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Brain Reactions Caused by Administration of
Antigen

S.V. Perekrest∗, N.S. Novikova and E.A. Korneva
Department of General Pathology and Pathophysiology, Institute of Experimental Medicine NWB RAMS, Saint-
Petersburg, Russia

Abstract. The present review deals with the reactions taking place in the central nervous system after antigen administration.
The activation of brain cells and the involvement of various neurotransmitter systems after applying various antigens are
described. The possible pathways of signal transduction from immune cells to the central nervous system (CNS) are analyzed.
The knowledge acquired about the activation pattern of different neuron populations could help to clarify the mechanisms of
immune-to-brain communication.
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INTRODUCTION

The key problem of neuroimmunephysiology, a new,
intensively developing biological science, is to study
the central mechanisms of neuro-immune cooperation.
It is necessary to elicit the mechanisms involved and
search for new neural pathways and transmitters that
participate in this network, and also consider the cellu-
lar, ligand-receptor and molecular mechanisms of this
interaction.

On the boundary of the XIX-XX-th centuries
Savchenko [1] was first to present evidence for neuro-
immune interactions. He established that pigeons after
transection of the cervical spinal cord become sus-
ceptible to the Siberian ulcer which normally does
not cause disease in pigeons. Later on similar effect
were observed after removal of cerebral hemispheres
in pigeons [2]. Metalnikov [3] established that the
nervous- and immune systems interact. This was the
beginning of Neuroimmune Biology. Further, a set of
studies in various experimental models confirmed the
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interaction of the central nervous system (CNS) with
the immune system. The effect of efferent pathways of
CNS on immune function, and the influence of antigen
introduction on the brain were investigated.

Special attention is given to the role of hypotha-
lamus in neuro-immune interactions because of the
functional features of this brain area, being the vegeta-
tive centre of functional integration of various organs
and systems in the body and regulator of environmental
adaptation.

ACTIVATION OF NEURONS IN CNS
STRUCTURES IN RESPONSE TO
ANTIGENIC STIMULATION

Broun [4] performed some early studies on the
electric activity of neurons during the development
of immune reactions. He observed that after immu-
nization of rabbits with BCG vaccine and in acute
tuberculosis the number of active neurons increased
in the anterior and posterior hypothalamic nuclei, and
decreased in the mammilary area and in the medial
structures of medial hypothalamus.

Subsequently neuronal activation was shown
during the first hours after immunization and later
on, during the development of the immune response.
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In rabbits the posterior hypothalamic area responded
to horse serum administration (as assessed by neuro-
nal firing) within 19–30 minutes [5, 6] and remained
activated for 10 days. «The second wave» of neu-
ronal activation is observed on the 15th day of
immune response which terminated by day 20–30.
Similarly, the firing of ventromedial hypothalamic
nuclei (VMH) increased several times after sheep
erythrocytes administration that correlated in time
with maximum antibody titre in blood. In other
hypothalamic structures, such as the (arcuate; Arc),
and paraventricular nucleus (PVN), and also preoptic,
anterior (ANH) and posterior hypothalamic (PH) area
correlation was not observed [7]. Maximal reaction
was shown during immunogenesis in the PH and
preoptic hypothalamic area on the first day of immune
challenge, which shifted to periods of suppression on
the eighth day after antigen administration [8]. The
study of slow potentials in locus coeruleus (LC) during
24 hours after intravenous injection of sheep erythro-
cytes revealed an individual character of reaction.
Most animals showed a 2-wave dynamics with positive
peaks on days 2–3 and 8–9 days after antigen injection
[9]. In PH there was an alteration in slow potentials
at 2 hours and on the 1st and the 5th day after immu-
nization [10, 11]. Besides, within 30 minutes after
sheep erythrocytes injection the shift of hypothalamic
biogenic amines and their balance was observed [12].

A modern approach for studying neuro-immune
interactions is to examine the influence of media-
tors produced during immune reactions on neuronal
activation in various brain structures. Intravenous or
intraperitoneal lipopolysaccharide (LPS) injections are
often applied for this purpose.

A number of studies showed activation of vari-
ous brain structures using c-Fos protein expression.
The hypothalamus was activated after various stimuli,
including antigen injection [13–15]. The results show
that the intensity, localization and duration of c-fos
gene expression in the CNS depend on the character
and the pathway of administration of the stimulus.

LPS or IL-1 injection leads to activation of nora-
drenergic neurons of hypothalamus, and intravenous
or intracerebroventricular injection of IL-1 causes
increase of c-fos mRNA and c-Fos protein expres-
sion in cells of PVH, Arc and supraoptic hypothalamic
nucleus (SO) [16–18]. In addition the administration
of antigens (tetanus anatoxin, LPS), leads to cell acti-
vation in hypothalamic structures which are more
significant in AHN, PVH, PH and lateral hypothala-
mic area (LHA) [19–22]. Concentration of injected
antigen, in turn, influences the pattern of hypothala-

mic structure activation. After administration of low
dose of LPS (25 mg/kg) the greatest quantity of acti-
vated neurons is observed in PVH, AHN, PH, LHA
[23] while the injection of a subseptic dose (500 mg/kg)
involves more significant activation in PVH, AHN and
to a lesser degree in LHA (Fig. 1) (Perekrest S.V.,
unpublished data).

