
AI Communications 26 (2013) 179–209 179
DOI 10.3233/AIC-130558
IOS Press

Automatic component abstraction for
Model-Based Diagnosis on relational models

Gianluca Torta ∗ and Pietro Torasso
Dipartimento di Informatica, Università di Torino, Torino, Italy
E-mails: {torta, torasso}@di.unito.it

Abstract. In the present paper, we address the problem of automatically synthesizing component abstractions by taking into
account the level of observability of the system as well as restrictions on its operating conditions. Compared with previous work,
the proposed approach can be applied to a significantly wider class of systems, namely those whose nominal and faulty behaviors
can be modeled with finite-domain relations.

The computed abstractions are specifically tailored for the Model-Based Diagnosis task, with the main goal of getting fewer
and more informative diagnoses through the use of abstract models. To this end, we define a spectrum of indiscriminability
relations among the states of subsystems, and formally prove that respecting indiscriminability is both a necessary and sufficient
condition for abstracting the original model without losing any relevant diagnostic information.

We present an algorithm for the computation of abstractions that implements two specially important cases of indiscriminabil-
ity, namely local and global-indiscriminability. The implemented system is exploited to collect experimental results that confirm
the benefits of using the abstractions for diagnosis, in terms of both the number of returned diagnoses and the computational cost.

Keywords: Component abstraction, task-dependent abstraction, Model-Based Diagnosis, relational models, minimum-cardinality
diagnoses

1. Introduction

In the Model-Based Diagnosis (MBD) field, several
works have investigated the possibility of performing
the diagnostic reasoning on an abstract model instead
of (or before) considering a detailed model involving a
larger number of components and/or more refined be-
haviors for each component (see for example [2,7,13,
17,19,20,22,23,28,29]).

In hierarchical diagnosis [7,17,20,23], the system
is modeled at two or more levels of abstraction and
the abstract models are used to focus diagnostic rea-
soning and, therefore, improve the efficiency. In par-
ticular, once abstract diagnoses have been computed,
they must be refined down to the ground level, where
each of the abstract diagnoses may correspond to many
detailed diagnoses; such a refinement is usually per-
formed by exploiting the detailed system models.

Another way to exploit abstraction in MBD has been
proposed in other works [22,28,29], which aim at auto-
matically synthesizing abstract models that are simpler

*Corresponding author: Gianluca Torta, Dipartimento di Infor-
matica, Corso Svizzera 185, 10149 Torino, Italy. E-mail: torta@
di.unito.it.

than the corresponding ground models but can com-
pletely replace them for diagnostic reasoning, without
incurring any loss of relevant diagnostic information;
following [22], we will refer to this kind of abstrac-
tions as task-dependent abstractions. In fact, the main
goal of this approach to abstraction is to forget details
of the model that are not relevant for a specific task
(i.e., diagnosis) in a possibly restricted set of situations
(defined, e.g., by the observability of the system, its
operating conditions and the desired precision of diag-
noses), thus tailoring the model to the use that will be
made of it.

In this paper, we will present an approach which is
able to automatically synthesize task-dependent com-
ponent abstractions that are based on suitable notions
of indiscriminability among system states (i.e., assign-
ments of behavioral modes to system components),
and ensure that diagnoses are fully preserved.

The two main reasons to use such abstractions in-
stead of the ground model for diagnostic reasoning
are:

• the computational cost is lower, since in general
the abstract diagnosis search space is smaller than
the ground one,

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.

0921-7126/13/$27.50 © 2013 – IOS Press and the authors.

180 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

• the returned abstract diagnoses are fewer and
more informative than the ground ones.

We will particularly stress the second point, since one
of the main challenges of diagnostic reasoning is that
all of the possible explanations of the observed system
behavior must be computed. The number of such ex-
planations can be exponential in the size of the sys-
tem, and tends to be particularly high when the system
model specifies too many details which are irrelevant
given the specific conditions under which diagnosis is
performed.

An alternative way to mitigate this problem, which
is often adopted in MBD, is that of computing just the
preferred diagnoses, instead of the whole set of diag-
noses. A common criterion for establishing a prefer-
ence order is minimum cardinality, i.e., the diagnoses
with the minimum number of faults are preferred. We
will show that our approach to abstraction can be easily
exploited for the computation of minimum-cardinality
diagnoses, and we will present experimental results
that show how abstraction can yield significant bene-
fits also when it is combined with the preference for
minimum cardinality diagnoses.

Our approach can be applied to the class of systems
that can be modeled as finite-domain relations which
specify the nominal as well as one or more faulty be-
haviors for each component. This kind of models can
capture non-directional and non-deterministic system
behavior; in other words, relational models do not re-
quire that the system behavior can be expressed as a
function from the system inputs to the system ouputs,
as it is the case for simpler models such as those
of combinatorial digital circuits. Typical examples of
non-directional models are found in hydraulic systems
and analog circuits, where the end points of a pipe or a
resistor can act either as input or output, depending on
the current direction of the flow of the fluid or electric-
ity.

In order to automatically abstract system compo-
nents, one obvious question concerns which sets of
ground components should be abstracted, and in which
order. However, when a system model specifies mul-
tiple behavioral modes, there is an additional funda-
mental question: how do we determine the behavioral
modes of abstract components, i.e., how do we syn-
thesize the behavior of an abstract component starting
from the models of the ground components that it ab-
stracts?

In this paper, we will propose an approach that
addresses these questions based on sound theoretical
grounds. First of all, we will briefly consider the state

of the art, focusing in particular on the kind of rela-
tionship between abstract and ground diagnoses that
is guaranteed by existing hierarchical approaches to
model abstraction; this should clearly position the ap-
proach presented in this paper, and motivate its devel-
opment.

After introducing formal definitions of system mod-
els, abstraction mappings, ground and abstract diag-
noses, we will present a spectrum of notions of in-
discriminability among mode assignments to system
components that play a major role in defining the rela-
tion between the behavioral modes of an abstract com-
ponent and the behavioral modes of its (ground) sub-
components. In particular, we will show that abstract
models based on indiscriminability can completely re-
place the ground models for diagnostic reasoning with-
out incurring any loss of relevant diagnostic informa-
tion.

In the second part of the paper, we will describe
in detail a practical algorithm for computing such a
kind of abstractions, focusing on two specially im-
portant cases of indiscriminability (local and global-
indiscriminability). Then, we will present a set of ex-
perimental results which confirm the expected benefits
of adopting the computed abstractions for diagnosis,
both in terms of the number of returned diagnoses and
of computational cost. Finally, we will discuss the re-
lated work and conclude the paper with a discussion.

2. Problem characterization and state of the art

One of the main problems in using abstraction for
diagnostic reasoning concerns the relation between
ground and abstract diagnoses.

Figure 1 provides a graphical interpretation of the
problem. The lower part of the figure shows the usual
way of performing diagnosis, whereby the diagnos-
tic problem is solved directly at the ground level by
exploiting the ground model and obtaining the set of
ground diagnoses and/or the preferred diagnoses ac-
cording to criteria such as minimum cardinality or
maximum probability.

The upper part shows that an abstract model is ob-
tained by applying an abstraction mapping AM to the
ground model. Also the observations may in general be
abstracted by applying an abstraction mapping AMobs
(see, e.g., the variables domains abstractions in [22]
for an example of abstract observations that differ from
the ground ones). In this paper we aim at exploiting
as much as possible the available observations in or-

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 181

Fig. 1. Correspondence between ground and abstract diagnoses.

der not to loose diagnostic discrimination, and there-
fore we assume that abstract and ground observations
are equal.

By exploiting the abstract model, it is possible to
solve the diagnostic problem and directly obtain the
set of abstract diagnoses and preferred diagnoses. The
relation between abstract and ground (preferred) diag-
noses is indicated by the downwards arrows in the pic-
ture. The question to be addressed is: how does the set
of ground diagnoses obtained from the set of abstract
diagnoses (through the inverse AM−1 of the mapping)
relate to the actual set of ground diagnoses computed
at the ground level?

Some important relations have been formalized in
the literature as properties of the abstraction map-
ping [32]. In particular, the downward failure property
of an abstraction mapping guarantees that each ground
diagnosis is mapped to an abstract diagnosis; in this
case, by solving the diagnostic problem at the abstract
level and then mapping back to the ground level, we
will not lose any ground diagnosis (but possibly we
will obtain spurious diagnoses). The downward failure
property is a prerequisite for the completeness of ab-
stract diagnostic reasoning, and most of the methods
developed so far aim at satisfying this property.

Another property formalized in [32] is the upward-
failure, which guarantees that, if an assignment of be-
havioral modes to the system components is inconsis-
tent at the ground level (i.e. not a ground diagnosis), it
is necessarily mapped to an assignment that is incon-
sistent at the abstract level (i.e. not an abstract diagno-
sis). If the upward-failure property holds, one can solve
a diagnostic problem at the abstract level, and when she

maps back the abstract diagnoses to the ground ones,
no spurious ground diagnoses are generated (but some
diagnoses may be missed).

Obviously, the most interesting case is when both
the downward- and the upward-failure properties hold,
so that solving a diagnostic problem at the abstract
level and then mapping back the abstract diagnoses
gives the same set of ground diagnoses as the ones ob-
tained by solving the diagnostic problem directly at the
ground level.

Example 2.1. In order to show that it is not trivial
to satisfy both the downward- and the upward-failure
property, let us consider the simple digital circuit de-
picted in Fig. 2 (left), consisting of two buffers B1, B2,
a NAND gate NA and two NOT gates N1, N2. Let us
suppose that each component can be in mode ok or ab
(where ab is any abnormal behavior that differs from
the correct behavior defined by the usual truth-tables
for the gates).

In this very simple example, the abstract compo-
nent NA∗ depicted in Fig. 2 (right) aggregates a sub-
system composed by NAND gate NA and buffers B1,
B2. A quite natural way to define the ok and ab modes
of the abstract component is the following:1

NA∗(ok) ↔ B1(ok) ∧B2(ok) ∧ NA(ok),

NA∗(ab) ↔ B1(ab) ∨B2(ab) ∨ NA(ab)

i.e., NA∗ is ok iff all its subcomponents are ok. It is
easy to see that this abstraction exhibits the downward-

1Used in [13] for Theory Diagnoses and, implicitly, in [23] for the
method based on cones.

182 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

Fig. 2. A simple digital circuit with an abstraction.

failure property: if {B1(ok), B2(ok), NA(ok)} is a
ground diagnosis, it means that B1(ok) ∧ B2(ok) ∧
NA(ok) is consistent with the observations (by defini-
tion of consistency-based diagnosis); therefore,
NA∗(ok) is consistent with the observations, i.e. it is
an abstract diagnosis. Similarly, if any ground assign-
ment that maps to NA∗(ab) is a ground diagnosis, then
B1(ab)∨B2(ab)∨NA(ab) is consistent with the obser-
vations, and therefore NA∗(ab) is an abstract diagnosis.

Unfortunately, however, the abstraction does not
guarantee the upward-failure property. Indeed, it is
easy to verify that, in a consistency based approach to
diagnosis, the following abstract diagnosis explains the
observations {I1(0), I2(0),O1(1),O2(1)} on the sys-
tem inputs and outputs:

{
NA∗(ab),N1(ok),N2(ok)

}
.

However, the following ground assignment which
maps to this diagnosis:

{
B1(ab),B2(ok), NA(ok),N1(ok),N2(ok)

}

is not a ground diagnosis, since given inputs I1(0)
and I2(0) it produces outputs O1(0), O2(0). In other
words, the abstraction introduces spurious diagnoses
and therefore the upward-failure property does not
hold.

The abstractions used in hierarchical diagnosis
(e.g. [7], SD-hierarchies [19,23]) usually aim to guar-
antee the downward failure property in order to avoid
missing some diagnoses, but do not guarantee the up-
ward failure, since it is difficult to enforce both proper-

ties. Therefore, after computing the abstract diagnoses
it is usually necessary to do further reasoning at the
lower levels of the hierarchy in order to rule out spu-
rious ground diagnoses; this process can be very time
consuming, especially when the number of abstract di-
agnoses is very high and many of them turn out to gen-
erate only spurious diagnoses.

In recent years, Siddiqi and Huang [23] have shown
that, for a limited class of system models that are
directional and specify only the nominal behavior,
it is possible to guarantee both the downward- and
the upward-failure property for the set of preferred
(minimum-cardinality) diagnoses. More specifically,
their work addresses the diagnosis of digital circuits
with a hierarchy of abstractions based on cones. A cone
is a set of components dominated by a component
called the cone vertex; all the paths from the subcom-
ponents of the cone to the system outputs go necessar-
ily through the vertex (for example, the abstract com-
ponent NA∗ in Fig. 2 is a cone dominated by the cone
vertex NA).

The fundamental assumption made in the cone-
based approach is that a single fault in the cone ver-
tex can always explain the faulty behavior of the whole
cone. Under this assumption, it can be proved that hier-
archical reasoning will eventually compute exactly the
set of preferred ground diagnoses. This is a relevant re-
sult for the diagnosis of digital circuits (and other di-
rectional systems with a weak fault model), and the
cone-based approach has been shown to be able to effi-
ciently diagnose very large circuits from the ISCAS-85
benchmark [5].

However, even for directional models such as those
of digital circuits, the method proposed in [23] is guar-
anteed to work just in case the only behavior repre-
sented in the model is the correct behavior. In the fol-
lowing example we show the effect of introducing an
explicit model of a faulty behavioral mode.

Example 2.2. Let us consider again the digital circuit
represented in Fig. 2 and its abstraction. Let us also
assume that each component has the ok mode and the
faulty mode sa1 (stuck at one), which sets the output
of the logical gate to 1 independently of the value of its
inputs. The abstraction implicitly defined in [23] is:

NA∗(ok) ↔ B1(ok) ∧B2(ok) ∧ NA(ok),

NA∗(ab) ↔ B1(sa1) ∨B2(sa1) ∨ NA(sa1).

It is easy to see that the two preferred ground diag-
noses of the diagnostic case characterized by the ob-

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 183

servations {I1(0), I2(0),O1(1),O2(1)} are:

{
B1(sa1),B2(sa1), NA(ok),N1(ok),N2(ok)

}
,

{
B1(ok),B2(ok), NA(ok),N1(sa1),N2(sa1)

}
.

Both of them involve a double fault. In contrast, if we
solve the problem at the abstract level, the only pre-
ferred abstract diagnosis is:

{
NA∗(ab),N1(ok),N2(ok)

}
,

which involves only one fault. Note in particular that
abstract diagnosis {NA∗(ok), N1(sa1), N2(sa1)} is not
preferred, since it involves two faults. The preferred
ground assignments that map to the preferred abstract
diagnosis are:

{
B1(sa1),B2(ok), NA(ok),N1(ok),N2(ok)

}
,

{
B1(ok),B2(sa1), NA(ok),N1(ok),N2(ok)

}
,

{
B1(ok),B2(ok), NA(sa1),N1(ok),N2(ok)

}
.

Both of the actual preferred ground diagnoses are not
among these assignments, and therefore are missed.

Our work is motivated by the goal of automati-
cally performing component abstractions that exhibit
both the downward- and upward-failure property on
the whole set of diagnoses as well as on the minimum-
cardinality diagnoses. More specifically, referring to
the schema of Fig. 1, we aim to:

(1) compute a mapping AM that is applied off-line
to the ground system model in order to obtain an
abstract system model,

(2) use the abstract model on-line (each time we need
to solve a diagnostic problem) for computing a
set of abstract diagnoses that fully correspond to
the ground diagnoses through AM−1.

