table 8

Compression tests

case 1 case 2

Algorithm file size compression file size compression
rate size

32000 0% 32000 0%
Huffman 31235 2.39% 23079 27.88%
Gzip 31322 2.12% 23160 27.63%
PAQ8o8 28296 11.58% 20974 34.46%

Interpretation in case 1 : text′ is compressible. Interpretation in case
2 : text′ is compressible.

every byte. Whence the theoretical compression rate
1/8 = 12.5%. Following the same principle, we can
calculate the theoretical compression rate in case 2:
3/8 = 37.5%.

Table 8 presents compression results in the 2 cases.
Notice that realized compression rates are close to the-
oretical ones, but they never attain their exact value.
Among the three algorithms in use, Paq8o8 offers the
best estimator of theoretical rates.

In this illustration, we show that the algorithmic
approach, essentially based on Kolmogorov complex-
ity, can sometimes identify statistically-undetectable
structures in simulated data.

Table 7

BDS tests for chron, m = {2, 3}
case 1 case 2

ε 0.5006 1.0012 1.5019 2.0025 ε 0.4988 0.9976 1.4964 1.9952

m = 2 0.1121 0.1790 0.3377 0.4318 m = 2 0.1886 0.1186 0.0627 0.1207
p-value 0.9108 0.8579 0.7356 0.6659 p-value 0.8504 0.9056 0.9500 0.9039
m = 3 0.1329 0.2233 0.3578 0.4662 m = 3 -0.0974 –0.0617 0.0336 0.2153
p-value 0.8943 0.8233 0.7205 0.6411 p-value 0.9224 0.9508 0.9732 0.8295

H0: chron is i.i.d.
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However, as mentioned in the theoretical part, the
ultimate algorithm calculating the true Kolmogorov
complexity for all binary strings does not exist. Com-
pression tools also have practical limits. In other terms,
certain structures are undetectable by available com-
pression tools. We show this point in the next section.

3.3. Practical limits of the algorithmic method:
decimal digits of π

Besides the Euler numbers and the Fibonacci num-
bers, π is perhaps one of the most studied mathematic
numbers. There are many methods to calculate π. The
following two equations both deliver a big number of
its decimal digits:

� Leibnitz-Madavar’s formula,

π = 4×
∞∑

n=0

(−1)n

2n+ 1
(7)

� And the second formula :

π =
√

6× (1+ 1

22 +
1

32 +
1

42 + ...+ 1

n2 )

(8)

π can be transformed into a return series in 3 steps:

1. Each decimal digit of π is coded in base 2 with
4 bits. For example, the first 4 decimals (c.f.
1, 4, 1, 5) become 0001, 0100, 0001, 0101. Fol-
lowing this principle, the first 50000 decimals of
π correspond to 200000 bits of binary informa-
tion.

2. The 200000-digit binary string obtained from the
first step is then re-organized in bytes. For exam-
ple, the first 4 decimals make two successive
bytes: 00010100, 00010101. Each byte corre-
sponds to a integer ranging from 0 and 255.
Here, the first two bytes of π become 20 and
21. Denote by π′ the integer sequence after this
re-organization.

3. Finally, we associate a real-number return to each
integer in π′. To do this, we follow the same prin-
ciple as in the last section: to each term of π′,
denoted by π′t (t ∈ [1, 25000]), we associate a
real number that is independently drawn from the
uniform distribution unif {flag(π′t), flag(π′t +
1)}. Where flag(i) (i ∈ [0, 256]) means the ith

separating bound obtained from the uniform dis-
cretization of the normally distributed return

Table 9

Compression test: π

case 1

Algorithm file size compression rate

12500 100%
Huffman 12955 –3.64%
Gzip 12566 –0.528%
PAQ8o8 12587 –0.70%

Interpretation: We can’t compress the π based return series.

Table 10

Unit root test for the series constructed by π

Test Val. statistical order p-value

ADF −23.3799∗∗∗ 23 0.01
PP −110.1364∗∗∗ 13 0.01

H0: the π based series has a unit root.

Table 11

Autocorrelation tests

χ− square deg. lib. p-value

2.7339 1 0.09824

H0: the π based series is not autocorrelated.

series in Section 3.1. After this step, we get a
pseudo return series plotted in Fig. 5.

As exposed in Table 9, π-based return series is
incompressible after discretization, since to our knowl-
edge, no compression algorithm exploits decimals
of π.

