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Microstructure-based order placement in a
continuous double auction agent based model

Alexandru Mandeş∗
Justus-Liebig University of Giessen, Institute of Statistics and Econometrics, Giessen, Germany

Abstract. This contribution proposes a novel order placement strategy which can be used for simulating continuous double
auction financial markets, within an agent-based model framework. The order placement decision is given by an optimization
problem which minimizes the risk adjusted execution cost, taking into consideration relevant market microstructure factors and
intrinsic agent characteristics. This order submission process is more realistic than has been done previously and contributes
to a higher fidelity of the intraday market dynamics. The results show that, as opposed to random submission strategies, high-
frequency stylized facts such as the concave shape of the market price impact function and the power-law decaying relative price
distribution of off-spread limit orders are replicated. Therefore, the resulting model can be used as a realistic test environment
for high-frequency trading strategies, in the context of the current, heated debate over the impact of high-frequency trading.
Not only the impact of individual trading strategies can be analyzed, but also the interdependencies and the global emergent
behavior of multiple coexistent strategies. Moreover, innovative regulatory policies, which have not been tested yet under real
market conditions, could be inspected.
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1. Introduction

In the USA and Europe the market share of orders
generated by high-frequency trading (HFT) ranges
from 30 to 60%1. Even if accurate estimates are rather
difficult to be obtained, it can be concluded that nowa-
days financial markets are complex systems where
human and computer-based strategies interact. In the
media, market automation has been broadly criticized
for generating excess volatility, as well as several liq-
uidity crashes. On the opposite, practitioners and stock
exchanges argue that HFT contributes to increased
liquidity and to the reduction of trading costs%2.

∗Corresponding author: Alexandru Mandeş, Justus-Liebig Uni-
versity of Giessen Institute of Statistics and Econometrics Licher Str.
64, 35394 Giessen, Germany. Tel.: +49 641 9922641; Fax: +49 641
9922649; E-mail: alexandru.mandes@wirtschaft.uni-giessen.de.

1“High Frequency Trading – What Is It & Should I Be Worried?”,
Larry Tabb, World Federation of Exchanges, 2009.

Previous empirical studies show that, on one side,
the general market quality has been improved, but on
the other side there is a greater risk of periodic illiquid-
ity (e.g., Foresight: The Future of Computer Trading
in Financial Markets (2012)). However, these studies
also draw attention on the significant challenges in the
empirical evaluation of HFT due to a lack of proper data
identification (Friederich and Payne (2011)), as well
as due to endogeneity issues since HFT growth has
coincided with the 2008–2009 market turmoil (Bro-
gaard (2010)). E.g., the causal relation between HFT
and volatility is difficult to be evaluated using empiri-
cal methods, since it cannot be asserted whether larger
volatility is the effect of HFT or just a favorable condi-
tion which stimulates HFT activity (Brogaard (2010),

2“High-frequency trading – a discussion of relevant issues”,
London, 8 May 2013, http://www.eurexchange.com/blob/exchange-
en/455384/490346/6/data/presentation hft media workshop lon
en.pdf.
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Linton (2011)). Similarly, other questions regarding
the systemic risk of HFT remain open. E.g., Danielsson
and Zer (2012) suggest that individually stable strate-
gies are able, in theory, to interact in highly unstable
ways (“fallacy of composition”), and are concerned
that a large homongeneity of strategies could con-
tribute to an increase of the systemic risk. Farmer
and Skouras (2011) and Sornette and Von Der Becke
(2011) question to what extent does HFT contribute
to increasing non-linearities and reinforcing feedback
loops, modifying the chaotic properties of the financial
system. Moreover, with respect to policy making, the
full impact of novel regulatory options and alternative
trading mechanisms still needs to be better understood,
in order to prevent any unexpected and detrimental
effects.

A viable alternative for testing the various hypoth-
esis regarding the impact of HFT, as well as the
potential effect of policy regulations, is to build an arti-
ficial stock market by means of agent based modeling
(ABM), which can be used as a computer labora-
tory. E.g., relying on such a simulation framework,
Chiarella et al. (2009) have shown that order book
gaps play an important role in reproducing the fat tails
of the returns distribution. Gsell (2008) has assessed
the impact of adding two different implementations
of an algorithmic trader on market statistics such as
total trading volume, trade size, VWAP and volatil-
ity. Vuorenmaa and Wang (2013) concluded that the
probability of a flash crash increases with the num-
ber of high-frequency market makers, the tightness
of their inventory control and the smaller tick size,
while market quality metrics such as spread and volatil-
ity depend diametrically on the previous parameters.
Similarly, Mandes (2015) investigates the impact of
electronic liquidity providers (ELPs) and finds that, in
general, ELPs have a positive contribution to the mar-
ket quality, there is no causality between ELP activity
and increased volatility, and a large homogeneity with
respect to ELP strategies can contribute to the systemic
risk. Moreover, two possible policy options regarding
minimum resting times and financial-transaction taxes
have been evaluated and it has been concluded that the
latter lowers the probability of flash crashes, but also
negatively affects the activity of ELPs and the overall
market quality.

The key to building a reliable artificial laboratory is
to be able to reflect reality as much as possible, both at
the level of the model components’ design, as well as
at the model’s output level, e.g., by replicating certain

empirically observed stylized facts. Moreover, for spe-
cific policy recommendations, the model also needs to
be quantitatively calibrated to the particular situation
at hand. The importance of designing a realistic and
robust model has also been underlined by Prof. Alan
Kirman during the WEHIA 2015 round table: “If we
wish to build a model which will be useful for study-
ing the effect of policy measures we should base it on
realistic assumptions derived from observed empirical
behavior. However, we should also make sure that sim-
ulations of that model do not depend on a very limited
set of parameter values for these assumptions. We want
a model which is robust in the sense that small modifi-
cations in the assumptions do not change radically the
nature of the results.”

Therefore, in order to assess the impact of HFT, first
of all, the microstructure environment within which
high-frequency traders operate has to be simulated.
This is centered around an order book trading mecha-
nism where price discovery can be seen as the outcome
of the interplay between order flow and the persistent
order book liquidity. The appropriate class of agent
based models (ABMs) requires three main building
blocks covering agent investment decision, price dis-
covery and order execution (see Fig. 1). The latter block
is not present in the early types of ABMs, which func-
tion at daily or lower frequencies and which focus more
on the behavior of individual agents rather than on
the price discovery process (e.g., Arthur et al. (1996),
Brock and Hommes (1997), Lux (1995, 1998), Lux and
Marchesi (1999, 2000), Chen and Yeh (2001, 2002),
Farmer and Joshi (2002)).

