AI Communications 29 (2016) 223-225
DOI 10.3233/AIC-140646
10S Press

Thesis

223

MOSES: A Metaheuristic Optimization

Software EcoSystem

José Antonio Parejo

Universidad de Sevilla, Sevilla, Spain
E-mail: japarejo@us.es

Abstract. Many problems that we face nowadays can be expressed as optimization problems. Finding the best solution for
real-world instances of such problems is hard or even infeasible. Metaheuristic algorithms have been used for decades to guide
the search for satisfactory solutions in hard optimization problems at an affordable cost. However, despite its many benefits,
the application of metaheuristics requires overcoming numerous obstacles. First, the implementation of efficient metaheuristic
programs is a complex and error-prone process. Second, since there is no analytical method to choose a suitable metaheuristic
program for a given problem, experiments must be performed. Besides this, experiments are usually performed ad-hoc, with
generic tools and no clear guidelines, introducing threats to validity, and making them hard to automate and reproduce. Our aim
is to reduce the cost of applying metaheuristics for solving optimization problems. To that purpose, a set of tools to support the
selection, configuration and evaluation of metaheuristic-based applications is presented.

Keywords: Metaheuristics, optimization, Al

1. Introduction

Solving optimization problems is an important task
which appears in virtually all areas of human activ-
ity [3]. Metaheuristics are reusable algorithm schemes
that can be tailored for each problem. Metaheuristics
have proven to be a handy tool to solve hard optimiza-
tion problems, providing a balance between the qual-
ity of solutions found and the execution time required
by the optimization process. Some metaheuristics pro-
posed in literature are Evolutionary algorithms, Simu-
lated annealing, Ant colony optimization, Tabu search,
etc. Solving optimization problems using metaheuris-
tics requires performing numerous activities to be un-
dertaken in a coordinated manner. This process, which
we call the “Metaheuristic Problem Solving (MPS)
life-cycle”, can be structured in five major stages: Se-
lection, Tailoring, Implementation, Tuning and Execu-
tion. In the Selection stage the specific metaheuristics
to use for problem solving are chosen. In the Tailor-
ing stage the algorithmic schemes of the metaheuris-
tics are completed and tailored to the specific problem
at hand, obtaining a fully specified algorithm. In the

Implementation stage the algorithms are implemented
as metaheuristic optimization programs. In the Tuning
stage specific values for the parameters are set. The
result of this stage, denoted as MPS application, is a
tuned metaheuristic program that can be invoked for a
problem instance and provides a solution (or a set of
solutions). Finally, the MPS application is executed in
the Execution stage. Figure 1 depicts this process using
BPMN.

The quality of the solutions provided by a MPS
application depends on the an appropriate decision
making in the stages of selection, tailoring and tun-
ing. However, current theoretical development does
not provide analytical methods to make those decisions
in general [2]. Therefore, we follow an empirical ap-
proach [1,2].

The effort required for running the MPS life-cycle
depends strongly on tooling support. In the context
of metaheuristic optimization experiments those tools
are mainly statistical analysis packages and design
of experiment systems. In order to reduce the imple-
mentation burden, an extensive number of software
frameworks, denoted as Metaheuristic Optimization

0921-7126/16/$35.00 © 2016 — IOS Press and the authors. All rights reserved

mailto:japarejo@us.es

224 J.A. Parejo / MOSES: A Metaheuristic Optimization Software EcoSystem

=

Problem
Instances to
Solve

Fully Specified
Metaheuristic
Algorithms

Metaheuristics
to be applied

-

Solutions

Parameter
Configuration

Metaheuristic
Program

TUNE
TAILOR IMPLEMENT EXECUTE
Met§1|E1LeEqu-ll;llcs Metaheuristics Metaheurisic Me;?ge:'arg['c Metaheuristic
Algorithms Programs Parargneters Program

Fig. 1. Metaheuristic problem solving life-cycle. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140646.)

Frameworks (MOFs), have been created. However, the
support provided for the different metaheuristic algo-
rithms is uneven, and its use involves overcoming a
steep learning curve. Choosing the appropriate MOF is
an important decision for which not much aid has been
provided.

We focus on supporting the process of optimization
problem solving with metaheuristics when experimen-
tation is required and MOFs are used. Additionally, we
aim at enabling the creation of automatically repro-
ducible and easy to replicate experiments with high in-
ternal validity.