The π-based simulation is another example that
shows the possibility to hide patterns behind a random
appearance. It also witnesses that some theoretically
compressible structures may be overlooked by avail-
able compression tools. These structures are perfectly
compressible in theory, but not in practice yet.

To check the performance of statistical tools on dec-
imals of π, we conducted the same tests as in the
preceding illustrations. We notice in Tables 10, 11 and
12, that statistical tests do nothing better than compres-
sion tools: none of them can reject H0 which implies
the absence of regularity.

In this section, simulated data are used to illus-
trate the performance of compression tools in pattern
detection. Two main results are supported by these
illustrations: (1) Some statistically undetectable pat-
terns can be traced by compression tools. (2) Certain
structures stay undetectable by currently available
compression tools.
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Fig. 5. Pseudo financial time series generated from decimals of π.

Table 12

BDS test for the π based series, m = {2, 3}
ε 0.5023 1.0046 1.5069 2.0092

m = 2 –0.0895 0.0468 0.0395 0.0129
p-value 0.9287 0.9627 0.9685 0.9897
m = 3 –0.4005 –0.1755 –0.2780 –0.3208
p-value 0.6888 0.8607 0.7810 0.7483

H0: the π based series is i.i.d.

In the next section, we test the algorithmic approach
with real-world financial return series.

4. Kolmogorov complexity of real-world
financial data: the case of Dow Jones
industrial index

In this section, we estimate the Kolmogorov com-
plexity of real-world financial returns with lossless
compression algorithms. To do this, we use the log-
arithmic difference of Dow Jones daily closing prices
observed from 01/02/1928 to 30/08/2010. Data used in
this study are extracted from Datastream. Our sample
containing 27423 observations is plotted in Fig. 6.

Following the REP, we uniformly discretize the real-
number returns to prepare them for compression tests.

While separating bounds that are used to discretize
simulated data in the preceding sections all come from
the standard normal law, real-world returns cannot be

tackled in the same way, since it is well known that
financial returns are not normally distributed. Actu-
ally, there is no consensus on the way financial returns
are distributed in the financial literature. Therefore, to
discretize Dow Jones daily returns, separating bounds
(flag(i)) should be estimated from their empirical
distribution.

Such an estimation can be realized in 3 steps:

1. sort the whole return series in ascending order,
2. divide the ascending sequence into 256 equally-

sized subsets,
3. each return is represented by the rank of the subset

containing it.

The advantage to estimate flag(i) with this 3-step
approach is that one can discretize a sample without
making any hypothesis on the distribution law of the
population.

Figure 7 is a plot of discretized Dow Jones daily
returns.

One can notice in this figure that the uniform dis-
cretization fails to deliver a perfectly homogeneous
image as in the case of normally distributed returns.
Several areas seem to be sparser than the others. For
instance, regions exposing returns from Time 9000 to
Time 10000 and from Time 13000 to Time 20000 both
present a great difference in point density.

This statement can be explained by the volatility
clustering phenomenon, a well documented stylized
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Fig. 6. Series constructed from Dow Jones daily closing prices. Top-left: histogram of logarithmic differences. Middle: Dow Jones daily closing
prices observed from 01/02/1928 to 30/08/2010. Bottom: time series plot of the real-number returns.
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Fig. 7. Uniformly discretized Dow jones daily returns.

fact in finance. For example, from Time 9000 to Time
10000, extreme values are obviously more frequent
than those close to 0.

This eye-detectable structure is confirmed by com-
pression tests. As we can witness in Table 13, algorithm
PAQ8o8 obtains a 0.82% compression rate on the uni-
formly discretized series.

This compression rate appearing extremely weak,
its robustness may appear doubtful. To test its sig-
nificance, we simulate 100 integer sequences from an
i.i.d.unif (0, 255) process, with each of them contain-
ing 27423 observations as the Dow Jones daily return
series (thereafter DJ). These simulated sequences are
tested by compression tools. PAQ8o8 delivers no
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Table 13

Compression tests on discretized DJ

Algorithm file size compression rate

27423 100%
Huffman 27456 –0.12%
Gzip 27489 –0.24%
PAQ8o8 27198 0.82%

Interpretation: Discretized Dow Jones is compressible by PAQ8o8.

positive compression rate on none of the simulated
series.

This result confirms the theoretical relation between
regularity and compressibility: despite its weak level,
the compression rate got from discretized DJ indicates
the presence of volatility clusters in the data.

To advance another step in the REP and verify
wether or not daily DJ returns contain other patterns
than the witnessed stylized facts, we should remove
the “volatility clustering” phenomenon with the help
of reversible transformations.