A distinct class of ABMs zooms into the intraday
world, where trading takes place within a continuous

Fig. 1. Building blocks of an ABM for intraday financial markets.
The order execution component deals with the actual implementa-
tion of the investment process, which can take the form of a market
or limit order. The current contribution proposes a microstructure-
based order execution, as opposed to stochastic placement strategies.
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double auction, and includes an additional decision
layer dealing with order execution. If the output of
the investment process is the decision to buy or sell a
specific quantity of an asset, the trading process deals
with the actual implementation of the previous deci-
sion, as detailed in Section 2. However, most intraday
ABMs implement only stochastic placement strate-
gies, ranging from pure randomness such as in Cui
and Brabazon (2012) and Daniel (2006) to adding
budget constraints such as in Chiarella et al. (2009).
The zero-intelligence approach represents the most
appealing way of circumventing a difficult problem
and, from an historical perspective, is one of the first
proposed solutions.3 However, besides their lack of
realism – after all the “promise” of ABM is to pro-
vide a sound micro-based design, these models are
confronted with several limitations. For example, Cui
and Brabazon (2012) conclude that replicating a real-
istic price impact of market orders cannot be achieved
without agent intelligence. In real markets, trade size
and timing are not random, but rather take into account
existing market liquidity – just by inspecting the depth
of the order book, a large market impact can usu-
ally be avoided when execution time allows it. If this
liquidity factor is ignored, the market impact in a sim-
ulation experiment is higher for larger orders than in
the case of real markets, such as replicated in Cui and
Brabazon (2012). Also, Weber and Rosenow (2005)
have shown, by computing a virtual price impact func-
tion, that unselective trading would lead to a convex
market impact function. We also stress the vital impor-
tance of order flow and order-book shape generated by
low-frequency agents for building more complex intra-
day market models, where other microstructure-based
strategies – such as algorithmic traders, market mak-
ers or high-frequency traders – primarily rely on these
sources of information. Thus, simplifying too much
how low-frequency agents execute their orders directly
influences the general intraday environment and affects
the behavior of high-frequency participants further on.
Moreover, low-frequency agents should be able to react
by adjusting their trading behavior when the current
market microstructure conditions change, e.g., due to
the influence of additional high-frequency traders.

This contribution addresses the issue of order place-
ment for low-tech strategies by replacing random

3Models with random agents are also useful in the context of
market institutional design assessment, such as in Farmer et al.
(2005), and can also provide a base-line benchmark for more com-
plex ABMs.

trading decisions with a liquidity and volatility-based
optimization approach. The main goal of the paper is
to build a realistic simulation environment for HFT
and, for this reason, we introduce more intelligence
in order execution, by taking into account the current
market state, as well as intrinsic agent characteris-
tics. Section 2 starts with the description of the order
placement problem. We briefly mention three model-
ing approaches present in the literature and also explain
how our model relates to them. Following, a set of
microstructure factors and their relationship to vari-
ous order properties are described. In Subsection 2.2
we present our model’s components, parameters and
assumptions in more detail. An iterative numerical
procedure for identifying the optimal relative limit
distance is presented in Subsection 2.3. Section 3
describes how the order submission model is integrated
within an agent based model framework. In Section 4
we present and discuss the experimental results bench-
marked against a zero-intelligence model with respect
to the relative price distribution of limit orders and
price impact of market orders. Finally, we present our
conclusions and further research options.

2. Order placement in a continuous double
auction

The double auction is one of the most common
mechanisms of price discovery in equity markets. Basi-
cally, participants can place their buy and sell offer as
market or limit orders. New orders are matched against
an outstanding order book formed of two queues of
limit orders – one for buy (bid) and one for sell orders
(ask) – which are ordered by price and time priority as
in Fig. 2. An incoming market order is sequentially exe-
cuted against the available limit orders on the other side
of the market, ordered by their priority, until the entire
order size is filled. On the opposite, a new limit order
which does not cross any outstanding limit orders is
stored in the order book at the specified price and waits
to be executed against future arriving market orders. A
graphical representation where some related concepts
are identified is provided in the bottom panel of Fig. 2.
Two key measures which will be extensively used in
the rest of this paper are the relative limit distance �,
i.e. the difference between the limit price and the best
quoted price on the opposite side of the market, and
the relative limit price δ, defined in Zovko and Farmer
(2002) as the difference from the best quote on the
same side.
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Bid Ask
# Size Price Price Size #

1 2521 296.98 297.30 2437 1
2 3495 296.97 297.32 260 1
3 13725 296.96 297.33 344 1
1 13613 296.95 297.34 1944 1
2 13910 296.94 297.35 1473 1
1 17613 296.93 297.36 3211 1
1 7282 296.92 297.38 8409 1
1 3168 296.91 297.39 1470 1
1 9982 296.88 297.41 1271 1
5 26620 296.87 297.48 8357 1
4 9129 296.86 297.65 15788 3
1 13938 296.85 297.66 9329 3
1 18418 296.84 297.67 17951 2
2 6759 296.83 297.69 22918 1
3 13187 296.82 297.72 8694 2
2 5414 296.81 297.73 12275 2
2 6842 296.80 297.74 15727 2
2 14650 296.79 297.75 4881 1
1 8760 296.78 297.76 127584 1
1 5212 296.77 297.77 11092 2

. . . . . . . . . . . . . . . . . .

Fig. 2. Order book in table format (top) and corresponding graphical illustration (bottom). Prices are discretized up to a minimum increment
called tick (0.01). The highest bid price (296.98) and the lowest ask price (297.30) are called best quotes and the difference between them (0.32)
is known as bid-ask spread. Moreover, the center of the spread is referred to as the midpoint or midprice (297.14). The relative limit distance �

is defined as the difference between the limit price and the best quoted price on the opposite side of the market (0.78), while the relative limit
price δ is the difference from the best quote on the same side (0.46). The two measures differ by an amount equal to the current spread.
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2.1. Order placement problem

The trading process is a trade-off between execution
cost and delay risk, and comprises two types of trad-
ing decisions: order scheduling (break-up large orders
or trade all-at-once) and order submission (type and
placement). In this paper we will tackle only the lat-
ter, which is actually the foundation for designing a
trading-driven ABM. Proper execution of individual
orders involves a set of micro-trading decisions, i.e.
the order can be articulated into a market order, a limit
order or can be split between a market order and a
limit order. In other words, the trader faces a trade-
off between execution certainty and a more favorable
transaction price. At one extreme, a market order does
not carry any execution risk, but has a higher trans-
action cost consisting in market impact. On the other
side, preferring a limit order saves the cost of imme-
diacy associated with the market order alternative and
can further improve trading costs with the relative limit
distance. The drawback is that limit orders encounter
the risk of remaining unexecuted, as they are condi-
tioned on the uncertain future event of being matched
by a counter party (for a broader introduction into trans-
action costs, market impact and timing risk, see Kissell
and Glantz (2003)).

In the microstructure literature, a large range of
factors driving traders to act more aggressively or pas-
sively have been identified, and which can be classified
into liquidity-, price- and time-based factors (for a
comprehensive review see Johnson (2010)). Firstly, the
choice in favor of a market order is found to be highly
dependent on the instant liquidity reflected by the mar-
ket tightness, i.e. the bid-ask spread, and by the order
book height, i.e. the potential price impact of a market
order walking up the book. Aggressive orders are more
probable when the cost of immediacy is low, while a
high liquidity cost due to higher spreads encourages
liquidity suppliers to place more limit orders. Beber
and Caglio (2005) found also evidence for a non-linear
relation, showing that particularly wide spreads favor
in-spread limit orders rather than market or far away
off-spread orders. Pascual and Veredas (2009) con-
cluded that wide spreads discourage especially small
market orders, increasing the frequency of larger mar-
ket orders. With respect to order size in general, Cont
and Kukanov (2012) state that market orders are usu-
ally larger than limit orders.