As we shall see, abstractions are computed for a spe-
cific level of system observability and (possibly) sys-
tem operating conditions. As far as such conditions do
not change, the abstract model can be used for solving
any diagnostic problem.2 The advantage of comput-
ing and applying AM offline is twofold: first, by us-
ing a more abstract model, diagnostic problem solving
is faster; second, we directly obtain abstract diagnoses
that are fewer than the ground ones. It is worth noting,

2Actually, it can be easily shown that an abstract model can be
safely used also in case observability decreases.

however, that an abstraction mapping AM can also be
used in a different way. Referring again to the schema
of Fig. 1, it is possible to use the ground model for
computing the set of ground diagnoses, and then to ap-
ply AM to obtain the abstract diagnoses. This may be
useful when applying AM to the system model leads
to abstract components whose models are too complex,
but we still want to compute abstract diagnoses be-
cause they are fewer and more informative.

Finally, it is worth stressing the fact that, compared
to previous works on directional models such as [23,
28], we address the significantly broader class of finite-
domain relational system models, where no direction-
ality is required in the system behavior; a lot of at-
tention has been devoted to this broader class in the
Model-Based Diagnosis community [12,18,22,24], es-
pecially because it enhances reusability of component
models [24]. Moreover, we handle strong fault mod-
els, that (possibly) specify the faulty behavior(s) of the
components as well as the nominal one.

3. Preliminary definitions

Before presenting our definition of component ab-
stractions, we precisely define the class of system mod-
els upon which the abstractions can be applied. As it is
typical in MBD, we will first define component models
and then use them to define system models.

Definition 3.1. A Component Description SDc of
component c is a pair (SVc, DTc) where:

• SVc = {c} ∪ Pc is a set of Finite-Domain (FD)
variables associated with component c. The value
of variable c represents the behavioral mode of
the component (ok and one or more fault modes),
while Pc = {p1, . . . , pk} represents a set of ports
connecting c with other components or with the
external world,

• DTc (Component Domain Theory) is a relation on
variables SVc (i.e., DTc ⊆ dom(c) × dom(p1) ×
· · ·×dom(pk)) modeling the behavior of the com-
ponent in the ok and faulty modes.

From the component descriptions, it is easy to derive
a compositional definition of System Description.

Definition 3.2. Let SD1, . . . , SDn be a set of compo-
nent descriptions. A System Description SD derived
from SD1, . . . , SDn is a pair (SV , DT) where:

184 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

• SV = (
⋃

i=1,...,n SVi) is the set of FD system
variables partitioned in C = {c1, . . . , cn} (com-
ponents), P (system ports) and I (internal vari-
ables). A set O ⊆ P ∪ I represents the set of ob-
servable variables (observability);

• DT = {DT1, . . . , DTn} (Domain Theory) is a set
of component domain theories, each one model-
ing the behavior of a component.

The set of ports P represents the interface between
the system and the external world, while the set of in-
ternal variables I represents the connections between
pairs of components. Without loss of generality, we as-
sume that each port p ∈ P appears in exactly one com-
ponent theory DTi, while internal variables I appear in
exactly two component theories DTi, DTj , i �= j.

We denote as Pexo ⊆ P∩O the set of exogenous con-
trollable ports, whose value is externally controlled and
known, and with Pend = P\Pexo the remaining (en-
dogenous) ports. An important role is played by system
states, defined as follows.

Definition 3.3. Let SD be a System Description over
components C. A state S of the system is an assign-
ment {c1(bm1), . . . , cn(bmn)} of a behavioral mode to
each component c ∈ C.

Given DT = {DT1, . . . , DTn}, the Global Domain
Theory GDT is defined as the natural join (denoted as
�) of the component theories in DT:3

GDT = DT1 � · · · � DTn.

The compositional approach adopted for building SD
can be straightforwardly extended to model any sub-
system Γ involving a subset of components {c1, . . . ,
cm} ⊆ C. We will denote with SD(Γ) = (SVΓ, DTΓ)
the model of subsystem Γ.

We are now ready to define Diagnostic Problems
and diagnoses.

Definition 3.4. A Diagnostic Problem is a pair DP =
(SD,O) where SD is a system description, and O is an
assignment to the O variables.

3Since our modeling approach deals with relational models, all
the operations needed for model manipulation will be expressed in
terms of the standard operators of relational algebra: �, project and
select.

Definition 3.5. Let DP = (SD,O) be a Diagnostic
Problem. A consistency-based diagnosis for DP is a
system state SD such that:

GDT � SD � O �= ∅.

The definition reported above corresponds to the
classical definition of consistency based diagnosis:

GDT ∧ SD ∧ O �� ⊥

expressed in relational rather than logical terms: SD is
a diagnosis for a problem DP = (SD,O) iff SD and O
appear together in at least one tuple of GDT , i.e. if O
is a possible observation induced by SD.

We also define a preference criterion among diag-
noses, by enriching the model with ranks r(c(bm)) as-
sociated with each behavioral mode bm of each sys-
tem component c. Ranks [15] are non-negative inte-
gers s.t., informally speaking, an event with rank r is
one order-of-magnitude more likely than an event with
rank r + 1; since smaller ranks represent higher prob-
abilities, a rank can be seen as a cost.

Under the usual assumption of independence of
faults, the rank of a diagnosis SD = {c1(bm1), . . . ,
cn(bmn)} is given by:

r(SD) =
n∑

i=1

r
(
ci(bmi)

)

and we prefer the diagnoses with the smallest rank.
It is easy to see that, when the ok mode of each com-

ponent c has rank 0 and all the other (faulty) modes
have rank 1, our preference criterion corresponds to
minimum cardinality. For simplicity, we will assume
that ranks are assigned in this way in the ground model,
so that a ground diagnosis of cardinality N has rank N .
In general, however, the rank-based criterion is more
flexible than minimum cardinality, since it allows dif-
ferent fault modes of components to have different
weights. This possibility will be necessary for properly
defining the ranks of abstract behavioral modes.

4. Abstractions

4.1. Abstraction mappings

We are interested in abstracting subsystems into
abstract components. Since, as a result of abstrac-
tion, the internal variables of the subsystem are dis-

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 185

carded (as explained in Section 4.2), we will consider
only subsystems whose internal variables are all non-
observable (i.e. such that O ∩ I(Γ) = ∅); in this way,
the observations are preserved by the abstraction.

In our framework, components have in general many
behavioral modes (Definition 3.1) and, therefore, the
abstraction must specify not only which components Γ
are merged into an abstract component ACΓ, but also
how the behaviors of the components of subsystem Γ
are abstracted into the behavior of ACΓ. The following
definition of Component Abstraction Mapping takes
care of these important points.

Definition 4.1. Let SD be a system description with
observability O, and Γ be a subsystem s.t. O ∩ I(Γ) =
∅. A Component Abstraction Mapping AMΓ is a triple
(ACΓ, Γ, BMΓ) where:

• ACΓ is the abstract component defined by the
mapping, with ports P (ACΓ) = P (Γ),

• Γ = {c1, . . . , cm} is the set of subcomponents of
ACΓ,

• BMΓ is a set {(abm1,λ1), . . . , (abmk,λk)},
which:

– enumerates the behavioral modes abm1, . . . ,
abmk of ACΓ,

– associates with each abmi a non-empty subset
λi of states of Γ s.t. any possible state SΓ of Γ is
associated with exactly one abstract behavioral
mode abmi.

The ports of the abstract component ACΓ are exactly
the same as the ones of the subsystem Γ, while the in-
ternal variables of Γ are forgotten in the abstract com-
ponent ACΓ (because abstract components, as ground
components, do not have internal variables). The defi-
nition imposes the obvious requirement that each abmi

corresponds to at least one state of Γ. More inter-
estingly, it also requires that the abstract behavioral
modes cover all the ground states of Γ and are mutu-
ally exclusive, as it is the case for ground behavioral
modes.

Component abstraction mappings, by definition,
map each state of a subsystem to some abstract behav-
ioral mode. As we shall see, it is also useful to intro-
duce mappings that are defined just on the preferred
states according to the definitions given in Section 3.

Definition 4.2. Let AMΓ be a Component Abstrac-
tion Mapping defining an abstract component ACΓ
with behavioral modes {abm1, . . . , abmk}. The rank of

abstract behavioral mode abmi associated with the set
of states λi is defined as:

r(abmi) = min
({

r(SΓ): SΓ ∈ λi
})

.

A Preferred Component Abstraction Mapping PMΓ
derived from AMΓ associates with each abmi ∈
dom(ACΓ) the set of states λ′i = {SΓ: SΓ ∈ λi and
r(SΓ) = r(abmi)}.

According to this definition, a preferred component
abstraction mapping is just a restriction of a component
abstraction mapping to the preferred states of Γ. Note
that the definition of the rank of an abstract behavioral
mode abmi follows from the fact that abmi represents
the disjunction of all the states SΓ ∈ λi, whose rank is
the min of the ranks of such states.

The notion of abstraction mapping can be straight-
forwardly extended to the whole system, by consider-
ing a set of component abstraction mappings.

Definition 4.3. Let us consider a set of subsystems
Γ1, . . . , Γp such that they form a partition of the whole
system (more formally, Γ1 = {c1

1, . . . , c1
m1

}, . . . , Γp =

{cp1 , . . . , cpmp} are a partition of the set of compo-
nents C).

A (System) Abstraction Mapping AM is a set
of Component Abstraction Mappings {AMΓ1 , . . . ,
AMΓp} which maps each subsystem Γi to an abstract
component ACΓi (i = 1, . . . , p).

We conclude this section by defining a partial or-
der among component abstraction mappings that will
prove useful later in the paper.

Definition 4.4. Let us consider two Component Ab-
straction Mappings AMΓ and AM′

Γ of a subsystem
Γ such that AMΓ partitions the set of states of Γ in
{λ1, . . . ,λk} and AM′

Γ in {λ′1, . . . ,λ′l}. If for each
λ′i, i ∈ {1, . . . , l} there exists λj , j ∈ {1, . . . , k} s.t.
λ′i ⊆ λj , we say that AM′

Γ is a refinement of AMΓ.

Intuitively, AMΓ represents a stronger abstraction
of subsystem Γ, since each of the abstract behavioral
modes it defines potentially corresponds to two or
more abstract behavioral modes defined by its refine-
ment AM′

Γ.

186 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

4.2. Abstract system descriptions

Starting from a component abstraction mapping
AMΓ = (ACΓ, Γ, BMΓ), it is possible to automati-
cally synthesize the component theory DT(ACΓ) which
describes the behavior of the abstract component ACΓ.
Let GDTP (Γ) be the relation obtained by discarding
the internal variables from the global domain theory of
Γ. In relational algebra, this corresponds to projecting
GDT(Γ) on the components and ports of Γ, i.e.:

GDTP (Γ) = projectΓ∪P (Γ)GDT(Γ).

Each tuple of GDTP (Γ) has the form SΓ ∪PΓ, where:

• SΓ is a state of Γ (i.e. an assignment of behavioral
modes to the components of the subsystem),

• PΓ is an assignment to the ports P (Γ) of Γ.

In order to obtain DT(ACΓ), we simply replace each tu-
ple SΓ∪PΓ in GDTP (Γ) with a tuple {ACΓ(abm)}∪PΓ
such that AMΓ associates state SΓ with the abstract
behavioral mode abm. Note that the resulting compo-
nent theory of ACΓ is expressed in terms of the vari-
able ACΓ representing the abstract component, plus the
ports of the subsystem Γ.

It is important to note that:

• the resulting component theory DT(ACΓ) of ACΓ
is not larger than the global domain theory
GDT(Γ) of the abstracted subsystem Γ. Indeed,
both the projection on the Γ ∪ P variables and
the replacement of states SΓ with ACΓ(abm) can
transform sets of tuples into single tuples. In prac-
tice, this can cause a dramatic reduction of the
number of tuples (see Table 1 and the associated
discussion in Section 8),

• the number of states dom(ACΓ) of component
ACΓ is not larger than the number of states of the
abstracted subsystem Γ. Indeed, there is at most
one behavioral mode of ACΓ for each state of Γ.

Note that, as a consequence, the number of tuples in the
system global domain theory GDT does not increase
(and, in practice, can significantly decrease) by apply-
ing abstractions. Indeed, GDT can be written as:

GDT = GDT(Γ) � GDT(C\Γ)

i.e., as the join of the global domain theories of sub-
system Γ and its complementary subsystem C\Γ. If
GDT(Γ) is replaced with DT(ACΓ), GDT does not in-

crease. Similarly, the number of global system states
can be written as:

S = S(Γ) × S(C\Γ)

i.e., as the cross product of the sets of states of Γ and
C\Γ. If S(Γ) is replaced with dom(ACΓ), S does not
increase. Since S represents the search space for di-
agnostic reasoning, also the number of solutions to
diagnostic problems cannot be negatively affected by
abstraction. Note that, in general, the size of S de-
pends on the number of system components and on the
number of behavioral modes of each component; since
component abstraction addresses both of these parame-
ters, it can cause a dramatic reduction of the diagnostic
search space (see Table 2 and the associated discussion
in Section 8).

What abstraction does not guarantee per se is that
the number of tuples in DT(ACΓ) is always small
enough to be stored and managed efficiently; for this
reason, in Section 7 we will add further conditions
for accepting and applying a candidate component
abstraction; when such conditions are not met, the
abstraction is simply discarded, and other candidate
abstractions are considered.

With the component theories of abstract compo-
nents, it is easy to build an abstract system description
SDA = (SVA, DTA) corresponding to a given ground
system description SD = (SV , DT) and a system ab-
straction mapping AM = {AMΓ1 , . . . ,AMΓp}.

The set of abstract system variables SVA is parti-
tioned in PA (ports), CA (components) and IA (inter-
nal variables) where:

• CA = {ACΓ1 , . . . , ACΓp},
• PA = P ,
• IA = (

⋃
i=1,...,p P (Γi))\PA.

First of all, the components in SDA are the abstract
components ACΓ1 , . . . , ACΓp specified in the abstrac-
tion mapping. The ports of the abstract system are the
same as the ones of the ground system, while the in-
ternal variables IA are the union of the sets of ports
of the abstract components ACΓ1 , . . . , ACΓp , except for
the variables which are system ports.

Finally, the abstract domain theory DTA is just the
set of component theories modeling the behavior of
each abstract component, i.e. DTA = {DT(ACΓ1), . . . ,
DT(ACΓp)}.

Example 4.1. To illustrate the concepts introduced so
far, let us now focus our attention on a more signif-

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 187

Fig. 3. The schema of the propulsion subsystem and the HIGH ob-
servability.

icant system. In Fig. 3 we report the overall schema
of the propulsion system of a spacecraft adapted from
the one discussed in [18] to illustrate NASA’s Model-
Based approach to spacecraft autonomy developed for
the Remote Agent experiment.

The system involves 64 components: two tanks
(Tk1 and Tk2), two engines (En1 and En2), 14 valves
(V 01, V 02, V 101–V 106, V 201–V 206), 4 pyro-valves
(PV101, PV102, PV201, PV202), 6 splits (S12, S21,
S101, S102, S201, S202), 4 joins (J101, J102, J201,
J202) and 32 pipes. As it is typically done in Model
Based Diagnosis, the component models are specified
by instantiating the generic models of certain types of
components. Appendix A provides a detailed descrip-
tion of the component models involved in the propul-
sion system, which follow the modeling approach de-
scribed in [24]. Here we just stress the fact that the
component models are non-directional (i.e. there is no
distinction between inputs and outputs of a compo-
nent).

As for the fault modes of the components, tanks and
junctions are assumed to have no faults; pipes can be
clogged, denoted cl (flow is completely blocked by the
pipe) or broken, denoted br (flow that enters one end
of the pipe does not reach the other end); and valves
can be stuck-open, denoted so (the valve is open even
if it has been commanded to close) and stuck-closed,
denoted sc (the valve is closed even if it has been com-
manded to open).

The propulsion system is also characterized by 18
exogenous commands, namely the commands to the 14
valves and to the four pyro-valves:

Pexo = {cmdV 01, . . . , cmdV 206, cmdPV 101, . . . ,

cmdPV 202}.