In fact, in the uniform discretization process
described above, each integer represents the same
range of real returns. That is why highly (resp. lowly)
volatile periods are marked by an over-presence (resp.
a sub-presence) of extreme values in Fig. 7. To remove
“volatility clusters” is to modify these heteronomous
areas and to ensure that each part of Fig. 7 has the same
point density.

The solution we propose here is to discretize DJ
in a progressive way. To be more precise, instead of
discretizing the entire series at once, we treat it block
by block with an iterative procedure.

Denote by St the Dow Jones daily return series, the
following 3-step procedure can erase clustering volatil-
ities in St :

• To start up, a 512-return sliding window is placed
at the beginning of St . Returns in the window
(i.e. the first 512 ones) are transformed into
integers with the above-described unform dis-
cretization procedure. The integer associated to
S512 is be stocked as the first term of the dis-
cretized sequence.
• The sliding window moves one step to the right,

returns in the window are discretized again, and
the integer corresponding to S513 is stocked as the
second term of the discretized sequence.
• Repeat the second step until the last return of

St . The integer sequence obtained from this pro-
cedure doesn’t reveal any volatility cluster. A
comparison between Figures 8 and 7 illustrates
this progressive procedure’s impact.

How this iterative process erases volatility clusters?
The main idea is to code each return in DJ with those
appearing in its close proximity. In the above example,
the sliding window’s length is fixed to 512, this implies
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Fig. 8. DJ after the progressive discretization.
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Fig. 9. Uniformly discretized returns in Section 3.1.

Fig. 10. Discretized returns expressed in ascii code.

that each return’s discretization only depends on the
511 preceding terms.

Therefore, each integer in the discretized sequence,
for example 255, can represent a 10% rise during
highly volatile periods as well as a 3% up during less
volatile ones. Due to the progressive discretization,
extreme values in volatile periods are “pulled” back
to zero, and returns during less volatile periods will be
“pushed” to extreme values.

Were the non-uniform distribution and volatility
clusters the only regularities in DJ, the progressively
discretized sequence (i.e. st) would be incompress-
ible by algorithmic tools. Positive compression rates
obtained on st would indicate the presence of unknown
structures.

Table 14

Compression test: DJ after progressive discretization

Algorithm file size compression rate

27039 100%
Huffman 27075 –0.12%
Gzip 27105 –0.24%
PAQ8o8 26913 0.27%

Interpretation: Even after the progressive discretization process, DJ
remains compressible by PAQ8o8.

To check this, compression tests are conducted on
st . Results are presented in Table 14:

We notice in this table that even after the progres-
sive discretization process, DJ remains compressible
by PAQ8o8. This result could indicate the presence



176 O. Brandouy et al. / Estimating the algorithmic complexity of stock markets

of unknown structures in financial returns. To better
understand these structures, further research is neces-
sary to identify their nature and tell how to remove
them from st and advance once again in the REP.

However, as we can witness in Table 14, com-
pression rate based on these unknown structures is
extremely weak (c.f. 0.27%). This indicates a high
similitude between st and a random string. In other
terms, although not completely random, once styl-
ized facts erased, Dow Jones daily returns have an
extremely high Kolmogorov complexity.

In a certain degree, this result supports the EMH
like most statistical works in finance (see for eg. Lo &
Lee (2006)). Once unprofitable stylized facts are erased
from DJ, the latter series is quite similar to a random
string. The high Kolmogorov complexity observed in
our study indicates to which extent it is difficult to find
a practical trading rule that is outperforming the market
in the long run.

5. Conclusion

In this paper, we propose a generic methodology
to estimate the Kolmogorov complexity of financial
returns. With this approach, the weak-form efficiency
assumption proposed by Fama (1970) can be studied
by compression tools.

We give examples with simulated data that illus-
trate the advantages of our algorithmic method : among
others, some regularities that cannot be detected with
statistical methods can be revealed by compression
tools.

Applying compression algorithms to daily returns
of the Dow Jones Industrial Average, we conclude
on an extremely high Kolmogorov complexity and
by doing so, we propose another empirical observa-
tion supporting the impossibility to outperform the
market.

A limit of our methodology lies in the fact that cur-
rently available lossless compression tools, initially
developed for text files, are obviously not particularly
designed for financial data. They could consequently
be restricted in their use for detecting patterns in
financial motions. Future researches could therefore
develop finance-oriented compression tools to estab-
lish a more direct link between a compression rate
delivered from a return series and the possibility to use
any possible hidden pattern to outperform a simple buy
and hold strategy.