Another liquidity measure, i.e. order book depth,
influences the general order aggressiveness in two

ways. An overall supply-demand imbalance drives
traders to price their orders more aggressively when
their side of the book is crowded in order to increase
their order execution probability (competition effect).
Conversely, traders become less aggressive when the
opposite side is thicker, forecasting a favorable short-
term order flow (strategic effect). If only the thickness
of the opposite side of the market is taken into
consideration, both Beber and Caglio (2005) and
Pascual and Veredas (2009) identify an asymmetric
behavior – sellers are more impatient to trade than buy-
ers and thus are more willing to take advantage of the
available liquidity by issuing larger aggressive orders;
contrary, buyers show more patience and place less
aggressive orders.

Zovko and Farmer (2002) found that short-term
volatility at least partially drives the relative limit
prices and also suggest that such a feedback loop may
contribute to volatility clustering. On one side, the
probability of executing further placed limit orders
increases while, on the other side, the picking-off risk
due to adverse selection is also higher. Another price-
based factor is the momentum indicator proposed by
Beber and Caglio (2005), defined as the ratio between
the current price and its exponential moving average.
The direction of the short-term market trend asym-
metrically affects the execution probability of limit
orders and ultimately leads to a change in order pricing
aggressiveness. Moreover, higher previously traded
volumes, acting as a proxy for market information,
lead to an even bigger increase in aggressiveness in
the direction of the market trend.

Several papers have studied various order placement
strategies for limit order book markets in a stochastic
process based framework. Lillo (2007) defines an opti-
mization problem within the framework of expected
utility maximization, where the probability for a limit
order of getting executed is given by the first passage
time distribution of a random walk, i.e. the probability
that the stochastic price reaches the limit price � by
a certain time – thus, the hitting time probability is a
function of �, time horizon and volatility. Kovaleva
and Iori (2012) develop a model which discriminates
between placing a market order and a limit order. In
their model, the total time-to-fill is not only given by
the first passage time distribution which measures the
probability of reaching the beginning of the queue,
but also by a random delay – sampled from an expo-
nential distribution with constant intensity – which
stands for the order’s effective execution. By assuming
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stochastic log-normal processes for the trajectories of
the bid and ask prices, an analytical solution is iden-
tified by maximizing a mean-variance utility function.
Cont and Kukanov (2012) formulate a convex opti-
mization problem for the decision of splitting between
a market and a limit order placed at the best bid or
ask. The optimization function penalizes the execution
price with an execution risk which takes into consid-
eration factors such as order size, the existing queue
size at the front of the book and the cumulative dis-
tribution function of the queue outflow. If a functional
form for the outflow CDF is assumed, a parametric
numerical solution can be computed or, alternatively,
a non-parametric solution when the empirical distribu-
tion is based on past order fills.

2.2. Order placement model

The main difference from the previous stochastic
models is that our contributed model does not make
any assumptions about the general distributions of the
underlying price or order flow processes, but takes into
consideration only the current market microstructure
factors and intrinsic agent characteristics – the for-
mer can be easily observed within the limit order book
trading mechanism. Therefore, the proposed submis-
sion strategy, applied as an ABM component, reflects
the different facets of the current market state mak-
ing agents more reactive and the entire system more
endogenous, in the spirit of ABM where reflexivity is
a key concept. The drawback is that compact analyt-
ical solutions are not derivable anymore and, instead,
algorithmic decision rules have to be determined.

By the way we formalize the optimization problem,
with the goal of minimizing the risk adjusted execution
cost, our model is more similar to Cont and Kukanov
(2012). One distinction is that the decision is restricted
to choosing between a market and a limit order for the
entire quantity, i.e. no market-limit order split.4 On the
other side, the limit order is allowed to be placed further
away from the best quotes and thus a supplementary
decision about the optimal limit price has to be made.

Specifically, the objective function f ( M, �)
describes the trade-off between execution cost and

4A more general version of the optimization problem, including
also the market-limit order split, is presented in the Appendix. In this
case of continuous 0 ≤ m ≤ 1, where the fraction m is the share of
the original order executed as a market order, the resulting exponen-
tial equation due to (8) can only be solved by applying the Lambert
W function (omega function) or other numerical procedures.

non-execution risk, balanced by agent’s sense of
urgency λu. The sense of urgency can reflect a mix
of risk aversion, degree of informativeness, strategy
time-frame or just time pressure, i.e. waiting time of
the trading process. The decision variables are the
binary M, discriminating between a market and a limit
order, and the relative limit distance � for the limit
order case ( M = 0).

min
M,�

f ( M, �) (1)

f ( M, �) = cost( M, �) + λu (1 − M) risk(�)︸ ︷︷ ︸
adjusted risk for limit orders

(2)
The cost function cost( M, �) captures what is

known as the implementation shortfall, i.e. the dif-
ference between a given benchmark BMis and the
effective order execution price as defined in Equa-
tion (3).5 The market impact function mk.imp(V ) is
influenced by the current order book state and can be
computed as the percentage change in price where the
entire order size is executed. Actually, all measures
involved (�, BMis, mk.imp) are scaled as percentage
returns relative to a base price, which is the best bid for
sell orders or the best ask for buy orders, respectively.6

An example of how these measures are related for dif-
ferent types of buy orders is depicted in Fig. 3. Finally,
the order volume V is usually expressed as a percentage
of the average daily volume (ADV).

imp.sh( M, �) =
{

BMis + mk.imp(V ) M

BMis − � not( M)
(3)

5One of the most common benchmarks in liquid markets is the
arrival price, i.e. the current bid-ask midpoint, but also other bench-
marks, such as the last trade price or previous day close, can be
considered. In the arrival price case, the relative execution bench-
mark BMis = s/2, where s is the bid-ask spread. Thus, when the
entire quantity is executed as a market order ( M = 1), the imple-
mentation shortfall reflects exactly the price of immediacy – equal
to half the spread – plus any additional market impact.

6Because of the additivity property, log returns would have been
more precise in computing the differences between the aforemen-
tioned measures, but the derivations in Subsection 2.3 would have
become analytically intractable. Eventually, as we are dealing with
small intraday deviations, the imprecisions associated with the use
of simple percentage returns are acceptable.
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Fig. 3. Exemplifying buy order aggressiveness, relative to the base price. In case of a buy order, the base price is set to the best ask which
corresponds to � = 0. Depending on the spread size s, a limit order can be placed either inside the spread (�1 < s) and thus becoming the new
best bid, exactly at the best bid (� = s) or further away (�2 > s). If the trader decides for a market order, than the respective order is matched
sequentially against the outstanding book sell orders, based on their price-time priority, until the entire size of the original buy order is executed.
The limit price of the last ask order counterpart gives the market impact as distance from the initial best ask.