In principle the (potentially) observable endogenous
variables include the flow at each pipe terminal, the
flows at each engine terminal and the thrust of the two
engines (for a total of 70 potential observables).

The system observability, denoted as HIGH for later
reference and partially indicated in the picture by white
circles, includes:

• all of the commands cmdV issued to the valves
and pyro-valves, which can take values open or
close

• endogenous variables {fP 01
1 , fP 101

1 , fP 102
1 ,

fP 107
1 , fP 108

1 , fP 110
1 , fP 113

2 , fP 114
1 , fEn1

2 , fP 201
1 ,

fP 207
1 , fP 208

1 , fP 209
2 , fP 212

2 , fP 214
1 , th1, th2},

where:

– each variable fci represents flow at terminal
i of component c, and can take values 0 (no
flow), + (flow enters c through terminal i) and
− (flow leaves c through terminal i),

– variables th1, ths represent the presence of
thrust at each engine, and can take values yes
and no.

Overall, the system description of the ground model
of the propulsion system involves 494 variables and it
is easy to imagine that the diagnosis of such a system
may produce a large number of results (even of pre-
ferred diagnoses) which may be difficult to understand
by the human (or artificial) operator in charge of mon-
itoring the system.

In the top right portion of Fig. 3, a dashed box
encloses a subsystem Γ composed by tank Tk2, pipe
P02, valve V 02, and pipe P04. Let us consider the
abstraction of this subsystem into an abstract compo-
nent Tk2 → P04. According to Definition 4.1, the
ports of Tk2 → P04 include the variables associated
with the second end of pipe P04 (in particular, the flow
fP 04

2 exiting from P04), while all the variables asso-
ciated with the terminals connecting the other compo-
nents are discarded during abstraction; moreover, the
abstract component has a port corresponding to the ex-
ogenous command to valve V 02.

This abstraction is allowed by our definition of com-
ponent abstraction mapping, since none of the internal
variables of subsystem {Tk2,P02,V 02,P04} are ob-
servable. This is not true for the corresponding subsys-
tem involving Tk1, P01, V 01 and P03 (top left portion
of Fig. 3), since the terminal connecting Tk1 and P01
is observable.

It is important to stress the fact that, in our frame-
work, the structure of the abstraction (i.e. the set of

188 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

AM:
abm0 = {(ok, ok, ok, ok)}
abm1 = {(ok, ok, so, ok)}
abm2 = {(ok, ok, ok, cl), (ok, ok, ok, br), (ok, ok, so, cl), (ok, ok, so, br), (ok, ok, sc, ok),

(ok, cl, ok, ok), (ok, br, ok, ok), (ok, cl, so, ok), (ok, br, so, ok), (ok, cl, sc, ok), (ok, br.sc, ok),
(ok, ok, sc, cl), (ok, cl, ok, cl), (ok, br, ok, cl), (ok, cl, so, cl), (ok, br, so, cl), (ok, cl, sc, cl),
(ok, br, sc, cl), (ok, ok, sc, br), (ok, cl, ok, br), (ok, br, ok, br), (ok, cl, so, br), (ok, br, so, br),
(ok, cl, sc, br), (ok, br, sc, br)}

PM:
abm0′ = {(ok, ok, ok, ok)}
abm1′ = {(ok, ok, so, ok)}
abm2′ = {(ok, ok, ok, cl), (ok, ok, ok, br), (ok, ok, sc, ok), (ok, cl, ok, ok), (ok, br, ok, ok)}

Fig. 4. An abstraction mapping and its Preferred Mapping. A tuple (x, y,w, z) stands for a state {Tk2(x),P02(y),V 02(w),P04(z)} of the
abstracted subsystem.

components Γ that have been merged into an abstract
component ACΓ) is not sufficient to completely cap-
ture the mapping. According to Definition 4.1, we also
need to specify the abstract behavioral modes abmi of
ACΓ and their associated sets of states λi.

Each one of the 27 states of subsystem Γ =

{Tk2,P02,V 02,P04} (recall that pipes can be in
modes ok, cl, br, and valves can be in modes ok, so,
sc, while tanks are assumed to be always in the ok
mode) must be mapped to exactly one abstract behav-
ioral mode of Tk2 → P04.

As we will show in the next sections, an interest-
ing abstraction mapping AM is the one shown in
Fig. 4 (top), which involves just three abstract behav-
ioral modes. It is easy to verify that this abstraction
mapping represents a partition of the set of possible
states of subsystem Γ = {Tk2,P02,V 02,P04}. The
abstract behavioral mode abm0 corresponds to the case
where all components are ok, abm1 corresponds to the
case where there is some flow exiting from P04 even
if the command to V 02 is set to close, and abm2 cor-
responds to the many situations where there is no flow
from P04.

We have also introduced the notion of preferred ab-
straction mapping (Definition 4.2), where only the pre-
ferred states of Γ are retained. For the abstract com-
ponent Tk2 → P04, the preferred abstraction map-
ping PM corresponding to the abstraction mapping
discussed above is shown in Fig. 4 (bottom).

The rank of abm0 is 0, while the rank of abm1 and
abm2 is 1. Note in particular that in the mapping PM,
the only ground states mapped to the abstract mode
abm2 are those of rank 1.

5. Indiscriminability

5.1. Global indiscriminability

In many cases, the solution to a diagnostic prob-
lem DP involves a large set of diagnoses. Obviously,
the number of alternative diagnoses strongly depends
on the observations. In fact, when in a specific diag-
nostic problem DP the observations O involve just a
small subset of the variables, we can expect a large set
of diagnoses due to the limited ability to discriminate
among different diagnoses.

A small discrimination power has a (negative) im-
pact not only on the time needed for computing the
large set of diagnoses, but also on the information
value of the result for the human or artificial supervisor
responsible for taking an action (e.g., interpretation, re-
configuration, repair) once the diagnosis has been per-
formed.

In this section we introduce indiscriminability to for-
mally capture the notion of discrimination power. We
relate indiscriminability with two factors that can have
a strong impact: the system observability O (as dis-
cussed above), and the context restriction R. Contexts
and context restrictions are defined as follows.

Definition 5.1. A context is an assignment X to the
Pexo variables.

Recalling that the Pexo variables represent the ex-
ogenous controllable ports, such as the inputs to a cir-
cuit or the commands to a set of valves, a context is
simply a specific choice of values for such controllable
ports, e.g., a specific input vector to a circuit or a spe-
cific set of commands to the valves.

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 189

Definition 5.2. A context restriction R specifies the
assignment of a value to each variable in a subset R of
Pexo. The meaning of a context restriction is that the
system will operate only in contexts X that agree with
the partial assignment R.

In practice, context restrictions are useful mainly to
specify restrictions on the exogenous commands that
can be issued to the system.

We start with the definition of a special case of in-
discriminability, G-indiscriminability, that will prove
to be particularly important in the following. Then, in
the next section we generalize it to the broader case of
Γ+-indiscriminability.

Definition 5.3. Let SD be a system description, O be
the system observability and R be a context restriction.
Moreover, let Γ be a subsystem s.t. I(Γ) ∩O = ∅.

We say that two states SΓ, S′
Γ of Γ are

G-indiscriminable w.r.t. O, R iff for any state SΔ of
Δ = C\Γ the following holds:

projectO(selectSΓ∧R∧SΔGDT)

= projectO(selectS′
Γ∧R∧SΔ

GDT). (1)

In Eq. (1) we check the equality of two relations ρ
and ρ′, obtained by selecting from the global system
model GDT the tuples that agree with assignments SΓ,
R and SΔ (resp. S′

Γ, R and SΔ for ρ′), and then project-
ing such tuples on the system observables O. In other
words, the G-indiscriminability of SΓ, S′

Γ requires that,
in the contexts restricted by R, these two states pro-
duce the same system observations regardless of the
state of the other system components Δ = C\Γ.

There is an obvious relation between the solu-
tions to a diagnostic problem and the notion of G-in-
discriminability. Let us consider a diagnostic problem
DP = (SD,O) where O respects the constraints im-
posed by a context restriction R. If states SΓ, S′

Γ of Γ
are G-indiscriminable w.r.t. O, R and if D = SΓ ∪ SΔ
is a diagnosis for the diagnostic problem DP, then
D′ = S′

Γ ∪SΔ is an alternative diagnosis for DP. More
generally, if the system has been partitioned into sub-
systems Γ1, . . . , Γp, and D = SΓ1 ∪· · ·∪SΓp is a diag-
nosis for a diagnostic problem DP, all of the diagnoses
D′ = S′

Γ1 ∪· · ·∪S′
Γp s.t. SΓi , S′

Γi (i = 1, . . . , p) are G-
indiscriminable w.r.t. O, R are also diagnoses for DP.
Depending on how many states are G-indiscriminable
from SΓi in each subsystem Γi, the set of diagnoses
that are always computed and returned with diagnosis
D can be very large (in fact, up to exponential in the
number of components |C|).

5.2. Generalization of G-indiscriminability

Before generalizing G-indiscriminability, we need
to introduce the concept of obs-boundary of a subsys-
tem Γ.

Definition 5.4. Let SD be a system description, O be
the system observability and Γ be a subsystem. The
obs-boundary of Γ is defined as:

B(Γ) = O(Γ) ∪ P (Γ).

Intuitively, the obs-boundary of Γ contains all of the
variables associated with subsystem Γ that could im-
pact the diagnosis of Γ itself: the observables within Γ,
and the ports that connect Γ with the rest of the system
(whose values can, therefore, be related with the values
of some observables outside of Γ). The obs-boundary
B(Γ) plays for subsystem Γ the same role that the sys-
tem observability O plays for the whole system.

Definition 5.5. Let SD be a system description, O be
the system observability and R be a context restriction.
Moreover, let Γ be a subsystem s.t. I(Γ) ∩O = ∅, and
let Γ+ be a subsystem containing Γ, i.e. Γ ⊆ Γ+.

We say that two states SΓ, S′
Γ of Γ are Γ+-

indiscriminable w.r.t. O, R iff for any state SΔ+ of
Δ+ = Γ+\Γ the following holds:

projectB(Γ+)

(
selectSΓ∧R∧SΔ+

GDT(Γ+)
)

= projectB(Γ+)

(
selectS′

Γ∧R∧SΔ+
GDT(Γ+)

)
.

(2)

This definition mirrors Definition 5.3 of G-in-
discriminability; however, the considered portion of
the system surrounding Γ is generalized from be-
ing the whole set of components C to any subsys-
tem Γ+ ⊇ Γ; as a consequence, the global sys-
tem model GDT is replaced by the global model
GDT(Γ+) of subsystem Γ+, and the system observ-
ability O is replaced to the obs-boundary B(Γ+).
Note that the Γ+-indiscriminability relations (includ-
ing G-indiscriminability) are equivalence relations,
and therefore they induce a partition of the set of
possible states of subsystem Γ into indiscriminability
classes.

The generalization of G-indiscriminability to Γ+-
indiscriminability determines a spectrum of indiscrim-
inability relations, one for each admissible Γ+. In
the following, beside G-indiscriminability, we will fo-
cus on another special case of Γ+-indiscriminability,
namely L-indiscriminability (local indiscriminability).

190 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

L-indiscriminability is characterized by the fact that
Γ+ = Γ, i.e. only the subsystem Γ is taken into account
while the rest of the system is ignored. In this case,
B(Γ+) = B(Γ) = P (Γ) (recall that I(Γ)∩O = ∅), and
therefore the projections are made on the ports of Γ.
In other words, the L-indiscriminability of SΓ, S′

Γ re-
quires that (in the contexts restricted by R) these two
states produce the same values on the ports of Γ.

The notions of G- and L-indiscriminability as de-
fined here are strongly related to the notions of global/
local interchangeability exploited in the compilation of
CSPs [31] and also in MBD [22]. We prefer to use the
different term indiscriminability to stress the fact that
indiscriminability applies to states SΓ, S′

Γ of a subsys-
tem Γ instead of tuples of some relation, and it depends
on the system observability and the context restriction;
these differences are important in order to better suit
the characteristics of the diagnostic task. Despite these
differences, we believe that in future work it could be
worth exploring the adaptation of techniques devel-
oped for determining interchangeability to our frame-
work (e.g., [25,31]). In particular, adapting the tree-
of-BDDs approach described in [25] could likely be
useful for improving the scalability of the BDD-based
computation of G-indiscriminability that will be de-
scribed in Section 7.5.

We conclude this section by defining a conve-
nient notation for denoting two special kinds of com-
ponent abstraction mappings, based on G- and L-
indiscriminability, that will be important in the follow-
ing.

Definition 5.6. Let (ACΓ, Γ, BMΓ) be a component
abstraction mapping with BMΓ = {(abm1,λ1), . . . ,
(abmk,λk)}.

If the sets λi associated with each abmi correspond
one-to-one with the G-indiscriminability classes of the
states of Γ, i.e.:

SΓ,S′
Γ ∈ λi iff SΓ,S′

Γ are G-indiscriminable

then we denote such a mapping as AMG
Γ .

Similarly, we denote as AML
Γ a component abstrac-

tion mapping corresponding one-to-one with the L-
indiscriminability classes.

5.3. Correct abstraction mappings

Based on Γ+-indiscriminability, we now specialize
the notion of component abstraction mapping (Defi-
nition 4.1) to that of correct component abstraction
mapping. We say that such mappings are correct be-

cause they guarantee that diagnostic reasoning at the
abstract level does not introduce spurious (i.e. incor-
rect) ground diagnoses, as shown in Section 6.

Definition 5.7. A Component Abstraction Mapping
AMΓ is correct w.r.t. the degree of observability O
and a context restriction R iff any pair of states of Γ
that are associated by AMΓ with the same abstract be-
havioral mode abmi are Γ+-indiscriminable for some
Γ+ ⊇ Γ.

From the definition it is immediate to see that AMG
Γ

and AML
Γ are correct, as well as any mapping which

associates the abstract behavioral modes with the Γ+-
indiscriminability classes one-to-one for some Γ+ ⊇
Γ. The following theorem assures that AMG

Γ is the
strongest among the correct abstraction mappings. The
proof is reported in Appendix C.

Theorem 5.1. Each correct abstraction mapping is a
refinement of AMG

Γ .

Example 5.1. Consider again the hydraulic system
of Figure 3, and in particular the subsystem Γ =
{Tk2,P02,V 02,P04}.

If we apply the G-indiscriminability relation, we get
an abstraction mapping AMG

Γ which is exactly the one
reported in the previous Example 4.1; such a mapping
defines just three abstract behavioral modes where:

abm0G = {(ok, ok, ok, ok)},

abm1G = {(ok, ok, so, ok)},

abm2G includes the other ground states of Γ.

If, on the other hand, we make use of the notion of lo-
cal indiscriminability, we get the abstraction mapping
AML

Γ shown in Fig. 5, which involves 5 abstract be-
havioral modes.

It is easy to see that AML
Γ is indeed a refinement of

AMG
Γ and, in particular, that modes abm2L, abm3L,

and abm4L refine mode abm2G.

6. Correspondence of diagnoses

We are now in the position of addressing some of
the issues discussed in Section 2, and graphically illus-
trated in Fig. 1. In particular, we start from the ques-
tion whether, by solving the diagnostic problem at the
abstract level and then mapping back the abstract diag-
noses with the inverse mapping AM−1, we can get the

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 191

abm0L = {(ok, ok, ok, ok)}
abm1L = {(ok, ok, so, ok)}
abm2L = {(ok, br, ok, ok)}
abm3L = {(ok, ok, ok, cl), (ok, ok, so, cl), (ok, ok, sc, ok), (ok, cl, ok, ok), (ok, cl, so, ok),

(ok, cl, sc, ok), (ok, br, sc, ok), (ok, ok, sc, cl), (ok, cl, ok, cl), (ok, cl, so, cl), (ok, cl, sc, cl),
(ok, br, sc, cl), (ok, br, so, cl), (ok, br, ok, cl)}

abm4L = {(ok, ok, ok, br), (ok, ok, so, br), (ok, ok, sc, br), (ok, cl, ok, br), (ok, cl, so, br),
(ok, cl, sc, br), (ok, br, ok, br), (ok, br, so, ok), (ok, br, so, br), (ok, br, sc, br)}

Fig. 5. An abstraction mapping based on local indiscriminability. Each tuple (x, y,w, z) stands for a state {Tk2(x),P02(y),V 02(w),P04(z)}.

same set of ground diagnoses as if we solved the diag-
nostic problem directly at the ground level. After an-
swering (positively) this question, we will answer the
same question for preferred diagnoses.