2. Contributions

The main contribution is a set of support tools to re-
duce the cost of using metaheuristics to solve optimiza-
tion problems. Such contribution comprises of:

A Comparison Framework to reduce the cost of
choosing the best MOF to solve a given optimization
problem. The framework includes a comprehensive set
of features that an ideal MOF should support, defini-
tions of metrics for assessing the support of such fea-
tures, and means to aggregate such assessments into
general quantitative scores. Based on such comparison
framework, 10 MOFs are assessed to provide a picture
current state of the art. This contribution has been pub-
lished in the Soft Computing journal [5].

Two languages to reduce the cost of describing,
automating and replicating experiments. The Scien-
tific Experiments Description Language (SEDL) en-
ables the description of domain-independent experi-
ments in a precise, unambiguous, tool-independent,
and machine-processable way. SEDL documents pro-
vide all the information required to describe the de-
sign and execution of experiments including the defini-
tion of variables, hypotheses and statistical tests to be
applied. SEDL also includes several extensions points
for the creation of domain-specific languages. In turn,
Metaheuristic Optimization Experiments Description

Language (MOEDL) is an extension of SEDL for the
description of metaheuristic experiments.

A set of 15 analysis operations on SEDL documents
to reduce the cost of checking the validity and repli-
cability of the experiments. These operations automat-
ically check the existence of validity threats. For in-
stance, an operation that checks if the size of dataset
generated by the experimental conduction is consistent
with the experimental design is provided.

A statistical analysis tool (STATService) to reduce
the cost of validating experimental conclusions by test-
ing statistical hypotheses. STATService is designed fo-
cusing on inexperienced users with no background on
statistical tests. Given an input data set, the tool auto-
matically chooses the most suitable statistical tests pro-
viding the corresponding results. The tool has already
being used by 9 laboratories in 5 countries.

A Metaheuristic Optimization Software EcoSystem
(MOSES) that provides the design of a global archi-
tecture for supporting the automation of the experi-
mentation process in the context of metaheuristic opti-
mization. This architecture is defined in terms of ser-
vice contracts, and software components that act as
providers and consumers of those contracts.

A detailed description of the contributions can be
found in [4].

3. Validation

Those contributions were validated by developing
MPS-based applications for solving two relevant soft-
ware engineering problems: (i) Quality-driven web
service composition, where the goal is to find a set of
candidate services that maximize the overall quality
of a web service composition. This contribution was
published in Expert Systems with Applications [6];
(ii) Hard feature model generation, where the aim is to
create feature models as difficult to analyse as possi-
ble for current tools, in order to determine its perfor-
mance in pessimistic scenarios. This contribution was
published in Expert Systems with Applications [7].

http://dx.doi.org/10.3233/AIC-140646

J.A. Parejo / MOSES: A Metaheuristic Optimization Software EcoSystem 225

Acknowledgements

This work was partially supported by the EU Com-
mission (FEDER), the Spanish and Andalusian
R&D&I grants SETI (TIN2009-07366), TAPAS
(TIN2012-32273), COPAS (P12-TIC-1867) and
THEOS (TIC-5906).

References

[1] T. Bartz-Beielstein and M. Preuss, Experimental research in
evolutionary computation, in: Proceedings of GECCO, ACM,
2007, pp. 3001-3020.

[2] M. Chiarandini, L. Paquete, M. Preuss and E. Ridge, Experi-
ments on metaheuristics: Methodological overview and open is-
sues, Technical report, Danish Mathematical Society, 2007.

[3]
[4]

[3]

(6]

[7]

C.A. Floudas and P.M. Pardalos, Encyclopedia of Optimization,
2nd edn, 2008.

J.A. Parejo, MOSES: A Metaheuristic Optimization Software
Ecosystem, PhD thesis, 2013.

J.A. Parejo, S. Lozano, A. Ruiz-Cortes and P. Fernandez, Meta-
heuristic optimization frameworks: A survey and benchmark-
ing, Soft Computing 16(3) (2012), 527-561.

J.A. Parejo, S. Segura, P. Fernandez and A. Ruiz-Cortés, QoS-
aware web services composition using grasp with path relinking,
Expert Systems with Applications 41(9) (2014), 4211-4223.

S. Segura, J.A. Parejo, R.M. Hierons, D. Benavides and A. Ruiz-
Cortés, Automated generation of computationally hard feature
models using evolutionary algorithms, Expert Systems with Ap-
plications 41(8) (2014), 3975-3992.

	Introduction
	Contributions
	Validation
	Acknowledgements
	References