The cost function in Equation (4) wraps around
the implementation shortfall by adjusting it with a
volatility-threshold downside price change penalty in
order to discourage execution prices which are too
far away beyond σis, i.e. a multiple of the short-
term volatility σ, corresponding to highly unfavorable
executions.7 The single parameter β > 1 controls for
the weight of this penalty. The choices for this par-
ticular functional form, as well as for the following
relations between decision variables and microstruc-
ture factors, represent sensible approximations of the
reported empirical behaviors. The actual functional
forms are unknown and alternative choices could be
justified only through extensive calibration or if repre-
sentative microdata would exist.

cost( M, �) =
{
imp.sh( M, �) imp.sh(·) ≤ σis

β σis

(
imp.sh( M, �)/σis

)2
imp.sh(·) > σis

(4)

On the risk side, the execution probability of a given
limit order depends on (i) order flow proxied by the
order book imbalanceflow(OBI), (ii) short-term mar-
ket volatility dyn(�),8 and (iii) order queue in front of
the limit order queue(�). Moreover, (iv) an oppor-
tunity cost size(V ) as a penalty function of order
size is also included. The aggregate non-execution risk
function risk(�) is given by (5). The parameters α0,

7If the return expectation of the agent is known, an execution
threshold taking into consideration also this value could be imple-
mented.

8According to Johnson (2010), short-term or transient volatility
is mostly liquidity-driven, while fundamental volatility is more long-
term and caused by informational shocks.

α1, α2 tune the general preference for market and limit
orders, as well as the distribution of relative limit dis-
tances. Eventually, each individual decision will also
depend on the agent’s urgency factor λu and on the
specific state of the market.

risk(�) = flow(OBI) size(V )

(α0 + α1 dyn(�) + α2 queue(�)) (5)

A key model component is the expected order-flow
flow(OBI), which drives the short-term price returns
and affects the execution probability of outstanding
limit orders. In this implementation, order flow is more
liquidity- rather than price-based and relies on the
Order Book Imbalance indicator (OBI). OBI quan-
tifies the difference between the cumulated volumes
up to a certain depth level N on each side of the
order book. By its definition in (6), OBI takes val-
ues between −1 and 1, the extremes corresponding
to the cases when one book-side is empty. When the
order book is unfavorable leaned, OBI is positive,
flow(OBI) is larger and the ultimate non-execution
risk increases leading to a bigger incentive of plac-
ing more aggressive limit orders.9 Overall,flow(OBI)
takes values between 1/µ and µ – asymmetric around
zero – meaning that it also acts as a complementary
penalty factor when OBI is unfavorable. The constant
µ in Equation (7) weights the relative importance of
the order flow effect in assessing the aggregate non-

9Therefore, it is useful from the implementation perspective if
OBI has a different sign for buy and sell orders, as specified by the
first factor of Equation (6).
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execution risk and in setting the optimal relative limit
distance �, e.g., OBI is neutral when µ = 1.

OBI = (−1) sell

∑N
i=1 bidi − ∑N

i=1 aski

max(
∑N

i=1 bidi,
∑N

i=1 aski)
(6)

flow(OBI) = µOBI (7)

The opportunity component size(V ) is an increas-
ing function of order size, always bigger than one
because of the exponential.10 The intuition behind this
penalty is that an outstanding limit order is associ-
ated with a “signaling” risk, as well as a “jump-over”
effect – the bigger the order, the more likely other limit
orders get placed in front. Furthermore, a non-executed
limit order is expected to be transformed into a market
order at a worse transaction price than the initial one,
because the market is assumed to have moved in an
unfavorable direction, i.e. adverse selection.

size(V ) = exp(Vη) (8)

The functional form of the market dynamics effect
dyn(�) describes a sub-linear increasing risk of non-
execution for limit orders inside the volatility bands,
defined by a central benchmark BMdyn and σdyn,
expressed as a multiple of the short-term volatility.
When the relative limit distance is outside this interval,
the risk increases faster, penalizing far away orders.11

Potential candidates for BMdyn can be for example
the bid-ask midpoint, last trade price or previous close
price.

dyn(�) = σdyn

(
� − BMdyn

σdyn

)2

(9)

The effective order queue effect queue(�) reflects
the cumulative size of the book queue BQ� situ-
ated in front of the client limit order – placed at the

10An alternative functional form such as a quadratic function
would take values close to zero for small orders – order size V takes
most of the time sub-unitary values very close to zero – and would
dilute the impact of the other included risk components. Further-
more, the exponent η should also be less than one in order to be able
to discriminate between various order sizes.

11The intuition behind this effect could be seen as similar to the
technical trading tool known as “Bollinger Bands” (see Bollinger
(2001)), which relies on the price dynamics fluctuating inside an
interval bounded, under standard parameters, by two standard devi-
ations above and below a 20 periods (days) moving average.

relative distance �. The order queue can be immedi-
ately computed within an observable order book and is
expressed as a percentage of ADV, without assuming
any functional form.

queue(�) = BQ� (10)

2.3. Order placement strategy

There is one issue in trying to analytically deal with
the optimization problem defined in Subsection 2.2
– unless a functional form for the order queue effect
queue(�) is assumed, an analytical solution cannot be
derived. However, if a functional form for queue(�)
based, for example, on an average order book shape
would be assumed, any connection to the temporal spe-
cific structure of the book would be lost. Therefore, we
implement an iterative numerical procedure for iden-
tifying the optimal relative distance �∗ of a potential
limit order.12

By replacing imp.sh( M, �) in (4) with its definition
in (3), the conditions of the multi-part cost function
can be rewritten and the optimization problem can be
forked accordingly. The selection decision between
a market or a limit order placed at relative distance
�∗ becomes equivalent to choosing the minimum of
the following three branches: f ( M), f (�∗ ≥ BMis −
σis|not( M)) and f (�∗ < BMis − σis|not( M)).

I. When M = 1 (market order, negative price change
relative to BMis), one can discriminate between two
cases – inside or outside the volatility bands – depend-
ing on the market impact size:

f ( M) =
{

BMis + mk.imp(V ) for mk.imp(V ) ≤ σis − BMis

β (BMis + mk.imp(V ))2/σis otherwise
(11)

II. When M = 0 (limit order) and � ≥ BMis − σis

(positive price change or negative price change smaller
than the volatility threshold, i.e. inside the bands –
identified in Fig. 4 (top) with �II+ and �II−, respec-
tively). Let A = λu flow(OBI) size(V ). It follows
that:

12Applying numerical procedures in intraday ABMs is not
unusual. For example, the order placement model of Chiarella et al.
(2009) also requires a numerical procedure to compute the upper
and lower boundaries for the potential limit prices.
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Fig. 4. Exemplifying (down-side) volatility bands for sell limit orders. In case when BMis − σis < 0 or equivalently σis > s/2 (top), wherever
the non-crossing limit order is placed, the execution can’t take place below the minimum boundary of the volatility threshold (the non-crossing
limit order assumption means that � > 0). However, if � < s/2 (�II−) the implementation shortfall is positive corresponding to a negative
price change, while if � > s/2 (�II+) the implementation shortfall is negative standing for a more favorable execution. If BMis − σis > 0 or
equivalently σis < s/2 (bottom), a special case arises when � < BMis − σis (�III ). This unfavorable type of execution is penalized as described
in Equation (4).

⇒ f (�|not( M), � ≥ BMis − σis) = BMis − �

+A (α0 + α1 dyn(�) + α2 queue(�)) (12)

III. When M = 0 (limit order) and � < BMis − σis

(negative price change larger than the volatility thresh-
old, i.e. outside the bands – �III in bottom Fig. 4).
As � > 0 (non-crossing limit orders), the precondition
BMis − σis > 0 must apply.