The possibility of performing diagnostic reasoning
at the abstract level without losing any ground diagno-
sis is assured by the following theorem.

Theorem 6.1. Let AM be a System Abstraction Map-
ping according to Definition 4.3. Moreover, let SDA
be the abstraction of SD according to AM and let
DP = (SD,O) be a diagnostic problem; we denote
with DPA = (SDA,O) the abstract diagnostic prob-
lem corresponding to DP according to AM.

For any ground state SG that is a diagnosis for DP,
the abstract state SA obtained from SG via AM is an
abstract diagnosis for DPA.

The proof is reported in Appendix C. The theorem
states that each diagnosis obtained by solving a ground
diagnostic problem DP corresponds to an abstract di-
agnosis obtained by solving a diagnostic problem DPA
at the abstract level, so we are guaranteed that the
downward-failure property holds.

It is worth noting that the precondition of this theo-
rem is quite weak: in fact, according to Definitions 4.1
and 4.3, a system abstraction mapping requires only
that the abstract modes of an abstract component are
associated with a partition of the ground states of the
abstracted subsystem. This explains why guaranteeing
the downward-failure property alone is relatively easy,
so that most of the existing approaches to hierarchical
abstraction are actually able to enforce it.

While Theorem 6.1 focused on a condition for not
missing diagnoses, in the following theorem we show
that, if the abstraction mapping is correct, no spurious
ground diagnoses are introduced by reasoning at the
abstract level.

Theorem 6.2. Let AM be a correct System Abstrac-
tion Mapping according to Definition 5.7. Moreover,

let SDA be the abstraction of SD according to AM
and let DP = (SD,O) be a diagnostic problem; we
denote with DPA = (SDA,O) the abstract diagnostic
problem corresponding to DP according to AM.

For any abstract state SA that is an abstract diag-
nosis for DPA, all of the ground states SG that can be
obtained from SA via the inverse abstraction mapping
AM−1 are diagnoses for DP.

The proof is reported in Appendix C. This theorem
guarantees that the upward-failure property holds if
AM is correct w.r.t. O and R. It is worth noting that
the precondition of this theorem is significantly more
demanding than that of the previous theorem, since it
requires that the abstraction mapping is correct, and
therefore it involves the satisfaction of the indiscrim-
inability relation (see Definition 5.7).

Together, Theorems 6.1 and 6.2 guarantee that, for
correct abstraction mappings, we can answer positively
to the main question posed by the schema of Fig. 1:
solving a diagnostic problem at the abstract level and
then mapping back the abstract diagnoses gives the
same set of ground diagnoses obtained by solving the
diagnostic problem directly at the ground level.

Actually, we are able to prove a much stronger re-
sult: considering a correct abstraction mapping w.r.t.
observability O and context restriction R, is not only
a sufficient condition for Theorem 6.2 to hold, but it is
also a necessary condition, as stated in the following
theorem (the proof is in Appendix C).

Theorem 6.3. If AM satisfies Theorem 6.2 for any
problem DP = (SD,O) s.t. O satisfies R, then AM is
a correct mapping.

Theorems 6.2 and 6.3 point out the essential role
played by the notion of indiscriminability as intro-
duced in this paper in order to assure the equivalence
among the abstract diagnoses and the ground ones. In
particular, indiscriminability is useful for reducing the

192 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

problem of deciding whether an abstraction fully pre-
serves the diagnosis power to the problem of deciding
whether a certain relation holds between all of the pairs
of subsystem states that are merged by the abstraction.
Deciding if such a relation holds may involve look-
ing just at the model of one abstracted subsystem at a
time (in case of local indiscriminability), looking at the
whole system model (in case of global indiscriminabil-
ity), or any possibility in between these two (in case of
generic Γ+-indiscriminability).

If we put together the above theorems with The-
orem 5.1 (which states that all correct abstraction
mappings are refinements of the abstraction map-
ping AMG based on G-indiscriminability), we con-
clude that, once the partition of the system into
subsystems has been determined, we need to adopt
G-indiscriminability if we want to get the strongest ab-
straction that fully preserves ground diagnoses.

So far we have discussed the correspondence be-
tween abstract and ground diagnoses by assuming that
the diagnostic algorithm computes all of the possible
diagnoses. However, as discussed in Section 3, the no-
tion of preferred diagnoses is important in practical di-
agnostic problem solving, where it is sometimes suffi-
cient to focus on the diagnoses of minimum cardinality.
The following theorem states an important result about
the correspondence between ground and abstract pre-
ferred diagnoses, when a correct abstraction mapping
is applied (the proof is reported in Appendix C).

Theorem 6.4. Under the hypotheses of Theorem 6.2,
let PM be a Preferred Abstraction Mapping derived
from correct Abstraction Mapping AM.

For any ground state SG that is a minimum cardinal-
ity diagnosis for the diagnostic problem DP involving
N faults, the abstract state SA obtained from SG via
PM is a preferred abstract diagnosis for DPA with
rank N . Moreover, for any SA that is a preferred ab-
stract diagnosis for DPA with rank N , all of the states
that can be obtained from SA via the inverse preferred
abstraction mapping PM−1 are minimum cardinality
diagnoses for DP with N faults.

The theorem tells us that, if we are interested just
in preferred diagnoses, computing the preferred diag-
noses at the abstract level is equivalent to computing
the minimum cardinality diagnoses at the ground level.
One of the consequences is that the preferred abstract
diagnosis of rank zero (i.e. the system behavior is nom-
inal) is returned if and only if the preferred ground di-
agnosis assigns ok to all components: in this way, we

can safely detect whether the system has (necessarily)
a fault by computing the preferred diagnoses at the ab-
stract level.

Note that this result is similar to the one obtained in
[23] for the approach based on cones, but it is worth
noting that the equivalence result between preferred di-
agnoses at the abstract and ground level shown in this
paper concerns a much larger class of systems (non-
directional systems vs directional ones) and allows the
explicit representation of fault modes. The following
example is aimed at clarifying these differences.

Example 6.1. Let us consider again the digital circuit
depicted in Fig. 2, and the possible abstraction where
the subsystem involving the logical gates B1, B2 and
NA are aggregated into the abstract component NA∗. In
Section 2, we have shown how the introduction of fault
modes is disruptive for the abstraction method based
on cones. In particular, we have shown that some of the
preferred diagnoses can be lost.

We now show that these problems do not oc-
cur within our approach. By applying the notion of
G-indiscriminability, it turns out that the abstract com-
ponent NA∗ has five abstract behavioral modes. In par-
ticular, the abstraction mapping is as follows:

abm0 =
{

(ok, ok, ok)
}

(rank 0),

abm1 =
{

(ok, sa1, ok)
}

(rank 1),

abm2 =
{

(sa1, ok, ok)
}

(rank 1),

abm3 =
{

(sa1, sa1, ok)
}

(rank 2),

abm4 =
{

(ok, ok, sa1), (ok, sa1, sa1),

(sa1, ok, sa1), (sa1, sa1, sa1)
}

(rank 1).

It is worth noting that each abstract behavioral mode is
associated with a rank, which corresponds to the mini-
mum rank among the indiscriminable ground states as-
sociated with the abstract behavioral mode. For exam-
ple, abm4 has rank 1 even if some of the associated
ground states have higher ranks (e.g., (sa1, sa1, sa1)
has rank 3).

If we restrict ourselves to the preferred mapping
PM (which keeps only the preferred states in each set)
we have that:

abm0′ = {(ok, ok, ok)} (rank 0),

abm1′ = {(ok, sa1, ok)} (rank 1),

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 193

abm2′ = {(sa1, ok, ok)} (rank 1),

abm3′ = {(sa1, sa1, ok)} (rank 2),

abm4′ = {(ok, ok, sa1)} (rank 1).

Let us reconsider the diagnostic problem involving the
observations I1(0), I2(0), O1(1), O2(1). As we have
already pointed out in Section 2, this diagnostic prob-
lem has two ground diagnoses of minimum cardinal-
ity:

G1 =
{
B1(sa1),B2(sa1), NA(ok),N1(ok),

N2(ok)
}

,

G2 =
{
B1(ok),B2(ok), NA(ok),N1(sa1),

N2(sa1)
}
.

It is easy to verify that the above diagnostic problem
also has two (preferred) abstract diagnoses of rank 2
when solved at the abstract level. In particular:

A1 =
{

NA∗(abm3),N1(ok),N2(ok)
}

,

A2 =
{

NA∗(ok),N1(sa1),N2(sa1)
}
.

Abstract diagnosis A1 is mapped back by PM−1

to G1; in particular, NA∗(abm3), is mapped back to
{B1(sa1), B2(sa1), NA(ok)}. Similarly, abstract di-
agnosis A2 is mapped back to G2: indeed, NA∗(ok)
is mapped back to a nominal assignment {B1(ok),
B2(ok), NA(ok)} to the subcomponents of NA∗.

It is worth noting that the notion of rank plays a
very important role in assuring the exact correspon-
dence between abstract and ground diagnoses. In fact,
if the rank of abm3 was set to 1 (i.e., one fault) instead
of 2 in the abstract model, the abstract diagnosis pro-
cess would have failed to recognize that diagnosis A2
is a preferred diagnosis.

7. Computing mappings and abstractions

7.1. Challenges

One of the main computational challenges of the ab-
straction task is the complexity of the search for the
subsystems Γ of ground components to be mapped
to abstract components ACΓ. This problem can natu-
rally be mitigated if we follow an incremental approach
where we start by abstracting a small set of ground
components (bound by a constant maxmerge) to derive

an abstract component, which in turn can be abstracted
with other ground or abstract components in a more
abstract component, and so on.

In order to select the components to be merged we
need to be heuristically guided by the topology of the
system model, i.e. the graph whose set of vertices is the
set of components C and whose set of edges contains
edge (ci, cj) iff the component theories of ci, cj share
at least one port. One possible approach consists in
exploiting existing techniques such as graph partition-
ing and clique decomposition [31] or star-mesh trans-
forms [30]. A simpler alternative adopted in this paper
is to look for specific patterns in the topology graph
(e.g., components connected in series/parallel).

Once the selection of the components to be ab-
stracted has been solved, a second problem arises, con-
cerning the evaluation of the abstraction mapping for
the set of selected components: the abstraction should
actually take place only if the mapping is good enough.
What is a good enough abstraction? There is no sim-
ple answer to the question, but some criteria can be de-
fined.

First of all, we consider that a mapping AMΓ which
defines an abstract component ACΓ is not good if ACΓ
has a large number of behavioral modes compared to
the number of behavioral modes of the components of
the subsystem Γ abstracted in ACΓ.4 A high number of
behavioral modes for component ACΓ has at least two
major, interrelated drawbacks: first of all, the compo-
nent theory of ACΓ could become too large and ineffi-
cient to store and manipulate; moreover, the cognitive
burden put on the supervisor for understanding the be-
havior of ACΓ could increase too much, contradicting
the main purpose of abstraction which is to decrease
such a burden.

One reasonable choice to address this issue, is to
consider as acceptable an abstract component ACΓ
with a number of behavioral modes linear in |Γ|, i.e.
such that |dom(ACΓ)| �

∑
c∈Γ αc · |dom(c)|; as a par-

ticular case, if we let αc = 1 for all c, this require-
ment becomes |dom(ACΓ)| �

∑
c∈Γ |dom(c)|. This

choice ensures that, no matter how many ground com-
ponents we will be able to abstract into a single abstract
component, the number of behavioral modes of such
a component will grow at most linearly with the size
of the abstracted subsystem. This limited complexity
increase should then be much more than compensated
by the reduction in the number of diagnoses that have

4Note that, in the worst case, the number |dom(ACΓ)| of abstract
behavioral modes is

∏
c∈Γ |dom(c)| (i.e., exponential in |Γ|).

194 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

to be computed and interpreted by the supervisor at the
abstract level.

However, a limited number of abstract behavioral
modes could not be sufficient to compactly represent
the behavior of abstract component ACΓ. In particular,
the component theory of ACΓ may still be too large
because of the number of exogenous and endogenous
ports. A measure which binds the size of such a relation
from below is the number of exogenous ports Pexo(Γ)
of subsystem Γ (as pointed out, e.g., also in [20]); in-
deed, by definition of exogenous variable, all of the
combinations of values of the exogenous ports are al-
lowed for each behavioral mode of ACΓ. We will make
sure that the maximum number of exogenous ports is
kept below the value of a constant maxexo.

As for the endogenous ports, even when |Pend(Γ)| is
large, it may be possible that most of the combinations
of the values of variables Pend(Γ) do not appear in the
domain theory of ACΓ, simply because they are incon-
sistent with every behavior of the subsystem. There-
fore, we don’t enforce an upper bound on the number
of such ports; however, we do enforce an upper bound
maxtuples on the maximum number of tuples in the do-
main theory of ACΓ.

Finally, a major computational problem concerns
the partitioning of the states of subsystem Γ into in-
discriminability classes, which is needed in order to
ensure the correctness of the abstraction mapping. In
this paper, we address this problem for L- and G-
indiscriminability.

7.2. Abstraction algorithm

In order to compute abstractions, we propose algo-
rithm Abstract shown in Fig. 6. The algorithm takes a
system description SD, the system observability O and
a context restriction R, and returns an abstraction SDA
of SD.

The abstraction process is bootstrapped by comput-
ing wrapper mappings AM{c} for each ground com-
ponent c ∈ C (with calls to function LeafMapping),
and such mappings are applied to SD, producing a first
abstraction SD0 (lines 1–3).

A new Component Mapping AMΓ is then com-
puted by ComponentMapping before the main while
loop; when no such mapping can be computed
(AMΓ = ∅, see below), the loop terminates.

Within the body of the loop (lines 7–10), the map-
ping is applied to the previous system description SDi

to get a new abstraction SDi+1. Function ApplyMap-
ping simply computes the domain theory DT(ACΓ)

Abstract(SD, O, R)
1 foreach c ∈ C : AM{c} = LeafMapping(SD, O, R, c)
2 SD0 = SD
3 foreach c ∈ C : SD0 = ApplyMapping(SD0, AM{c})
4 i = 0
5 AMΓ = ComponentMapping(SDi, O, R)
6 while (AMΓ �= ∅)
7 SDi+1 = ApplyMapping(SDi, AMΓ)
8 if (SDi+1 �= ∅)
9 i = i+ 1
10 AMΓ = ComponentMapping(SDi, O, R)
11 SDA = SDi
12 return SDA

ComponentMapping(SDi, O, R)
1 Γ = Choose(SDi, O, R), 2 � |Γ| � maxmerge
2 if (Γ = ∅) return ∅
3 AMΓ = (ACΓ, Γ, BMΓ) = Merge(SDi, O, R, Γ)
4 if (|BMΓ| >

∑
c∈Γ |dom(c)|) return ∅

5 return AMΓ

Fig. 6. Algorithm Abstract.

of the new abstract component and then updates the
sets of variables and component models in SDi (see
Section 4.2). As explained above, ApplyMapping also
checks the number of tuples in DT(ACΓ), and, if it
is larger than the bound maxtuples, it returns failure
(i.e. ∅). In such a case, the index variable i is not in-
cremented before the next call to ComponentMapping,
i.e., we keep trying to find other admissible component
abstractions for system description SDi.