Another important point to be stressed in this paper
lies in the fact that our methodology proposes an iter-
ative process which will improve, step by step, our
comprehension on the “stratified” structure of financial
price motions (i.e. layers of mixed structures).

As illustrated in the empirical part of this research,
even after removing some of the more evident stylized
facts from real-world data, compression rates obtained
from the Dow Jones daily returns seem to indicate the
presence of unknown structures. Although these pat-
terns could be difficult to exploit by strategy designers,
at least from a theoretical point of view, it is challenging
to understand the nature of these unknown structures.
The next step could then consist in removing them from
the initial data, if possible, and go one step further in
the iterative process seeking at identifying new regu-
larities. The ultimate goal of this process, even if it is
probably a vast and perhaps quixotic project, could be
to obtain an incompressible series, and, so to speak,
to reveal layer after layer, the whole complexity of
financial price motions.

A) Proportion of n-digit random strings

In base 2, each digit can be either 0 or 1. So, there
are at most 2 different 1-digit binary strings. And more
generally, at most 2i i-digit binary strings. So, there are
less than

2+ ...+ 2h−1 = 2h − 2

different binary strings that are strictly shorter than h.
Then, the proportion of the binary strings, whose

length can be reduced by more than k digits, cannot
exceed

(2n−k − 2)/2n < 1/2k.

With k = 10, at most 1/210 = 1/1024 of all n-digit
binary strings can be compressed by more than 10 dig-
its. With k = 20, this latter proportion cannot exceed
1/1048576.

B) A generating program of the
Champernowne’s constant

In this appendix, we present the programm - writ-
ten in “R”25- that generates digits of Champernowne’s
constant.

25http://www.r-project.org/

http://www.r-project.org/
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This programm delivers the first 123631 digits of
Champernowne’s number, while it is written with
132× 8 = 1056 digits. In other terms, this programm
realizes a 99.145% compression rate.

C) Lossless compression algorithms

Although the intrinsic value of Kolmogrov com-
plexity remains stable to programming technics, the
presence of the constant “c” in the invariance theorem
(see page 5) can modify the compression rate one can
obtain on a finite string. Thus, our choice of compres-
sion tools should be as large as possible to estimate the
shortest expression of a given financial series.

From a technical point of view, there are 2 categories
of lossless compression algorithms:

1. Entropy coding algorithms reduce file size on
exploiting the statistical frequency of each sym-
bol. Two technics are often used in this purpose:
• Huffman coding: one of the most traditional

text compression algorithms. According to
this approach, the more frequent is a given
symbol, the shorter will be its correspond-
ing code in the compressed file. Following
this principle, Huffman coding is particularly
powerful on highly repetitive texts.

• Dictionary coding: another statistical com-
pression technic used by a big family of recent
tools, such as Gzip, LZ77/78, LZW. This
approach consists to construct a one-to-one
correspondence between words in the initial
text and their code in the compressed file, a
so-called “dictionary”.
Then, according to the dictionary, each word
is “translated” into a short expression. A pos-
itive compression rate can be observed if all
words in the initial text don’t have the same
appearance frequency. Compared to Huffman
coding algorithms, dictionary used in this
approach can be modified during the compres-
sion procedure. Therefore, dictionary coding

algorithms exploit local properties with more
efficiency.

2. Context-based predicting algorithms compress
data by forecasting future terms with historical
observations. With the development of artificial
intelligence, this context-based approach become
more and more performant on self-dependent
data. A big number of technics can be used for
data prediction, such as Prediction by Partial
Marching (PPM), Dynamic Markov compression
(DMC).

PAQ26 is one of the most remarkable family
of context-based compression algorithms. These
algorithms are reputed by their exceptional com-
pression rates. On choosing the PAQ version, one
can attach more or less importance to the speed
of a compression procedure.

PAQ8o8 is a recent version of PAQ which max-
imizes the compression rate at the expense of
speed and memory. It’s a predicting algorithm
which, on analyzing the first t digits of a finite
string, predicts the appearance probability of each
possible symbol at the next digit. The (n+ 1)th
digit is coded according to these conditional prob-
abilities.

In this paper, we tested the performance of the
3 above-cited compression technics on simulated
data as well as on Dow Jones daily returns, and
reported the best compression rate obtained by
each category of tools. PAQ8o8 delivers by far the
best compression rate on all discretized series.
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