⇒ f (�|not( M), � < BMis − σis)

= β
(BMis − �)2

σis

+ A (α0 + α1 dyn(�)

+α2 queue(�)) (13)

In a simulation framework, the non-execution risk
function can be based on the effective order queue com-
ponent, which takes into account the actual state of
the order book, assuring the endogeneity of the model.
This queue function increases in steps at random val-
ues because of the expected book gaps and stochastic
depth sizes at various book levels. Thus, the queue
function is not derivable and a numerical procedure
has to be implemented. We propose an iterative pro-
cedure, where a trajectory of potential solutions �i

starting at 0 – corresponding to a spread limit order –
is evaluated step by step with respect to the objective
of minimizing f (�i|not( M)) and the best candidate
�∗ is stored. Finally, the fitness of the best candidate
for a limit order f (�∗|not( M)) can be compared to
the fitness of a market order f ( M) and the appropriate
order type can be chosen.

If the queue effect is temporarily ignored, i.e.
α2 = 0, the functional forms of the cost and risk func-
tions can be exploited with the goal of identifying a
stopping point for the numerical procedure, reached
where the derivative of the fitness function g(�) =
f (�|not( M), α2 = 0) is zero.13 Identifying this criti-
cal point also allows for considering a sparser search
space, by jumping from one book level to the next –
since the only inflexion point is at the end of the search
interval, all intermediary potential �i ≤ �S situated
within the order-book gaps can be ignored. Thus, the
stopping point corresponding to the second branch, i.e.
Equation (12), is given by:

13From a graphical perspective, the slope of the cost function
decreases for 0 < � < BMis − σis and equals the constant −1 for
� ≥ BMis − σis. On the other side, the slope of the risk function
increases for � > 0. The inflexion point is situated where the slope
of the adjusted risk equals the absolute value of the cost function
slope.
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∂g(�|� ≥ BMis − σis)

∂�
= −1 + 2 α1 A

� − BMdyn

σdyn

= 0

(14)

⇒ �S
�≥BMis−σis

= BMdyn + σdyn

2 α1 A
(15)

If BMis − σis > 0, the solution corresponding to the
third branch, i.e. Equation (13), is:

∂g(�|� < BMis − σis)

∂�
= −2 β

BMis − �

σis

+2 α1 A
� − BMdyn

σdyn

= 0 (16)

⇒ �S
�<BMis−σis

= β BMis σdyn + A α1 BMdyn σis

β σdyn + α1 A σis

(17)

3. Market design

In order to evaluate the impact of alternative order
placement strategies on market dynamics, we simplify
the core investment process and adopt the zero-
intelligence paradigm with this respect, such as in Cui
and Brabazon (2012).14 Actually, the model designed
in Cui and Brabazon (2012) (henceforth referred to as
“CB model”) will be used both as benchmark, as well
as base model which is extended by our contribution as
explained in the current section. Therefore, by keeping
as much as possible in common with the original spec-
ifications, we do not compare two completely distinct
models and are thus able to assess the differences in
results due only to the specific change.

The “population” structure is minimalistic as in the
CB model, comprising of three agent clusters: a buyer,
a seller and a market maker. In other words, the single

14Other intraday ABMs, such as Chiarella et al. (2009), explic-
itly model the agents’ investment decisions as trading rules reacting
to the recent price evolution, which would make it difficult to dis-
entangle the individual effect of the order placement component.
Moreover, the model of Cui and Brabazon (2012) is already cal-
ibrated to real data with respect to the frequency of new orders
and order cancellation, as well as to the percentage of market and
limit orders, order sizes, relative limit prices and bid-ask spreads.
In contrast, the model in Chiarella et al. (2009) does not support
market orders and trades are executed only by crossing limit orders,
which would make the comparing of market price impact functions
inappropriate.

agents are not individually implemented, but grouped
into aggregate types based on their specific behavior
such as (i) buying with market and limit orders, (ii)
selling with market and limit orders, (iii) quoting both
buy and sell limit orders only. This is possible in the CB
model because the investment decision is based on sta-
tistical distributions – therefore individual portfolios
need not to be tracked, neither taken into account, and
every cluster activation can be seen as the participation
of a new single agent.

Time is considered to be discrete with a millisecond
granularity, and a single trading session of 8.5 hours
corresponds to 30,600,000 milliseconds. At each mil-
lisecond, one of the two former agent clusters (buyer or
seller) is picked to trade with probability 1

2 . Each agent
cluster can choose between three possible actions: (i)
do nothing with probability λo, (ii) submit a market
or a limit order with probability λm + λl, or (iii) can-
cel the oldest outstanding limit order with probability
λc = 1 − λo − λm − λl. Order sizes are random draws
from a log-normal distribution, with the associated
generating function: exp(µsize + σsize rnorm), where
µsize and σsize are the location and scale parame-
ters, and rnorm is a standard normal deviate. Whenever
a side of the order book is empty, the market maker
intervenes by filling it with three random off-spread
limit orders, with the relative price drawn from a dis-
tribution with the following random number generating
function: xminoffspr (1 − runif)−1/(1−βoffspr), where
xminoffspr and βoffspr are parameters, and runif is
a uniform deviate between zero and one. In contrast to
the stochastic cancellation process of the agents’ limit
order, the market maker’s limit orders are set to expire
in five minutes. This allows them to have a longer life
span than agent’s limit orders, leading to the formation
of order book gaps, i.e. blocks of adjacent price levels
with missing quotes.

The main difference between the CB model and our
model is that we replace the random order placement
based on statistical distributions15 with a microtrading
strategy as described in Section 2 (therefore, our model
will be referred to as “Micro model”). The Micro model

15In Cui and Brabazon (2012), submitting a new order can take
the form of a market order with probability λm and of a limit order
with probability λl. In the case of choosing a limit order, this can be
placed either at the opposite best ask (bid) price as a crossing limit
order with probability λcrs, uniformly placed inside the spread with
probability λinspr , at the same-side best quote with probability λspr

or off-spread with the remaining probability and given the following
RNG function xminoffspr (1 − runif)−1/(1−βoffspr).
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adds an extra decisional layer dealing with order exe-
cution, which is separated and independent from the
investment process. The inputs of this layer are the size
and direction of the order, as well as the agent pref-
erences regarding trading urgency, benchmarks and
volatility bands. The current market state – identi-
fied through order-book liquidity and short-term price
volatility – is also taken into account. The optimized
micro-trading decision consists in generating the ulti-
mate order submitted to the trading-venue, which can
take the form of a market or limit order.

Heterogeneity over the agents’ sense of urgency λu

is introduced by drawing, for each new order, random
values from a mixture of two normal distributions.
The two modes correspond to two types of agents,
i.e. a patient type with λu closer to zero and an impa-
tient type with λu around one – the patient-impatient
dichotomy is supported by the literature, e.g., Foucault
et al. (2005), Roşu (2009). An absolute value opera-
tor is applied over the random draw to ensure λu ≥ 0.
Additional heterogeneity is provided by the log-normal
random order sizes and the various conditions reflected
by the order book.