Function ComponentMapping (bottom of Fig. 6)
computes the mapping AMΓ of a subsystem Γ (with
up to maxmerge components) to an abstract component
ACΓ.

This computation can fail for two reasons: first, the
choice of the subsystem Γ may itself fail (function
Choose, see next section); second, the mapping AMΓ
may define more behavioral modes for ACΓ than the
sum of the behavioral modes of its subcomponents
(line 4). In both of these cases, ComponentMapping re-
turns ∅ instead of a valid mapping.

7.3. Choosing and merging sub-components

The choice of the (abstract) components c1, . . . , ck
to be merged is guided by a heuristic based on the sys-
tem topology. In this paper we give a simple definition
of Choose that returns either ∅ (i.e., it was not possi-
ble to suggest a set of components to merge) or a pair
of components to be merged, i.e., we let maxmerge = 2.
Moreover, we restrict the choice to pairs of compo-
nents that are either connected in series or in parallel

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 195

Choose(SD, O, R)
1 foreach c ∈ C
2 if (∃c′ : in-series(SD, O, c, c′) ∧
3 |Pexo(c)|+ |Pexo(c′)| � maxexo)
4 return (c, c′)
5 if (∃c′ : in-parallel(SD, O, c, c′) ∧
6 |Pexo(c)|+ |Pexo(c′)| � maxexo)
7 return (c, c′)
8 return ∅

in-series(SD, O, ci, cj)
1 Ni = neighbors(SD, O, ci)
2 Nj = neighbors(SD, O, cj)
3 if |Ni| > 2 or |Nj | > 2 return false
4 if cj /∈ Ni return false
5 return true

in-parallel(SD, O, ci, cj)
1 Ni = neighbors(SD, O, ci)
2 Nj = neighbors(SD, O, cj)
3 if |Ni| �= 2 or Ni �= Nj return false
4 return true

Fig. 7. An example implementation of the Choose operator.

in the system topology. It is out of the scope of the
present paper to study more general methods that can
deal with topologies where the series/parallel pattern
does not lead to significant abstractions because, e.g.,
the topology mostly contains complex structures, like
stars. However, we note that, in such cases:

• it may be possible to adopt techniques from CSP
and circuits analysis (such as graph partition-
ing and clique decomposition [31] or star-mesh
transforms [30]) for suggesting components to be
merged and/or for simplifying the system topol-
ogy in order to make it more amenable to the se-
ries/parallel pattern,

• even when the topology still contains complex
structures, it may be possible to simultaneously
choose and merge more than two components at
a time, looking particularly for sets of compo-
nents that have a high number of connections
among them (recall that Definition 4.1 of compo-
nent abstraction mapping allows merging a bunch
of components at once).

Function Choose (Fig. 7) considers each compo-
nent c and checks whether it can be merged with an-
other component c′ s.t. c, c′ are connected in series or
in parallel; moreover, the sum of the number of ex-
ogenous ports in c, c′ (which would become the ports
of the abstract component) must not exceed the limit
maxexo. As soon as such a pair of components is found,
Choose returns it; otherwise, ∅ is returned.

Merge(SD, O, R, Γ)
1 BMΓ = ∅
2 foreach SΓ = {c1(bm1), . . . , ck(bmk)}: λ(SΓ) = {SΓ}
3 foreach SΓ = {c1(bm1), . . . , ck(bmk)} s.t. λ(SΓ) �= ∅
4 foreach S′

Γ = {c′1(bm′
1), . . . , c′k(bm′

k)}
s.t. S′

Γ �= SΓ and λ(S′
Γ) �= ∅

5 if (INTCHG = LOCAL)
ind = LIndiscriminable(SD, O, R, SΓ, S′

Γ)
6 if (INTCHG = GLOBAL)

ind = GIndiscriminable(SD, O, R, SΓ, S′
Γ)

7 if (ind)
8 λ(SΓ) = λ(SΓ) ∪ {S′

Γ}
9 λ(S′

Γ) = ∅
10 BMΓ = BMΓ ∪ {(abm(SΓ),λ(SΓ))}
11 AMΓ = (ACΓ, Γ, BMΓ)
12 return AMΓ

Fig. 8. Function Merge.

Note that Choose must keep track of the pairs of
components it returns, so that if the merge of such com-
ponents fails, a different pair will be returned at the
next call.

Predicate in-series (Fig. 7) requires that the compo-
nents ci and cj have at most two neighbors, and that
they are neighbors with each other (lines 3–4); as a
consequence, the component resulting from merging ci
and cj will also have at most two neighbors, i.e. it will
not add complexity to the topology of the system. Note
that operator neighbors considers as neighbors two
components ci and cj if and only if they share at least
one endogenous port and they do not share any ob-
servable in O. In this way, Choose never suggests the
merge of two components if such a merge would result
in the loss of some observable variable (according to
the requirement in Definition 4.1).

Similarly, predicate in-parallel requires that the
components ci and cj have exactly two neighbors, and
that they share such neighbors (line 3); the component
resulting from merging ci and cj will have exactly two
neighbors and therefore, also in this case, no complex-
ity is added to the topology of the system.

Function Merge (Fig. 8), given SD, O, R and a set
Γ of components returned by Choose,5 computes a
mapping AMΓ. First of all (line 2), for each possible
state SΓ = {c1(bm1), . . . , ck(bmk)} of Γ, we initialize
a set λ(SΓ) with {SΓ}. Such a set is intended to repre-
sent the class of states indiscriminable from SΓ.

Then, in the two nested loops (lines 3–10), we build
the BMΓ structure of mapping AMΓ. To this end, we

5Note that, although in our proposed implementation Choose re-
turns pairs of components, the Merge algorithm can deal with a
generic number k of subcomponents.

196 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

consider each pair of distinct states SΓ and S′
Γ to check

whether they are indiscriminable; the states whose as-
sociated set λ(.) is empty are ignored because it means
that they have already been added to some other indis-
criminability class (see below).

States SΓ and S′
Γ are checked either for L- or

G-indiscriminability in lines 5–6, depending on con-
stant INTCHG. For now, we just assume that the calls
to LIndiscriminable and GIndiscriminable are func-
tions that straightforwardly enforce the definitions of
L- and G-indiscriminability; see the next two sections
for more details.

If the two states turn out to be indiscriminable, S′
Γ

is put in the indiscriminability class λ(SΓ) associated
with SΓ, and λ(S′

Γ) is set to ∅ to indicate that S′
Γ should

not be further considered in the next iterations of the
algorithm; class λ(SΓ) will eventually become the def-
inition of a new abstract behavioral mode abm(SΓ) in
line 10, where the pair (abm(SΓ),λ(SΓ)) is added to
BMΓ.

Note that function LeafMapping, which is called in
Abstract to compute the leaf mapping AM{c} of a
ground component c, is analogous to Merge, but it’s
much simpler since it has to deal just with component
c instead of a set of components Γ (details on this sim-
pler kind of abstraction can be found in [29]).

Now that we have detailed the functions Choose
and Merge, it is possible to state a correctness result
concerning the overall computation of abstractions (the
proof is in Appendix C).

Theorem 7.1. Let SDA be the abstraction computed
by algorithm Abstract given SD, O and R, and
let us assume that the set of abstract components
CA in SDA is {ACΓ1 , . . . , ACΓp} (where ACΓi aggre-
gates the components of the ground subsystem Γi).
Then, there exists an abstraction mapping AM =
{AMΓ1 , . . . ,AMΓp} s.t.:

• AM is correct w.r.t. O, R,
• SDA is equal to the abstraction SD′

A obtained by
applying AM to SD.

The theorem has a straightforward but important
corollary, which links the properties given in Section 6
with the computed abstraction SDA.

Corollary 7.1. Since the abstraction SDA computed
by Abstract is equivalent to an abstraction com-
puted by applying a correct abstraction mapping to
SD, all the important properties of Section 6 hold for
SDA.

LIndiscriminable(SD, O, R, SΓ, S′
Γ)

1 GDT(Γ) = DT1 � · · · � DTk
2 ρ = selectSΓ∧RGDT(Γ)
3 ρ = projectB(Γ)(ρ)
4 ρ′ = selectS′

Γ∧RGDT(Γ)

5 ρ′ = projectB(Γ)(ρ
′)

6 if (ρ �= ρ′) return false
7 return true

Fig. 9. Checking local indiscriminability.

7.4. Checking local indiscriminability

Checking the local indiscriminability of two states
SΓ, S′

Γ can be done with a function named LIndis-
criminable (Fig. 9) which is a straightforward im-
plementation of Definition 5.5.

First of all, we compute the global domain theory
GDT(Γ) of subsystem Γ (line 1). Then (lines 2–3), we
derive a relation ρ which represents the possible com-
binations of values of the variables at the boundary
B(Γ) when the state of Γ is SΓ; ρ is computed by sim-
ply selecting the tuples of GDT(Γ) that agree with SΓ
and R, and then by projecting such tuples on B(Γ). A
similar relation ρ′ is computed w.r.t. state S′

Γ, and then
ρ and ρ′ are compared to decide whether SΓ, S′

Γ are
L-indiscriminable.

It is immediate to see that the time complexity
of LIndiscriminable is O(|DTmax||Γ|), where
|DTmax| = maxc∈Γ |DTc|; in particular, if |DTmax| is
limited by the bound maxtuples (i.e. the maximum num-
ber of tuples allowed in the model of any ground or
abstract component), and |Γ| is limited by the bound
maxmerge (in our proposal maxmerge is actually just 2),
the time taken by the function has a constant upper
bound.

7.5. Checking global indiscriminability

In principle, G-indiscriminability could be checked
in the same way as L-indiscriminability. However, in
the case of G-indiscriminability, the subsystem Γ is the
whole set C of components, and GDT(Γ) coincides
with GDT.

Unfortunately, GDT can be a huge relation, and ma-
nipulating it directly can be prohibitive. In order to im-
prove on this situation, we propose to encode GDT as
an OBDD (Ordered Binary Decision Diagram). OB-
DDs [6] have been used in Artificial Intelligence to
efficiently store and manipulate huge relations that
would have been impossible to represent extensionally

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 197

GIndiscriminable(O(GDTO,R), SΓ, S′
Γ)

1 SG = gndrep(SΓ)
2 O(ρ) = restrict(O(GDTO,R), SG)
3 S′

G = gndrep(S′
Γ)

4 O(ρ′) = restrict(O(GDTO,R), S′
G)

5 if (¬equiv(O(ρ), O(ρ′)) return false
6 return true

Fig. 10. Checking global indiscriminability.

[3,8,16]; see Appendix B for a short summary on OB-
DDs and their operations.

The encoding of GDT as an OBDD O(GDT) is per-
formed just once, before starting the whole abstraction
process. In this phase, we also derive from O(GDT)
another OBDD O(GDTO,R) in order to take into ac-
count the observability O and context restriction R:

O(GDTO,R) = O(GDT),

O(GDTO,R) = restrict
(
O(GDTO,R),R

)
,

O(GDTO,R)

= remove
(
O(GDTO,R),P ∪ I\O

)
.

Essentially, OBDD O(GDTO,R) encodes the relation:

GDTO,R = projectC∪O(selectRGDT),

which contains the tuples of GDT that agree with the
context restriction R, and where the non-observable
variables (except components) have been discarded.

Given O(GDTO,R), any G-indiscriminability check
between two states SΓ, S′

Γ needed during the abstrac-
tion process can be performed with function GIndis-
criminable (Fig. 10). Note that, when GIndis-
criminable is called during the i-th iteration of the
Abstract function (Fig. 6), Γ is a subsystem of ab-
stract system SDi and, therefore, SΓ and S′

Γ are assign-
ments to abstract components.

In order to check the G-indiscriminability of SΓ and
S′

Γ, we build two arbitrary ground states SG and S′
G

whose abstractions are, respectively, SΓ and S′
Γ, and

then we check the indiscriminability of SG and S′
G at

the ground level. The legitimacy of this reduction fol-
lows from the fact that all the ground states that map
to SΓ (resp. S′

Γ) are mutually G-indiscriminable, and
therefore they are completely equivalent for perform-
ing a G-indiscriminability check between SΓ and S′

Γ
(see the proof of Theorem 7.1).

The actual computation of SG and S′
G is performed

by operator gndrep, which takes a state SΓ of Γ and
exploits the mappings AMΓ0 , . . . ,AMΓi built so far

by the Abstract function (see Fig. 6) in order to re-
cursively find an arbitrary ground representative SG of
SΓ. Note that operator gndrep has to traverse the hier-
archy of mappings defined by AMΓ0 , . . . ,AMΓi just
once, and therefore it is very efficient.

Once the ground representative SG of SΓ has been
built, we restrict O(GDTO,R) with SG, obtaining an
OBDD O(ρ) which encodes the tuples of GDTO,R that
agree with SG (line 2). Similarly, using the ground
representative S′

G of S′
Γ, we obtain an OBDD O(ρ′)

which encodes the tuples of GDTO,R that agree with
S′
G (line 4).
The G-indiscriminability of SG, S′

G reduces to
checking the equivalence of OBDDs O(ρ) and O(ρ′)
(line 5). This follows immediately from the Defini-
tion 5.5 of indiscriminability.

Finally, it is important to note that the restrict and
equiv operations performed by function GIndis-
criminable take linear time w.r.t. the size of OBDD
O(GDTO,R) (Appendix B). Therefore, if the OBDD
O(GDTO,R) is of limited size, all of the calls to
GIndiscriminable made during the abstraction
process are efficient.

8. Experimental results

The aim of this section is to show that the abstrac-
tion of a non-trivial system model is not only feasible
from a computational point of view, but also useful. In
particular, we will explore experimentally the follow-
ing points:

• to what extent the proposed abstraction methods
are able to merge sets of ground components into
abstract components?

• what is the impact of observability on the possi-
bilities of making abstractions?

• are there significant differences in the abstractions
that result from the adoption of local and global
indiscriminability?

• is there a reduction in the number of preferred di-
agnoses when performing diagnostic reasoning at
the abstract level rather than at the ground level?

• is there a reduction in the computational cost for
getting the preferred abstract diagnoses instead of
the preferred ground ones?

The first three points are relevant for evaluating the
effectiveness of the method in building abstractions,

198 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

Fig. 11. The schema of the propulsion subsystem and the LOW ob-
servability.

while the latter two points are directly related with the
benefits of using abstract models for diagnostic reason-
ing.

The experiments have been performed on a machine
with an Intel Core 2 Duo 6600 CPU at 2.39 GHz and
4 GB of RAM, running the Linux Ubuntu 11.04 OS.
All the algorithms are implemented in Java, and exploit
the BuDDy C library for handling OBDDs.

As a test bed, we have selected the diagnosis of
the propulsion system introduced in Example 4.1.
We will consider two different levels of observabil-
ity: the HIGH observability involving 17 endoge-
nous observables (shown in Fig. 3) and the LOW
observability involving just 7 endogenous observ-
ables (shown in Fig. 11). In both cases we have
considered a (very) weak context restriction where
the pyro-valves are commanded to be closed, i.e.
R is equal to {cmdPV 101(close), cmdPV 102(close),
cmdPV 201(close), cmdPV 202(close)}. The two levels
of observability chosen for the experiments are in-
tended to show the impact of a (significant) difference
of observability on the abstraction. However, both of
them have a solid motivation in terms of diagnostic rea-
soning. In particular, both LOW and HIGH observabil-
ity are adequate for fault detection, i.e., they allow to
detect the presence of any single fault given a suitable
set of commands to the valves and pyro-valves. More-
over, they provide also a good degree of fault localiza-
tion, since for all four major branches of the propulsion
system there is at least a sensor able to detect whether
some of the components belonging to that branch are
not working properly.

The ablility to detect a fault and partially localiz-
ing it with the sensors output makes the LOW and
HIGH observabilities realistic for a diagnostic sce-

nario, where the exact localization and the identifica-
tion of the specific fault(s) that have occurred can be
postponed to further manual measurements and/or spe-
cial test procedures. In particular, it is clear that the
discriminative power offered by the LOW level of ob-
servability for fault identification is modest. As we will
see in the rest of this section, the number of preferred
diagnoses is quite large when the diagnostic reason-
ing is done on the ground model of the propulsion
system. A higher discriminative power is provided by
the HIGH level of observability which, however, is
still quite limited, especially when we consider double
faults.

We first show some results about the abstraction
of the propulsion system obtained by considering
the HIGH observability and by adopting the G-in-
discriminability relation. The resulting abstraction of
the propulsion system (shown on the left in Fig. 12)
involves 23 abstract components.

It is easy to see that some abstract components (de-
picted in white) correspond to just a single ground
component (e.g. tank Tk1 cannot be merged with any
other component without causing the deletion of an ob-
servable variable), but most of the abstract components
replace several ground components. For all of the ab-
stract components, the number of behavioral modes is
very low with respect to the number of states of the cor-
responding subsystems. For example, abstract compo-
nent P101 → V 101 has 4 abstract behavioral modes,
while P107 → En1 and S201 → J201 have respec-
tively 5 and 8 modes. No abstract component has more
than 8 modes.

Also the number of exogenous commands for each
abstract component is low (maximum two). As ex-
plained in the paper, these characteristics of abstract
components are essential in order to assure that the ab-
stract model is described with relations of manageable
size.

Intuitively a lower level of observability causes an
increase of indiscriminability, and therefore an in-
crease in the possibilities of abstraction. In Fig. 12
(right) we report the system resulting from abstracting
the propulsion system with the LOW observability. It
is apparent that the LOW level of observability induces
stronger abstractions than the HIGH level (15 abstract
components versus 23).

In Table 1 we compare the size of the compo-
nent theory of some abstract components (in terms
of number of tuples) with the size of GDT(Γ) of the
corresponding subsystems Γ = {c1, . . . , cm} (recall
that GDT(Γ) is the natural join of component models
DT1, . . . , DTm).

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 199

As one would expect, there are no savings when
the abstract component coincides with a ground com-
ponent, such as J202. However, the savings with the
HIGH observability become significant as soon as the
abstract component merges more components (see e.g.
P208 → P209) and become very relevant when the
abstract component includes a more complex subsys-

Table 1

Size of the models of some abstract components (number of tu-
ples) with respect to the size of the models of the corresponding
subsystems

OBS AbsComp Abstract Ground Saving (%)

HIGH J202 350 350 0.0

HIGH P102 → J101 1066 49,158 97.8

HIGH P107 → En1 160 576 72.2

HIGH S201 → J201 1082 17,850 93.9

HIGH P208 → P209 202 906 77.7

LOW P208 → P209 138 906 84.8

LOW P108 → P114 1764 2,532,402 99.9

LOW S202 → P212_P213 3230 71,754 95.5

tem (see e.g. S201 → J201).
The gains are even more impressive when we con-

sider the LOW observability. An abstract component
such as P108 → P114, which corresponds to a quite
large subsystem, can be represented in a very compact
way with respect to such a subsystem (with a gain of
99.9%). It is also worth noting that the same abstract
component e.g., P208 → P209, can be represented in
a more compact way in the case of LOW observabil-
ity, since it has fewer abstract behavioral modes than in
the case of HIGH observability (3 versus 5); the lower
number of behavioral modes has also an impact on the
size of the model of the abstract component (138 vs
202 tuples).

Table 2 summarizes the main characteristics of the
abstractions obtained with HIGH and LOW observ-
ability. As expected, when we adopt global indiscrim-
inability the impact of observability is quite relevant
as concerns the number of abstract components and
the average number of ground components abstracted
into an abstract one. A parameter which deserves some

Fig. 12. Schema of the abstracted propulsion subsystem (HIGH and LOW).

Table 2

Comparing global and local indiscriminability with different levels of observability

HIGH observability LOW observability

G-ind L-ind G-ind L-ind

abs comps 23 30 15 28

proper abs comps 16 19 13 18

avg # gnd comps 2.78 2.13 4.27 2.29

max # gnd comps 9 4 12 4

diag space 7.68 ∗ 1010 3.48 ∗ 1014 3.24 ∗ 108 9.66 ∗ 1013

max # cmds 2 1 3 1

max # tuples 1082 350 3230 350

200 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

comments is the size of the diagnosis space (diag
space), which represents the set of all possible diag-
noses. As a reference measure, the size of the ground
diagnosis space is 3.22 ∗ 1022. The abstract diagnosis
space is much smaller for abstraction with both LOW
and HIGH observability. In particular, when we adopt
G-indiscriminability, the lower level of observability is
fully exploited and leads to a strong reduction (down
to 3.24 ∗ 108).

Also the abstractions that adopt local indiscrim-
inability are quite effective, although they are less pow-
erful than the ones using G-indiscriminability when we
compare them at the same level of observability. In par-
ticular, abstract components replace a lower number of
ground components (e.g., 2.29 vs 4.27 for LOW ob-
servability). The same conclusion is true also for the
size of the abstract diagnosis space; even more impor-
tantly, the local abstraction cannot fully exploit the po-
tential of a low level of observability since, by defini-
tion, it exploits just the local context.

Overall, the results reported in Table 2 show that the
abstraction process produces significant abstractions
while the maximum size of abstract component mod-
els (max # tuples) is very reasonable. We now briefly
comment on the time needed by the abstraction pro-
cess. First of all, we note that it is not particularly rele-
vant since abstraction is an off-line process. However,
the abstraction methods we have implemented are also
quite efficient. For example, the whole abstraction pro-
cess takes less than 3 s of CPU time for abstracting the
propulsion system when we adopt G-indiscriminability
with LOW observability, and only slightly more time
(about 3.3 s) with HIGH observability. It is worth not-
ing that these results have been obtained by encoding
the Domain Theory of the propulsion system with an
OBDD, so that the check of G-indiscriminability can
be done very efficiently.

So far we have shown that the abstraction is feasible
and has the potential for providing significant benefits
for diagnostic reasoning. In order to show that the re-
duction of the space of possible diagnoses has an ac-
tual impact on diagnostic reasoning, leading to a lower
number of (abstract) diagnoses, we have generated two
sets of diagnostic test cases.

The first set includes cases where a single fault has
been injected and the values of the observables for the
HIGH and LOW observability levels have been pre-
dicted with a software simulator. The test set is exhaus-
tive for single faults, i.e. for each pipe we have injected
the cl and br faults and for each valve we have injected
the sc (when the valve is commanded open) and so

(when the valve is commanded closed) faults. For ex-
periments we are focusing our attention on the 78 cases
where the fault is not masked by neither of the levels
of observability. Note that fault masking is not due to
LOW and HIGH observabilities, but to the context re-
striction that requires the pyro-valves to be closed. In-
deed, all of the 16 cases when fault masking occurs
correspond to faults in one of the sub-branches con-
taining a closed pyro-valve and its two attached pipes.

The second set involves 496 cases; in each case,
a double fault has been injected (typically the injected
faults affect components in different branches of the
propulsion system). All double fault cases were run
with all the valves open, while all the pyro-valves were
closed. Clearly, the capability of the diagnostic algo-
rithm in singling out the diagnoses depends on the level
of observability. With the HIGH observability, in 420
out of 496 cases the preferred ground diagnoses in-
volve a double fault, whilst in 66 cases the preferred
diagnoses involve just one fault (i.e. the double fault
is masked). With the LOW observability the number of
cases where masking does not occur drops to 366. In
the following, we will refer to the test set involving all
of the 496 cases as DFA (Double Fault ALL), while
we will identify the subset involving just the 366 cases
where the double fault is not masked as DFNM (Dou-
ble Fault Not Masked).

For solving the test cases, we have run the diagnos-
tic algorithm described in [27], which takes as input
the domain model of the system to be diagnosed and
compiles the global domain theory GDT to an OBDD.
The algorithm computes an OBDD representing the
whole set of diagnoses for a specific diagnostic prob-
lem, from which the minimum cardinality diagnoses
are extracted in polynomial time.

We have run the diagnostic algorithm with five dif-
ferent models:

• the ground model of the propulsion system,
• the abstract model synthesized by considering

G-indiscriminability and HIGH observability,
• the abstract model synthesized by considering

L-indiscriminability and HIGH observability,
• the abstract model synthesized by considering

G-indiscriminability and LOW observability,
• the abstract model synthesized by considering

L-indiscriminability and LOW observability.

Since the different models involve a different number
of components and behavioral modes, these variations
have an impact on the size of the OBDD represent-
ing the compilation of the model itself. For example,

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 201

the size of the OBDD representing the ground model
is 17085 nodes, whereas the OBDD representing the
GDT of the abstract model based on HIGH observabil-
ity and global abstraction involves 7376 nodes. All the
OBDDs obtained by compiling the four abstract mod-
els mentioned above have a size lower than the OBDD
encoding the ground model. The fact that the abstract
models can be encoded in an OBDD of smaller size
is a further demonstration that the abstraction captures
some relevant structure in the model and encodes it ef-
ficiently.

We report the experimental data by comparing the
number of preferred diagnoses (more specifically, the
minimum cardinality diagnoses) returned at the ground
and at the abstract level. We focus our attention on
preferred diagnoses because these are the ones usually
computed by diagnostic algorithms. More important,
the main objective of our approach is to be informa-
tive for the human (or artificial) user of the diagnostic
algorithm, and the set of all diagnoses (at least for the
propulsion system) is not informative even when we
consider abstract diagnoses (in all cases their number
exceeds 10,000 even for single fault cases).

If one looks at the results reported in Table 3 con-
cerning the test cases of single faults, it is apparent
that abstraction has an effect in reducing the number
of minimum cardinality diagnoses. In fact, even when
we consider HIGH observability the number of pre-
ferred abstract diagnoses is roughly half of the pre-
ferred ground diagnoses. It is worth noting that there is
a gain not only in the average number, but also in the
maximum number of such diagnoses.

As expected, with LOW observability the number of
ground preferred diagnoses is larger than with HIGH

observability. The number of preferred abstract diag-
noses obtained with global indiscriminability and LOW
observability is not only a fraction of the correspond-
ing ground diagnoses, but it is not too far from the
number of abstract diagnoses obtained with HIGH ob-
servability. This is a further confirmation that global
abstractions are able to fully exploit the reduction
in observability. It is easy to see that also local ab-
stractions yield significant benefits; however, these re-
sults confirm that local abstractions are not able to re-
duce the number of diagnoses to the same extent as
global abstractions, particularly when the observability
is LOW.

When we consider the results on double fault cases,
the advantages of abstraction as concerns the number
of preferred diagnoses become very relevant (see Ta-
ble 4): in this table we report the data for the test set
DFA, where some cases have a double fault masked by
a single fault, as discussed above. The gain in terms
of reduction of prefered diagnoses is impressive. Obvi-
ously, the largest gains are obtained when we consider
LOW observability and G-indiscriminability, but in all
of the scenarios the abstract preferred diagnoses are
just a fraction of the corresponding ground diagnoses.

A similar pattern is observed when we consider the
DFNM test set (see Table 5), where the double faults
are never masked. Since the cases are more difficult
to solve, the benefits of G-indiscriminability become
even more apparent.

All these results show that the objective of reducing
the number of diagnoses is achieved: there is a signifi-
cant difference, from the point of view of the user, be-
tween inspecting and reasoning with (about) 5 abstract
preferred diagnoses rather than with (about) 25 diag-

Table 3

Number of preferred diagnoses obtained with ground and abstract models for the test set of single fault cases

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 4.62 ± 0.66 2.49 ± 0.23 2.23 ± 0.21 8.69 ± 1.07 5.29 ± 0.59 3.42 ± 0.55

min 1 1 1 1 1 1

max 8 4 4 13 8 7

Table 4

Number of preferred diagnoses obtained with ground and abstract models for double fault (DFA test set)

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 21.34 ± 1.71 6.66 ± 0.34 5.09 ± 0.29 71.37 ± 5.16 27.16 ± 1.78 11.06 ± 0.99

min 2 1 1 5 3 1

max 64 16 12 156 56 40

202 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

Table 5

Number of preferred diagnoses obtained with ground and abstract models for double fault (DFNM test set)

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 26.38 ± 2.06 7.89 ± 0.38 5.97 ± 0.32 94.94 ± 5.16 37.75 ± 1.69 14.63 ± 1.14

min 2 1 1 6 6 1

max 64 16 12 156 56 40

Table 6

CPU time (in ms) for solving single fault diagnostic cases with ground and abstract models

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 75.01 ± 2.35 72.82 ± 2.45 66.82 ± 1.64 79.15 ± 3.10 74.32 ± 2.46 61.79 ± 2.00

max 97 114 80 100 105 75

Table 7

CPU time (in ms) for solving double fault diagnostic cases with ground and abstract models (DFA test set)

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 176.00 ± 14.09 80.88 ± 1.38 60.28 ± 0.78 265.42 ± 15.93 138.10 ± 5.75 72.18 ± 2.30

max 688 189 139 869 249 164

Table 8

CPU time (in ms) for solving double fault diagnostic cases with ground and abstract models (DFNM test set)

HIGH observability LOW observability

gnd abs L-ind abs G-ind gnd abs L-ind abs G-ind

avg 210.78 ± 15.25 84.30 ± 1.63 70.95 ± 0.96 337.39 ± 16.08 165.76 ± 5.48 78.79 ± 2.79

max 688 189 139 869 249 164

noses (or, in case of LOW observability, with 14 rather
than over 90).

So far we have pointed out the benefits of abstraction
as concerns the reduction of the number of preferred
diagnoses, which was the main goal of our approach.
However, it is worth noting that there is also a bene-
fit from a computational point of view, since the CPU
time required for solving a diagnostic case is lower for
the abstract models than for the ground model.

Considering the data reported in Tables 6, 7 and 8,
it is apparent that the CPU time for solving the di-
agnostic cases is low both for ground and abstract
diagnoses. This depends on the properties of the di-
agnostic algorithm we have adopted, which (by ex-
ploiting the OBDD compilation) is able to solve all
cases in a quite efficient way. In particular, it is worth
noting that the max CPU times are low, and the
max values are relatively close to the average values.
Nevertheless, when abstract models are used, the com-

putational cost is significantly reduced; for example, if
we consider the DFNM cases, LOW observability and
G-indiscriminability, such a cost is less than 25% of
the cost of solving the diagnostic cases at the ground
level.

9. Related work

Abstraction, intended as the ability to forget irrele-
vant details and to find simpler descriptions, has been
studied and exploited in several fields of Computer Sci-
ence (e.g., abstract interpretation [10], model checking
[9]) and Artificial Intelligence (e.g., planning [21], the-
orem proving [14], perception [33]).

Although they deal with different domains and prob-
lems, all of such works are based on the definition of
mappings (either built by humans or automatically) for
transforming the domain models back and forth be-
tween the abstract and ground levels, as the Galois

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 203

connections 〈α, γ〉 in abstract interpretation (in some
cases, as in this paper, it is convenient to define the
mapping γ from the abstract to the ground level as just
the inverse α−1 of the mapping α from the ground to
the abstract level). Moreover, in order to make effec-
tive use of abstractions, it is usually desirable to guar-
antee some form of correspondence between relevant
entities or properties at the abstract and ground lev-
els; for example, the safeness of a program semantics
in abstract interpretation, the satisfaction of temporal
logic formulas in model checking, the existence of a
plan in planning, or the correctness of a theorem in the-
orem proving. These correspondences are analogous
to the correspondence between abstract and ground di-
agnoses discussed above, and are expressed by prop-
erties analogous to the downward and upward failure
properties studied in this paper (see, e.g., the defini-
tion of Theorem Decreasing and Theorem Increasing
abstractions in [14]). It is important to point out that, in
case of infinite domains, guaranteeing that the results
obtained with an abstract representation are equiva-
lent to the results obtained with the ground one may
be undecidable (this is the case, e.g., for abstract in-
terpretation [10]); in such cases, one may be satisfied
with abstractions that, as the downward failure prop-
erty discussed above, ensure that the abstraction is at
least partially correct (e.g., in abstract interpretation, it
does never produce false positives about the safeness
of a program). On the other hand, if domains are finite
(e.g., for the model checking discussed in [9]) it is usu-
ally possible to give such a guarantee, although it may
be too computationally expensive or may lead to poor
abstractions. In this paper, that also deals with finite
domains, we have shown that full equivalence between
abstract and ground diagnoses can be guaranteed with
practically computable and useful model abstractions.