4. Experimental setup, results and discussions

Both the Micro model and the replication of the CB
are implemented in the same software framework in
order to keep differences to the minimum. Actually,
the microtrading agent is an extension of the original
CB trader, overwriting only the placement decision.
Everything else – e.g., matching engine, agent pooling,
order cancellation, random seeds, market making – is
kept unchanged.

The parameters of the CB implementation have
the same values as in Cui and Brabazon (2012),
which were originally estimated from a dataset
for Barclays Capital (BARC.L) traded at Lon-
don Stock Exchange.16 The Micro model main-
tains the same parametrization as in Cui and
Brabazon (2012), where it applies: λo = 0.9847, λm +
λl = 0.008, λc = 0.0073, µsize = 8.2166, σsize =
0.9545, xminoffspr = 0.05, βoffspr = 1.7248, ini-

16Even if we have tried to reproduce the CB model based on
its description in Cui and Brabazon (2012), the results still differ to
some extent, e.g., market impact averages are lower in our imple-
mentation, so we cannot claim that we actually benchmark to the
model implemented in Cui and Brabazon (2012), but to a similar
model using our own coding.

tial mid-quote price 300.00, initial spread 0.50, tick
size 0.01. For convenience, all model parameters are
summarized in Table 1.

The remaining parameters regarding the microtrad-
ing strategy are set in order to replicate the same
order type frequencies as the ones generated by the
CB model: 4% market orders, 10% in-spread and 86%
off-spread limit orders. Also, we have tried to roughly
reproduce the stylized facts discussed in the rest of this
section, but no intensive or automated calibration has
been pursued. The chosen set of parameters is: book
depth levels N = 3, OBI base µ = 2, size penalty
exponentη = 0.8,α0 = 0.1,α1 = 0.5,α2 = 0.25,β =
2.5. The parameters of the distribution mixture associ-
ated with the sense of urgency λu are: µ1 = 0.4, σ1 =
0.2, µ2 = 1.1, σ2 = 0.2, and the probability of draw-
ing from the first normal is 40%. The two benchmarks
BMis = BMdyn are chosen as the exponential mov-
ing average of trading price p̄t = 0.95 p̄t−1 + 0.05 pt ,
because this indicator is more stable than the mid-
price. The index t corresponds to the trade price time
series and thus p̄ is updated every new trade. Sim-
ilar, the two volatility bands σis = 7 σ̄ from (4) and
σdyn = 7.5 σ̄ from (9) are multipliers of the estimated
time-varying instant standard deviation computed as

σ̄t =
√

0.95 σ̄2
t−1 + 0.05 r2

t , where r is the percentage
return. Additionally, the default average daily volume
is initialized with ADV = 77m.17

For exemplification and according to the adage “a
picture is worth a thousand words”, single one-day
realizations of the price time-series for each of the two
models are depicted in Fig. 5. At the beginning of each
trading day, the model is warmed up for 3,600,000
milliseconds (1 hour). Both models are run for 30
artificial days, each day with a different random seed
and all data, except for the warm-up period, is aggre-
gated in one dataset over which two stylized facts are
investigated. “Stylized facts”, i.e. empirical regulari-
ties exhibited by a wide range of financial time series,
are commonly used to validate ABM designs and
parameterizations. A wide range of stylized facts, both
for high-frequency and aggregated data, are described
in the literature, e.g., Chen et al. (2012), Cont (2001,
2011), Daniel (2006), Pacurar (2008). The class of
intraday stylized facts can be associated to transaction

17Since the model is hihgly non-linear, an identification problem
in an econometric sense might arise. However, in the current paper,
we are not intersted in giving any economic interpretation of the
parameter values.
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Table 1

Model parameters

Inherited from the CB model
Market Settings Values
initial mid-quote price 300.00
initial spread 0.50
tick size 0.01

Event Type Probabilities
do nothing event λo = 0.9847
submit order event λm + λl = 0.008
cancel oldest order event λc = 0.0073

Order size Parameters
log-normal distribution µsize = 8.2166, σsize = 0.9545

Off-spread relative limit price Parameters
power-law distribution xminoffspr = 0.05, βoffspr = 1.7248

Micro model specific
Market Settings Values
average daily volume ADV = 77m

Order placement Parameters
book depth levels N = 3
OBI base µ = 2
size penalty exponent η = 0.8
risk function weights α0 = 0.1, α1 = 0.5, α2 = 0.25
volatility-threshold penalty weight β = 2.5

Volatility bands Multipliers
implementation shortfall (cost) σis = 7 σ̄

market dynamics (risk) σdyn = 7.5 σ̄

Sense of urgency (λu) Parameters of the distribution mixture
first normal µ1 = 0.4, σ1 = 0.2
second normal µ2 = 1.1, σ2 = 0.2
first distribution probability 40%

data, order book shape and order flow. In this paper,
we have chosen one stylized fact related to limit orders
which states that the distribution of the relative limit
prices decays asymptotically as a power-law, and one
associated with market orders which were found to
generate a non-linear concave price impact function of
trade size. No stylized facts related to return or order
flow are selected since both models assume purely ran-
dom investment decisions and inter-events durations.

4.1. Market price impact

The market impact function reflects the relationship
between market order size and price impact, captured
by the shift between the pre-trade and post-trade mar-
ket equilibrium. Lillo et al. (2002, 2003) provide a
method for computing the average market impact.
Firstly, trades with the same time-stamp are aggre-
gated and treated as a single transaction, as these are

assumed to be part of a single market order which
is matched against several outstanding limit orders.
The price impact associated with each transaction is
reflected by the difference in the logarithmic mid-quote
price. Originally, the transaction size was measured
in dollars, but we adopt the approach from Cui and
Brabazon (2012) where the size of the market order is
relative to the total daily trading volume. Finally, the
data is divided into ten bins based on order size and the
average price impact of each bin is computed. We also
remove the upper outliers with respect to order size
using a modified interquartile range rule,18 otherwise
the number of observations in the higher bins would
be very low if not even zero.

18The suspected outliers are all observations greater than the
99th percentile plus 1.5 times the interquartile range given by the
difference between the third and the first quartile. The rule discards
only 0.75% observations in the CB model and 0.65% in the Micro
model.
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Fig. 5. Price time-series. One-day realizations of the tick-by-tick price-time series, for the same random seed, in the case of the CB model (top)
and the Micro model (bottom).

A functional form of the market price impact is
provided in the literature – Lillo et al. (2002, 2003)
and Plerou et al. (2002) consider the empirical market
impact function for trade by trade data to be a power
function of order size η νγ , with exponent γ taking
values between 0.2 and 0.6 for stocks traded at New
York Stock Exchange. Especially for London Stock
Exchange data, Farmer et al. (2004) have computed
an estimate γ = 0.26 for a selection of three highly
capitalized stocks – Lloyds (LLOY), Shell (SHEL)
and Vodafone (VOD).19 It must be noted that this
functional form is only an average property of the
entire market. Since the order timing process is not
observable and also not completely random – one can
assume at least some intelligent trading taking into

19Other studies have analyzed the market impact on different
time scales, by aggregating orders over time intervals of 5 or 15
minutes, as in Plerou et al. (2002) (NYSE data) and Weber and
Rosenow (2005) (Island ECN), or by looking at the delayed price
impact after 30 minutes as in Hopman (2007) (Paris Bourse). The
estimated exponent is slightly larger than in the case of tick by tick
data and ranges from 0.33 to 0.75.

consideration available market liquidity – we are con-
fronted with an endogeneity issue which does not allow
for the identification of the “true” relationship between
order size and market impact only by analyzing histor-
ical transaction data. Moreover, if the unconditional
impact function would be concave, there would be
no incentive to split a large order, as the total market
impact of the smaller trades would be larger than the
initial impact. Actually, Weber and Rosenow (2005)
found that a virtual price impact function – com-
puted by inverting the available order book depth as
a function of return – is convex and is increasing
faster than the concave average price impact function
associated with effective market orders. Still, the over-
all average market impact represents a stylized fact
which should emerge in a market with rational trading
agents.