Focusing on previous approaches that specifically
deal with abstraction in diagnosis, some of them have
addressed the simpler problems of computing task-
dependent abstractions by merging the values of single
variables [22], or the behavioral modes of single com-
ponents [29]. Compared to those works, the present
work addresses the abstraction of component variables,
which is in general a more complex task than the ab-
straction of the values of a single variable, since it re-
quires to choose the set of component variables to be
merged, to define the abstract behavioral modes of the
abstract component in terms of the behaviors of the
sub-components, and to update the model with the new
component; all of these steps must be done carefully
in order to obtain a useful abstraction that does indeed
reduce the complexity of diagnostic reasoning and the
size of the diagnostic results.

There exist a few previous works [19,28] that
have addressed task-dependent component abstraction;
however, compared to them, this paper covers for the
first time a significantly more general class of sys-
tems, namely the ones that can be modeled with finite-
domain relations. Contrary to the models considered
by the previous works, relational models do not im-
pose directionality between inputs and outputs of the
system components, resulting in enhanced expressiv-
ity and reusability [24]. Moreover, in our models each
component can be associated with a strong fault model
for multiple behavioral modes.

Unlike hierarchical abstractions (e.g., [7,17,19,20,
23]), task-dependent abstractions produce abstract
models that can completely replace the original mod-
els without incurring any loss of relevant diagnostic
information. In particular, we have pointed out how
existing hierarchical approaches usually guarantee the
downward-failure property (i.e., no ground diagnosis
is missed by using only the abstract model) but do not
guarantee the upward-failure property (i.e., no spurious
ground diagnoses are generated by using only the ab-
stract model). This has two drawbacks compared with
the task-dependent abstractions presented in this paper:
first of all, in order to discard the spurious ground di-
agnoses, it is necessary to reason with the more fine-
grained model(s); and, more importantly, the resulting
diagnoses are expressed at the ground level. In fact, one
of the main benefits of using our abstract models for
diagnosis is that the result is a set of abstract diagnoses
that are fewer and more informative than the ground
ones.

Another important property of our abstractions is
that they guarantee the equivalence between abstract-
and ground-level diagnostic reasoning also for the
computation of minimum cardinality diagnoses, which
is often what the users need for practical purposes.
When this property does not hold (as it is the case
for most hierarchical approaches, e.g., [7,17,19]), even
if we are interested just in minimum cardinality diag-
noses at the ground level, all of the diagnoses at the
abstract level must be computed, resulting in much
higher computational costs. In this respect, a very in-
teresting work is the hierarchical approach [23] based
on cones, which guarantees the equivalence between
minimum-cardinality abstract and ground diagnoses;
however, contrary to our abstractions, the ones in [23]
are restricted to directional system models (e.g., digital
circuits) with weak fault models.

Finally, in the literature on diagnosis, there are
works that aim to return the set of diagnoses in syn-

204 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

thetic form (e.g., kernel diagnoses [11] and scenarios
[26]); diagnostic reasoning is performed on the ground
model, and the main aim is to synthesize diagnoses for
returning them in a more compact form. While such
proposals share the goal of returning fewer, more in-
formative diagnoses with the present paper, the pur-
pose of our abstractions is that of deriving off-line ab-
stract system models that allow the direct computa-
tion of abstract diagnoses. The two approaches may be
seen as complementary, since further synthesis tech-
niques may be applied to the abstract diagnoses com-
puted with our method.

10. Conclusions

In the present paper we have presented a novel ap-
proach to automatic component abstraction for Model-
Based Diagnosis. The main goal of the computed ab-
stractions is to forget details which are irrelevant for
the diagnostic purpose, given the current observability
and operating conditions of the system; therefore, fol-
lowing [22], they can be classified as task-dependent
abstractions.

Central to the properties of the abstractions de-
scribed in this paper, is the notion of indiscriminabil-
ity between pairs of states of a subsystem. Indis-
criminability is essential for reducing the problem of
deciding whether an abstraction fully preserves the di-
agnosis power to the problem of deciding whether a
certain relation holds between all of the pairs of sub-
system states that are merged by the abstraction. In
particular, we have been able to show that comput-
ing abstractions based on indiscriminability is not only
sufficient to guarantee the correspondence between ab-
stract and ground diagnoses, but it is also necessary.
Therefore, while abstractions that do not satisfy indis-
criminability can still be useful for practical purposes
(e.g., most hierarchical abstractions), they require a
careful consideration of the consequences of the mis-
alignment between abstract and ground diagnoses.

An interesting point is that there is a full spectrum
of notions of indiscriminability, varying from local in-
discriminability (which considers the abstracted sub-
system without context) to global indiscriminability
(which considers the whole system as the context).
All of them guarantee the correspondence between ab-
stract and ground diagnoses, but moving from local
to global indiscriminability we get stronger abstrac-
tions that are more difficult to compute. Therefore, the
choice of which notion to use can be viewed as a trade-

off between the strength of the resulting abstraction
and the computational effort to obtain it.

An important contribution of the paper is the de-
scription of algorithms for the actual computation of
abstractions. The automatic synthesis of component
abstractions is challenging since it not only requires to
choose which ground components should be merged,
but also to define the behavioral modes of abstract
components, and to synthesize their models from the
models of the ground components. We have introduced
an algorithm able to compute abstractions based on
the general notion of indiscriminability. Then, we have
provided specialized functions for the important spe-
cial cases of local and global indiscriminability.

As a final contribution, we have experimentally
shown on a non trivial domain that the abstraction pro-
cess is actually useful for solving diagnostic problems.
The experiments have shown that the use of abstract
models reduces the number of preferred diagnoses
(with respect to the ground ones), exploits the level
of observability of the system (when the observability
is low, the gain in the number of preferred diagnoses
is higher), and requires less time for computing diag-
noses. Moreover, the experiments have confirmed that
abstractions based on global indiscriminability are ac-
tually stronger (both in terms of reduction of the num-
ber of abstract diagnoses and of the computational ef-
fort) than abstractions based on local indiscriminabil-
ity.

As an important direction of future work, we plan
to study the abstractions based on notions of indis-
criminability that fall in between the two limiting cases
of local and global indiscriminability. Such notions
can be useful when computing abstractions based on
global indiscriminability becomes prohibitive because
of the size and complexity of the system model; in
such cases, we would like to fall back to a manageable
notion of indiscriminability that, however, induces ab-
stractions that are as strong as possible.

Appendix A. Component models for the propulsion
system

Figure 13 reports the component models of a generic
pipe, pump, junction, valve and sink, expressed as log-
ical formulas over qualitative equations.

In our modeling approach, which is closely related
to the one described in [24], we model the connectiv-
ity to source (i.e. a pump) and sink (i.e. an outlet of
the system) for each component terminal. In particu-

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 205

domains
S ∈ {src, snk}; D ∈ {in, out}
fi ∈ {−, 0,+}; rS,D,i ∈ {+,∞}

general
(rS,in,i = ∞) ∧ (rS,out,i = ∞) ⇒ fi = 0
(rsrc,D,i = ∞) ∧ (rsnk,D,i = ∞) ⇒ fi = 0

pipe i, j ∈ {1, 2}, j �= i
pipe(ok) rS,in,i = rS,out,j ; fi ⊕ fj = 0
pipe(cl) rS,in,i = ∞
pipe(br) rsnk,in,i = +; rsrc,in,i = ∞
pump i ∈ {1}
pump(ok) rsrc,in,i = +; rsnk,in,i = ∞

rsnk,out,i = ∞∨ fi = −
junction i, j, k ∈ {1, 2, 3}, j �= i, k �= i, j
junction(ok) rsnk,in,i = min(rsnk,out,j , rsnk,out,k)

rsrc,in,i = min(rsrc,out,j , rsrc,out,k)
fi ⊕ fj ⊕ fk = 0

valve i, j ∈ {1, 2}, j �= i
valve(ok) cmd(open) ⇒

rS,in,i = rS,out,j ; fi ⊕ fj = 0
cmd(close) ⇒ rS,in,i = ∞

valve(so) rS,in,i = rS,out,j ; fi ⊕ fj = 0
valve(sc) rS,in,i = ∞
sink i ∈ {1}
sink(ok) rsnk,in,i = +; rsrc,in,i = ∞

Fig. 13. Models of hydraulic component types expressed with quali-
tative equations.

lar, given a component c and one of its terminals T c
i ,

we define the following variables: rcsrc,in,i (connectivity
to source through c), rcsrc,out,i (connectivity to source
from outside c), rcsnk,in,i (connectivity to sink through
c) and rcsnk,out,i (connectivity to sink from outside c).
Such variables can take values + (connection) and ∞
(no connection).

Beside connectivity, for each component terminal
T c
i we model the presence of flow and its direction

with a variable fci which can take values 0 (no flow),
+ (flow enters c through T c

i) and − (flow leaves c
through T c

i).
Going back to the component models in Fig. 13, it

is worth mentioning that we use qualitative equations
and the ⊕ and ⊗ operators are the addition and mul-
tiplication in the sign algebra, while the min opera-
tor applied to connectivity variables takes value + if
at least one of its arguments has value + and ∞ oth-
erwise. The qualitative equations and the sign alge-
bra operators they contain can be straightforwardly en-

coded as relations over discrete variables, as required
by our Definition 3.1 of component description.

Apart from formulas related to the behavioral modes
of the components, there are formulas representing
background constraints; in particular, there are two
general formulas which define situations where there
can be no flow at a terminal Ti: the first formula applies
when Ti is not connected to a source (or a sink) neither
through c nor from the outside of c; the second formula
applies when Ti is connected neither to a source nor to
a sink through c (or from the outside of c).

Let us now comment the model of a pipe; the other
models can be interpreted in a similar way. Pipes have
two terminals T1 and T2. When the pipe is ok, the
connectivity to source and sink propagates through the
pipe and the qualitative sum of the flows at T1, T2
is 0 (i.e. either there is no flow, or the flow enters
from one terminal and leaves from the other terminal).
A clogged pipe (mode cl) propagates no connectivity.
Finally a broken pipe (mode br) makes T1 and T2 be-
have as two sinks.

Appendix B. Ordered binary decision diagrams

An OBDD O(F) is a rooted DAG with (at most) two
terminal nodes labeled 0 and 1 representing a Boolean
function F(x1, . . . ,xn). The main reason to adopt OB-
DDs is that, compared to the representation of F as a
truth-table, its OBDD representation can be exponen-
tially smaller, since it exploits the structure of F .

In order to build the OBDD O(F), it is necessary to
specify a total order over the variables x1, . . . , xn of
F ; given such a variable order, there is a unique OBDD
of minimal size which encodes F . The choice of the
variable order is a very sensible issue, which can lead
to exponentially different sizes of O(F), and has been
deeply discussed in the literature (e.g. [1,4]).

When the Boolean function F has been encoded,
several intractable tasks (such as model counting, test
for consistency and, most notably, test for equivalence)
become polynomial in the size of O(F); moreover, the
Boolean functions encoded by one or more OBDDs
can be efficiently manipulated with operators that act
directly on OBDDs.

Table 9 summarizes some standard OBDD operators
and their computational complexity: apply performs
any binary logical operation on two functions, restrict
assigns a constant value to a variable xi, equiv tests two
functions for equivalence and remove removes a vari-

206 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

Table 9

Standard OBDD operators and their complexity

op Time Output size

apply(op, O1, O2) O(|O1| · |O2|) � |O1| · |O2|
restrict(O, xi), restrict(O, ¬xi) O(|O|) � |O|
equiv(O1, O2) O(|O1|+ |O2|) N/A

remove(O, xi) O(|O|2) � O(2 · |O|)

able by existentially quantifying it; in particular, the
remove operator is equivalent to:

O = apply
(
∨, restrict(O,xi), restrict(O,¬xi)

)
.

A relation over multi-valued variables (such as the
component and system models in this paper) can be en-
coded by an OBDD where each Boolean variable rep-
resents a specific value of a specific multi-valued vari-
able, a conjunction of Boolean variables represents a
tuple and the OBDD itself represents the characteristic
function of the set of tuples in the relation.

Appendix C. Proofs

C.1. Theorem 5.1

We must prove that, if AMΓ is correct w.r.t. O, R,
then it is a refinement of AMG

Γ . In other words, if two
states SΓ, S′

Γ are associated with the same abstract be-
havioral mode abm in AMΓ, then they must be asso-
ciated with the same abstract behavioral mode abmG

in AMG
Γ .

Since AMΓ is correct, it follows by definition that
SΓ, S′

Γ are Γ+-indiscriminable for some Γ+ ⊇ Γ. We
must prove that this implies that SΓ, S′

Γ are also G-
indiscriminable, i.e., that AMG

Γ associates them with
the same abstract behavioral mode.

Let Δ+ = Γ+\Γ, Δ− = C\Γ+, and Δ = Δ+∪Δ− =
C\Γ. We assume, by contradiction, that states SΓ,
S′

Γ are Γ+-indiscriminable, but not G-indiscriminable,
i.e.:

projectO(selectSΓ∧R∧SΔGDT)

�= projectO(selectS′
Γ∧R∧SΔ

GDT) (3)

for some SΔ = SΔ+ ∪ SΔ− . Let us consider a tuple
containing SΓ and SΔ:

(SΓ,SΔ+ ,SΔ− ,X ,BΓ+ , . . . ,OΔ−) ∈ GDT, (4)

where X is an instance of the (observable) exogenous
ports, BΓ+ is an instance of the obs-boundary B(Γ+)
of Γ+, and OΔ− is an instance of the remaining ob-
servable variables.

We note that, by definition, GDT can be written as

GDT(Γ+)
B(Γ+)

� GDT(Δ−), i.e. as the join between the
model of Γ+ and the model of Δ− on the B(Γ+) vari-
ables. Therefore, tuple (4) above can be written as the
join of a tuple in GDT(Γ+) and a tuple in GDT(Δ−):

(SΓ,SΔ+ ,XΓ+ ,BΓ+ , . . .)

B(Γ+)
� (SΔ− ,XΔ− ,BΓ+ , . . . ,OΔ−), (5)

where XΓ+ , XΔ− partition X according to the variables
associated, respectively, with Γ+ and Δ−.

Since SΓ, S′
Γ are Γ+-indiscriminable, GDT(Γ+)

must also contain a tuple (S′
Γ, SΔ+ , XΓ+ , BΓ+ . . .). But

then, such a tuple can be joined with the same tuple of
GDT(Δ−) used in (5):

(S′
Γ,SΔ+ ,XΓ+ ,BΓ+ , . . .)

B(Γ+)
� (SΔ− ,XΔ− ,BΓ+ , . . . ,OΔ−)

resulting in:

(
S′

Γ,SΔ+ ,SΔ− ,X ,BΓ+ , . . . ,OΔ−
)
,

which, therefore, belongs to GDT and produces the
same observables as tuple (4).

This means that tuple (4) cannot be the cause of the
difference between the two parts of Eq. (3), i.e. of the
G-discriminability of SΓ, S′

Γ. We can apply the same
argument to all the tuples of GDT that contain S′

Γ, con-
cluding that SΓ, S′

Γ are indeed G-indiscriminable. Con-
tradiction.

C.2. Theorem 6.1

We prove that SA is a diagnosis for DPA =
(SDA,O) iff there exists a diagnosis SG for DP =
(SD,O) s.t. SA = AM(SG). Since we adopt a
consistency-based definition of diagnosis, we can
prove equivalently that a generic assignment SA to the
CA variables is consistent with GDT(SDA), O iff there
exists an assignment SG to the C variables consistent
with GDT, O s.t. SA = AM(SG).

Let us assume that AM = {AMΓ1 , . . . ,AMΓp}
and that each AMΓi = (ACΓi , Γi, BMΓi) defines an

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 207

abstract component ACΓi . Moreover, let us assume
that each component ACΓi has a domain {abmi,1, . . . ,
abmi,ki} and that BMΓi associates mode abmi,j (j =
1, . . . , ki) with a set λi,j of ground states of subsys-
tem Γi.

By construction (see Section 4.2), ACΓi(abmi,j) is
consistent with an assignment PΓi to the ports P (Γi)
in DT(ACΓi) iff there is a state SΓi ∈ λi,j s.t.
ACΓi(abmi,j) = AMΓi (SΓi) and SΓi is consistent
with PΓi in GDT(Γi) (note that, since Γi has been ab-
stracted into ACΓi with a component abstraction map-
ping, all of the observables are endogenous ports of the
subsystem, i.e. O(Γi) ⊆ P (Γi)).

Similarly, an assignment SA = {ACΓ1 (abm1,j1),
. . . , ACΓp(abmp,jp)} is consistent with an assignment
P1,...,p =

⋃
i=1,...,p PΓi to the variables P1,...,p =⋃

i=1,...,p P (Γi) in GDT(SDA) iff there is a ground
state SG s.t. SA = AM(SG) and SG is consistent with
P1,...,p in GDT .

Now, since the parameter O of a diagnostic problem
DP is an assignment to the O variables which are a
subset of the set of variables P1,...,p, we have proved
that SA is an abstract diagnosis iff there is some ground
diagnosis SG s.t. SA = AM(SG).

C.3. Theorem 6.2

From the proof of Theorem 6.1, we know that SA is
a diagnosis for DPA only if there exists a diagnosis SG
for DP = (SD,O) s.t. SA = AM(SG).

We still have to prove that, if SA is a diagnosis for
DPA = (SDA,O), all the SG s.t. SA = AM(SG) are
ground diagnoses. First of all we note that, if SG is a
diagnosis for DP, then any other ground system state
S′
G s.t. AMG(S′

G) = AMG(SG) is a diagnosis for
DP, because SG, S′

G are mapped to the same abstract
state only when they are G-indiscriminable.

From the fact that AM, by being correct, must be a
refinement of AMG (Theorem 5.1), it follows that if
SG is a diagnosis for DP, then any other ground system
state S′

G s.t. AM(S′
G) = AM(SG) is a diagnosis for

DP.
Now, let SA be an abstract diagnosis for DPA. If,

for some SG ∈ AM−1(SA), SG is not a diagno-
sis for DP, then there is no diagnosis S′

G for DP s.t.
SA = AM(S′

G), which contradicts what we have
stated at the beginning of this proof. It follows that all
the assignments in AM−1(SA) are diagnoses for DP
and, consequently, that the set of diagnoses for DP is
the grounding of the set of diagnoses for DPA.

C.4. Theorem 6.3

Let us prove that, if AM is not correct, then, for
some problem DP = (SD,O) s.t. O satisfies R, AM
does not satisfy Theorem 6.2, i.e., there exists an ab-
stract state SA which is a diagnosis for DPA s.t. not all
of the groundings SG ∈ AM−1(SA) are diagnoses for
DP.

We note that, if AM is not correct, it must violate
in particular G-indiscriminability (Theorem 5.1). Let
us consider ACΓ ∈ CA, and let SΓ, S′

Γ be two states
associated with abm ∈ dom(ACΓ) s.t. they are not G-
indiscriminable, i.e.:

projectO(selectSΓ∧R∧SΔGDT)

�= projectO(selectS′
Γ∧R∧SΔ

GDT).

Then, there exists a tuple (SΓ,SΔ, . . . ,O) ∈ GDT for
which no corresponding tuple (S′

Γ, SΔ, . . . , O) exists
in GDT .

Given diagnostic problem DP = (SD,O), SΓ∪SΔ is
a (ground) diagnosis for DP while S′

Γ ∪SΔ is not; and,
according to Theorem 6.1, SA = AM(SΓ ∪ SΔ) =
AM(S′

Γ ∪SΔ) is an abstract diagnosis for DPA whose
grounding S′

Γ ∪ SΔ is not a diagnosis for DP.

C.5. Theorem 6.4

From the definition of the rank of an abstract be-
havioral mode (Definition 4.2) and the definition of the
rank of a diagnosis (Section 3), it is easy to see that, if
SA is an abstract state, then the rank r(SA) of SA is
min({r(SG): SG ∈ AM−1(SA)}).

Therefore, if SG is a preferred ground diagnosis
for DP with cardinality N (i.e., with rank N), SA =
AM(SG) has also rank N ; in particular, SG is one
of the preferred states in AM−1(SA) and therefore
the preferred component abstraction mapping PM is
defined on SG as SA = PM(SG) (Definition 4.2).
Moreover, from Theorem 6.1 we know that SA is an
abstract diagnosis for DPA. Since each abstract diag-
nosis must be the abstraction of at least one ground
diagnosis (see the proof of Theorem 6.1), none of the
other abstract diagnoses S′

A can have a rank N ′ < N ;
therefore, SA = PM(SG) is a preferred abstract diag-
nosis.

In the other direction, if SA is a preferred abstract
diagnosis for DPA with rank N , then PM−1(SA) con-
tains one or more ground states SG of rank N . More-
over, from Theorem 6.2 we know that each SG ∈

208 G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis

AM−1(SA) is a ground diagnosis for DP. Since each
ground diagnosis must be the grounding of an abstract
diagnosis (see Theorem 6.1), none of the other ground
diagnoses S′

G can have a rank N ′ < N ; therefore, all
of the states SG ∈ PM−1(SA) are preferred ground
diagnoses of cardinality N .

C.6. Theorem 7.1

First of all, let us prove by induction the correct-
ness of a single call to Merge (which returns a map-
ping AMΓ) followed by the application of AMΓ
with ApplyMapping. More precisely, let us assume
that the thesis of Theorem 7.1 holds before a call
AMΓ = Merge(SDi,O,R) in line 3 of Compo-
nentMapping, and let us prove that the thesis con-
tinues to hold after the subsequent call SDi+1 =
ApplyMapping(SDi,AMΓ) in line 7 of Abstract (see
Fig. 6). Therefore, we assume that, before the call to
Merge, there exists an abstraction mapping AM =
{AMΓ1 , . . . ,AMΓp} s.t.:

• AM is correct w.r.t. O, R,
• SDi is equal to the abstraction obtained by apply-

ing AM to SD,

where SDi is the last abstract system description com-
puted by Abstract so far.

The base of the induction is given by the initializa-
tion outside of the main while loop in function Ab-
stract, where a first abstraction SD0 is computed by
wrapping the ground components into abstract compo-
nents by applying the mappings AMc computed by
function LeafMapping. We assume the correctness of
this initial abstraction (details can be found in [29]).

We prove the theorem by assuming that Merge
adopts the notion of G-indiscriminability (i.e.,
INTCHG = GLOBAL). The proof is analogous for
L-indiscriminability (and any other kind of
Γ+-indiscriminability).

Function Merge (Figure 8) considers each pair of
states SΓ, S′

Γ of (abstract) subsystem Γ = {AC1, . . . ,
ACk} ⊆ Ci, where Ci is the set of (abstract) compo-
nents belonging to SDi, and puts them into the same
class λ, associated with an abstract behavioral mode
abm of the new abstract component AC, if and only if
they are G-indiscriminable.

The components {AC1, . . . , ACk} in Γ are defined
by a corresponding sub-mapping AMi of AM s.t.
AMi = {AMΓi,1 , . . . ,AMΓi,k} ⊆ AM. Let SG
(resp. S′

G) be a ground representative of SΓ (resp.
S′

Γ) according to AMi, i.e. SΓ = AMi(SG) (resp.

S′
Γ = AMi(S′

G)). Note that SG, S′
G are states of a

ground subsystem ΓG = Γi,1 ∪ · · · ∪ Γi,k.
It is possible to show that states SG and S′

G are G-
indiscriminable iff SΓ, S′

Γ are G-indiscriminable. In-
deed, by construction of the abstract system descrip-
tion SDi (see Section 4.2), it is easy to see that if there
exists a tuple (SG, . . . ,O) ∈ GDT (where O is an
instance of the observable variables), there must be
a tuple (SΓ, . . . ,O) ∈ GDTi (and similarly for S′

G
and S′

Γ); moreover, since AMi is correct (i.e., it maps
ground states to the same abstract state iff they are G-
indiscriminable), it also holds that, if there exists a tu-
ple (SΓ, . . . ,O) ∈ GDTi, then there will be a tuple
(SG, . . . ,O) ∈ GDT (and similarly for S′

Γ and S′
G). It

follows that SG and S′
G are G-indiscriminable iff SΓ,

S′
Γ are G-indiscriminable.
After Merge returns mapping AMΓ, ApplyMapping

computes a new abstraction SDi+1 by applying AMΓ
to SDi; in the new abstraction SDi+1, states SΓ and
S′

Γ will be merged into some abstract behavioral mode
abm of a new abstract component AC of SDi+1. Then,
the new mapping AM that satisfies the thesis of The-
orem 7.1 must simply associate all of the states of
subsystem ΓG that belong to either AM−1

i (SΓ) or

AM−1
i (S′

Γ) with abm. It is easy to see that in this
case:

• AM is still correct w.r.t. O, R,
• SDi+1 is equal to the abstraction obtained by ap-

plying AM to SD,

i.e., the thesis of Theorem 7.1 continues to hold.
Given the correctness of one execution of Merge and

ApplyMapping, the correctness of the whole Abstract
algorithm follows straightforwardly from the fact that
the execution of the algorithm essentially consists in a
finite number of steps where, at each step:

• we either fail to find a suitable abstraction and go
to the next step with no change to SDi (this can
be due, e.g., to the fact that the new abstract com-
ponent had too many behavioral modes, or that its
model had too many tuples), or

• we succeed, which means that:

– we have chosen a subsystem Γ of two compo-
nents s.t. none of its internal variables were ob-
servable,

– we have successfully called Merge and Ap-
plyMapping on subsystem Γ.

G. Torta and P. Torasso / Component abstraction in Model-Based Diagnosis 209

References

[1] F. Aloul, I. Markov and K. Sakallah, Faster SAT and smaller
BDDs via common function structure, in: Proc. ICCAD, 2001,
pp. 443–448.

[2] K. Autio and R. Reiter, Structural abstraction in model-based
diagnosis, in: Proc. ECAI98, 1998, pp. 269–273.

[3] P. Bertoli, A. Cimatti, M. Roveri and P. Traverso, Planning in
nondeterministic domains under partial observability via sym-
bolic model checking, in: Proc. IJCAI, 2001, pp. 473–478.

[4] B. Bollig, M. Löbbing and I. Wegener, Simulated annealing to
improve variable orderings for OBDDs, in: Proc. ACM/IEEE
IWLS, 1995, pp. 5.1–5.10.

[5] F. Brglez and H. Fujiwara, A neutral netlist of 10 combina-
torial benchmark circuits and a target translator in fortran, in:
Proceedings of the IEEE International Symposium on Circuits
and Systems, 1985, pp. 104–111.

[6] R. Bryant, Symbolic Boolean manipulation with ordered
binary-decision diagrams, ACM Computing Surveys 24 (1992),
293–318.

[7] L. Chittaro and R. Ranon, Hierarchical model-based diagnosis
based on structural abstraction, Artificial Intelligence 155(1,2)
(2004), 147–182.

[8] A. Cimatti, C. Pecheur and R. Cavada, Formal verification of
diagnosability via symbolic model checking, in: Proc. IJCAI,
2003, pp. 363–369.

[9] E.M. Clarke, O. Grumberg and D.E. Long, Model check-
ing and abstraction, ACM Trans. Program. Lang. Syst. 16(5)
(1994), 1512–1542.

[10] P. Cousot, Abstract interpretation, ACM Computing Surveys
28(2) (1996), 324–328.

[11] J. de Kleer, A. Mackworth and R. Reiter, Characterizing di-
agnoses and systems, Artificial Intelligence 56(2,3) (1992),
197–222.

[12] O. Dressler and P. Struss, A toolbox integrating model-based
diagnosability analysis and automated generation of diagnos-
tics, in: Proc. DX, 2003, pp. 99–104.

[13] G. Friedrich, Theory diagnoses: A concise characterization of
faulty systems, in: Proc. IJCAI, 1993, pp. 1466–1471.

[14] F. Giunchiglia and T. Walsh, A theory of abstraction, Artificial
Intelligence 57(2,3) (1992), 323–389.

[15] M. Goldszmidt and J. Pearl, Rank-based systems: a simple ap-
proach to belief revision, belief update and reasoning about ev-
idence and actions, in: Proc. KR92, 1992, pp. 661–672.

[16] R.M. Jensen and M.M. Veloso, Obdd-based universal plan-
ning: Specifying and solving planning problems for synchro-

nized agents in nondeterministic domains, LNCS 1600 (1999),
213–248.

[17] I. Mozetič, Hierarchical model-based diagnosis, Int. J. Man–
Machine Studies 35(3) (1991), 329–362.

[18] N. Muscettola, P. Nayak, B. Pell and B. Williams, Remote
agent: to boldly go where no AI system has gone before, Arti-
ficial Intelligence 103 (1998), 5–47.

[19] D.J. Out, R. van Rikxoort and R. Bakker, On the construction
of hierarchic models, Annals of Mathematics and AI 11 (1994),
283–296.

[20] G. Provan, Hierarchical model-based diagnosis, in: Proc. DX,
2001, pp. 167–174.

[21] E. Sacerdoti, Planning in a hierarchy of abstraction spaces, Ar-
tificial Intelligence 5 (1974), 115–135.

[22] M. Sachenbacher and P. Struss, Task-dependent qualitative
domain abstraction, Artificial Intelligence 162(1,2) (2005),
121–143.

[23] S. Siddiqi and J. Huang, Hierarchical diagnosis of multiple
faults, in: Proc. IJCAI, 2007, pp. 581–586.

[24] P. Struss, A. Malik and M. Sachenbacher, Qualitative modeling
is the key to automated diagnosis, in: Proc. IFAC, 1996.

[25] S. Subbarayan, Integrating csp decomposition techniques and
bdds for compiling configuration problems, Lecture Notes in
Computer Science 3524 (2005), 351–365.

[26] P. Torasso and G. Torta, Compact diagnoses representation in
diagnostic problem solving, Computational Intelligence 21(1)
(2005), 27–68.

[27] P. Torasso and G. Torta, Model-based diagnosis through obdd
compilation: a complexity analysis, Lecture Notes in Computer
Science 4155 (2006), 287–305.

[28] G. Torta and P. Torasso, Automatic abstraction in component-
based diagnosis driven by system observability, in Proc. IJCAI,
2003, pp. 394–400.

[29] G. Torta and P. Torasso, Parametric abstraction of behavioral
modes for model-based diagnosis, AI Communications 22(2)
(2009), 73–96.

[30] M. van Lier and R. Otten, Planarization by transformation,
IEEE Transactions on Circuit Theory 20(2) (1973), 169–171.

[31] R. Weigel and B. Faltings, Compiling constraint satisfaction
problems, Artificial Intelligence 115 (1999), 257–287.

[32] D.S. Weld and S. Addanki, Task-driven model abstraction, in:
Proc. Int. Workshop on Qualitative Physics, 1990, pp. 16–30.

[33] J.-D. Zucker and L. Saitta, A model of abstraction in visual per-
ception, Applied Artificial Intelligence 15(8) (2001), 761–776.