The average market impact computed on binned
data – as in the standard procedure described in the
beginning of the current section – is depicted in the
left plots of Fig. 6. In order to identify the relation with
respect to the normalized order size, we also estimate
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Fig. 6. Average and individual price impact functions. Average price impact and market order frequency per order size-bin for the CB model
(top-left) and the Micro model (bottom-left). Individual and fitted market impact function for the CB model (top-right) and Micro model
(bottom-right).

the coefficients of the power function β1 vβ2 using non-
linear least squares. Before discussing the results, it is
worth mentioning that these are quite robust to small
variations of the considered parameters. The ad-hoc
calibration could not influence significantly – neither
improve, nor deteriorate – the results in any qualita-
tive and only very slightly in a quantitative way. The
robustness check procedure and results are detailed in
Subsection 4.3.

The results presented in Table 2 show a convex mar-
ket impact function for the CB model, which is in
line with the instantaneous price impact of Weber and
Rosenow (2005) expected for randomly timed trading.
On the other side, the Micro model associated function
is concave with an exponent β2 = 0.67. Both estimates

are statistically significant different from zero and
one – the restriction β2 = 1 has been rejected by
the likelihood-ratio test. Obviously, the market impact
associated with the Micro model is much more realis-
tic than in the random approach, even if the exponent
is larger than the empirical estimates. The difference
can be explained by the lack of a thoroughly automated
calibration, on one side, and by the major simplifica-
tions with respect to the investment process, on another
side.

Since the sample size for the binned data is very
small, we repeat the estimations on all available data,
still the results are very similar.20 Both the individual

20We have also tried to discriminate between buy and sell initi-
ated transactions, but found no difference.
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Table 2

Comparative market impact measures for the CB and Micro models

CB model Micro model
Market order percentage size

min, max 6.98e-06, 1.14e-01 2.91e-05, 6.91e-02
50%Q, 75%Q 4.41e-03, 1.08e-02 4.51e-03, 9.39e-03
Bin size 0.0114 0.0069

Av. market impact range
min, max 7.3e-06, 3.8e-04 7.3e-06, 5.5e-05

Power function estimates for binned data
β1 6.54e-03** (1.72e-03) 3.43e-04*** (2.75e-05)
β2 1.25*** (1.06e-01) 0.67*** (2.56e-02)

Market impact range
min, max 0.00, 0.0103 0.00, 0.0014

Power function estimates for all data
β1 5.92e-03*** (1.80e-04) 3.22e-04*** (7.21e-06)
β2 1.21*** (1.02e-02) 0.65*** (5.30e-03)

The range of the market order size distribution, expressed as percentage of the average daily volume, shows that both the very small and the
very large orders are rather executed as limit, instead of market orders, when the microstructure-based strategy is applied – probably due to the
low non-execution risk of low-volume orders and due to the large market impact associated with big orders. The narrower range also affects
the order size-based bins and the market impact upper bound. The estimates of the market impact function β1 vβ2 , describing the relationship
between order size and price impact, show that the function is convex in the case of the CB model (β2 > 1) and concave for the Micro model
(β2 < 1), both for binned (averaged) and individual data. ** and *** denote statistical significance at the 0.001 and < 0.001 percent levels,
respectively. The values in parentheses represent the standard errors of the estimates.

as well as the average market impact are smaller in the
Micro model, which can be explained by the selective
trading strategy pursued by the agents aware of their
market impact. This result is also in accordance with
Weber and Rosenow (2005) who found that the virtual
price impact is more than four times stronger than the
actual one. The right panels of Fig. 6 present scatter
plots (hexagonal binned) of the market impact for all
transactions, as well as the fitted market impact func-
tion. In the CB model case, we observe that the data on
the market impact axis is slightly bimodal, which raises
the question of the validity of the mean estimate espe-
cially for the superior bins. The mode close to 0.001
is caused by the market maker’s intervention to pre-
vent the order book from getting empty – even during
executing of transactions – and resetting the bid-ask
spread to its default value.21

4.2. Relative price distribution of the off-spread
limit orders

Zovko and Farmer (2002) define the relative limit
price of a limit order δ as the difference between the

21The largest possible mid-quote difference after the intervention
of a market maker is 0.27, determined by half of the spread expansion
from a minimum of 0.01 to the market maker default 0.50 plus the
range of the limit order power law distribution 0.05. When this shift
is centered around the default price 300.00, the expected maximum
market impact is given by ln(300.14) − ln(299.87) = 8.99E-4.

limit price and the best quote on the same side of the
market, i.e. the best bid for a buy order and the best ask
for a sell order. Furthermore, the standard procedure
introduced in Zovko and Farmer (2002) takes into con-
sideration only off-spread limit orders, i.e. only limit
orders with positive relative prices (δ > 0), while the
rest – crossing, in-spread and spread – are discarded.
The distribution of δ was found to decay asymptoti-
cally as a power-law, meaning that even if most of the
limit orders are concentrated close to the best quotes,
there are enough orders which are priced much less
aggressively such that the distribution exhibits long-
tails. Different values for the characteristic exponent α

associated with the power law probability distribution
function p(δ) ∼ δ−α have been computed in the liter-
ature: Zovko and Farmer (2002) found α ∼ 1.49 for
data from London Stock Exchange, while Bouchaud
et al. (2002) and Potters and Bouchaud (2003) found
α ∼ 1.6 for Euronext and NASDAQ.

Fig. 7 presents the relative price distributions of the
off-spread limit orders generated by the two compared
models, both as regular histograms and as Zipf plots.22

In the Micro model case, the power-law tail of the rela-
tive limit price distribution can graphically be assessed
by the approximately linear shape of the Zipf’s plot on

22Plot the complementary cumulative distribution function of the
ordered variable, rev(cumsum(1/N)), where N is the total number
of observation.
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Fig. 7. Relative limit price distribution of the off-spread limit orders. The relative limit price distributions of the off-spread limit orders are
represented as histograms (left panels) and Zipf’s plot (right panels), both for the CB model (top panels) and Micro model (bottom panels). The
bottom-left histogram (CB model) is framed up to the 99th percentile on the x-axis.

a log-log scale. On the other side, the CB model does
not reproduce the same stylized fact due to the design
of the off-spread limit order random number genera-
tor. However, other intraday ABMs which explicitly
model the economics of investment decision, such as
Chiarella et al. (2009), could be able to replicate this
stylized fact.

We have also estimated the distribution exponent
α̂ = 1.66 for the Micro model, when xmin is set to
0.5, using the R package ‘poweRlaw’ which was devel-
oped based on the Santa Fe Institute recommendations,
although the estimation is highly sensitive to the cho-
sen value of the xmin cut-off parameter. A key role, in
replicating this stylized fact, is played by the bimodal
distribution of urgency coefficients λu, which allows

for a number of passive limit orders with no chance of
immediate execution to be sent by agents with very low
urgency. Otherwise, if the investment process would be
considered, these passive orders could be the result of
different agents’ evaluations or strategies, e.g., funda-
mentalists might place orders away from the current
trading price.

4.3. Robustness checks

Since the results of the simulation presented in the
previous two subsections are conditioned on the spe-
cific set of model parameters, it is important to analyze
whether these qualitative findings are robust to the vari-
ation of the default parametrization. Similar to Harting
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Fig. 8. Distributions of the stylized facts estimated for various parameter configurations. The power function exponent (β2) for binned market
impact data (top) and for all data (middle). The power-law function exponent (α) for relative limit prices (bottom). For each distribution, the
meadian (solid vertical line) and the 95% confidence bands illustrated through the 2.5 and 97.5 percentiles (vertical dotted lines) are plotted.

(2015), we have run 3,000 new Monte Carlo simula-
tions over 100 different configurations – 30 runs per
individual configuration, where each of the 14 Micro
model specific parameters in Table 1 are determined
by independent random draws from uniform distribu-
tions with a 60% range centered around the default
model settings. The results with respect to the esti-
mated exponent of the market impact function (β2),
both for the binned and individual data, are captured
in the top and middle plots of Fig. 8 and show that the
concavity property is not lost. Also, in the case of the
power-law function exponent (α), the distribution of
the estimator and the 95% confidence bands presented
in the bottom plot of Fig. 8 exhibit values close to the

empirically estimated coefficient. Even if the selected
parametrization in not totally arbitrary, the qualitative
results – consisting in the reproduction of two stylized
facts – are apparently not affected by the variation of
the initial parametrization, underlining the robustness
of the results.

5. Conclusion and outlook

We have modeled the agents’ order placement deci-
sion as an optimization problem which minimizes the
risk adjusted execution cost, taking into consideration
various microstructure factors – such as order book
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liquidity, order flow proxied by the order book imbal-
ance and transient volatility, as well as intrinsic agents
characteristics – such as the sense of urgency. We have
derived an order submission strategy based on an itera-
tive numerical procedure which allows for the efficient
identification of the potential optimal limit price, tak-
ing into account the effective state of the order book.
Next, we have integrated the order submission model
into a zero-intelligence agent based model, providing a
realistic test environment which can be used for assess-
ing the collective behavior of high-frequency trading
algorithms, its implications on financial market sys-
temic risk, as well as for virtual testing of potential
regulatory measures.

The results show that, when replacing random order
placement decisions by a micro-trading strategy, the
intraday market properties are more similar to those
of real markets, at least with respect to two high-
frequency stylized facts. The model comprising the
microstructure-based order placement component has
successfully reproduced the power-law tail of the rel-
ative price distribution of off-spread limit orders, even
if there is no explicit power-law component assumed
nor hard-coded into the agents’ design – thus it can
be considered an emergent property. Regarding market
orders, both the binned-average price impact as well as
the individual price impact functions exhibit a realistic
concave shape – a trace of rational selective trading.
Moreover, the conducted robustness checks show that
the results are valid not only for the specific parameter
setting. On the opposite, in the absence of intelligent
trading, the expected market price impact shape is
convex – confirmed by the results obtained with the
alternative zero-intelligence agent based model. It is to
be noted that we did not intend, at this point, to explain
what causes the results, but rather try to obtain a realis-
tic high-frequency simulation environment. Extensive
testing of current and alternative functional assump-
tions, which could also shed more light on the causal
relations between model ingredients and emerging
behaviors, requires the implementation of a proper
calibration and model selection procedure. Given the
complexity of the model, this is not a trivial task and
will be addressed separately in a future paper.

However, both the order submission model, as well
as the underlying agent based model, have some
limitations which could be tackled in future implemen-
tations. The investment process is purely random and
there is no relationship between agents’ type and/or
wealth and the size of their orders – usually volumes

are correlated with strategy time-frame – or with risk
aversion and trading urgency, respectively. Moreover,
no learning component is implemented – micro-trading
strategies are constant during the short running time
span of a single trading session. Even if this assump-
tion seems reasonable, agents are not able to adapt and
exploit current market conditions and also, as conse-
quence, market conditions do not change over time.
Basically, the agents are completely uninformed and
could easily be taken advantage of by third party strate-
gies. On the other side, the implementation of various
missing model components could lead to significant
improvement, as well as to relaxing some of the cur-
rent assumptions – e.g., the bimodal distribution of
urgency coefficients could be removed if heterogeneity
is introduced through explicit modeling of the invest-
ment decision.

If the process of investment would be developed,
order execution could be enriched by adding algo-
rithmic trading techniques, which consist in splitting
large orders’ submission over time. The actual order
placement model can also be extended by taking
into consideration other factors, e.g., intraday market
trend, time of day, available trading time, prior order
aggressiveness based on trading events clustering. Sev-
eral other stylized facts related to order book shape,
e.g., order book gaps, could be analyzed. Also, even
under the current conditions where the investment pro-
cess is stochastic, some stylized facts related to price
returns, e.g., volatility clustering, or to order flow might
emerge. Even more interesting would be the analy-
sis of possible feedback loops around price volatility
and order book imbalance. Moreover, a systematic
model calibration encompassing both the estimation
of parameters, as well as the selection of individual
components, with the objective of fitting various quan-
titative behavioral aspects, could be pursued. Also,
besides a highly liquid stock, the model should also
be analyzed under various other market conditions,
such those provided by a small-cap, and the potential
differences assessed.
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Appendix

The formalization of the optimization problem
for the market-limit order split

In the market-limit order split case, the binary deci-
sion variable M is replaced with continuous 0 ≤ m ≤
1, representing the share of the original order executed
as a market order, the complementary fraction (1 − m)
being placed as a limit order. The optimization problem
and the objective function in (1) become:23

min
m,�

f (m, �) (18)

f (m, �) = cost(m, �) + λu (1 − m) risk(m, �)︸ ︷︷ ︸
adjusted risk for limit orders

(19)
The implementation shortfall is now the result of the

mixed execution, while the wrapping cost function can
be easily rewritten:

23The function is not identified for � when m = 1, reflecting
the situation in which the entire quantity is traded as a market order,
which is logical consistent with the fact that a decision regarding �

is no longer required.

imp.sh(m, �) = m (BMis + mk.imp(m V ))︸ ︷︷ ︸
market order part

(20)

+ (1 − m) (BMis − �)︸ ︷︷ ︸
limit order part

= BMis + m mk.imp(m V ) − (1 − m) �

(21)

cost(m, �) =
{
imp.sh(m, �) for imp.sh(·) ≤ σis

β σis (imp.sh(m, �)/σis)2 for imp.sh(·) > σis

(22)

The non-execution risk remains unchanged, but the
opportunity component in (8) is now a function of the
limit order size (1 − m) V .

risk(m, �) = flow(OBI) size((1 − m)V )

(α0 + α1 dyn(�) + α2 queue(�)) (23)