Ranking of the activated cells in this area accord-
ing to their sizes allows for the characterization of
activation pattern in LHA after injection of various
LPS doses. This is important for studying the mecha-
nisms of regulating signal formation and transfer from
neurons activated after antigenic stimulation. After
injection of lower LPS dose neurons of the associative
type (10–50 �m2) are mainly activated, e.g. the signal
from neurons that received the information can mainly
be transducted to cells within activated structure [24].
Administration of a higher dose of LPS (500 mg/kg)
except activation of associative neurons leads to activa-
tion of relay neurons (70–150 �m2) that causes signal
transmission to other brain structures and formation
of the systemic response, characteristic for reaction
to LPS injection (Fig. 2) [Perekrest S.V., unpublished
data].

In conclusion, LPS injection causes neuronal acti-
vation in brain structures participating in regulation
of food uptake (the central nuclei of amygdala, baso-
lateral amygdala, and LHA) [25], sleep/wake cycle
(tuberomammilary nucleus) [26], and activation of
the hypothalamo-pituitary-adrenal (HPA) axis (PVH)
[27].

Unlike reactions to LPS injection, a T cell-
dependent antigen, staphylococcal enterotoxin B
(SEB), causes a different pattern of c-Fos protein
expression, mainly in the solitary tract and central
amygdala nuclei, the cellular response of PVH being
mild [21, 27].

After bovine serum albumin (BSA) injection,
(another T cell-dependent antigen), the highest degree
of activation was observed in PH and LHA. Smaller
quantity of c-Fos-positive cells was present when com-
pared with LPS administration. Better results were
obtained when c-fos gene expression was observed by
the increase in optical density (Fig. 1) [23].

It is clear that antigen application leads to the acti-
vation of the certain CNS structures and its pattern
depends on the nature and doses of injected antigen,
which indicates the «specificity» of CNS reactions to
antigenic stimulation. One may suggest that the differ-
ence of these reactions is caused by different kind of
information coming to the brain after stimulation by
different antigens.
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Fig. 1. Relative coefficient of activation and relative transmission density of cells in different hypothalamic structures after antigen injection.
Injection of: Lipopolysaccharide. A - 25 mg/kg ( ); * -F P < 0.01, ** - P < 0.05 compared to RCA in VMH and DMH; # - P < 0.05 compared
to RCA in PVH; B - 500 mg/kg ( ); * - P < 0.01 compared to RCA in VMH, DMH, LHA and PH; # - P < 0.05 compared to RCA in VMH,
DMH, and PH; Bovine serum albumin (25 mg/kg). C - relative coefficient of activation: * - P < 0.05 compared to RCA in AHN; # - P < 0.05
compared to RCA in VMH. D -relative transmission density: � - saline injection; - BSA injection; * - P < 0.01, ** - P < 0.05 compared to
RTD in animals injected with saline. The comparison of hypothalamic structures activation is carried on by relative coefficient of activation
(RCA, calculated as the ratio of c-Fos-positive cells number with antigen/saline) and by relative transmission density (RTD, calculated as the
ratio of cell transmission density / background).
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Fig. 2. The quantity of c-Fos-positive cells in LHA of different sizes. � - saline injection, - LPS injection (25 mg/kg), - LPS injection
(500 mg/kg). Cell ranks: 1 — 10-30 �m2 2 — 31-50 �m2, 3 — 51-70 �m2, 4 — 71-90 �m2, 5 — 91-110 �m2, 6 — 111-130 �m2, 7 —
131-150 �m2, 8 — 151-170 �m2. * - P < 0,05 compared to the quantity of c-Fos-positive cells after saline injection; # - P < 0,05 compared to
the quantity of c-Fos-positive cells after LPS (25 mg/kg) injection.
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PARTICIPATION OF VARIOUS
NEUROTRANSMITTER SYSTEMS IN CNS
REACTIONS TO ANTIGENS

Infectious process and inflammation influence many
behavioural functions, including food intake, social
behaviour, sleep/wake cycle, etc. The mechanisms
underlying the development of so-called “sickness
behavior” remain only partially clarified. This is an
important problem of immunophysiology. It is known
that increasing concentrations of circulating cytokines
in reply to an antigen lead to development of various
reactions: anorexia, drowsiness, fever, and activation
of the HPA axis. Intravenous injection of IL-1 leads to
development of the above listed reactions [28]. The
IL-1 involved is synthesized in the brain [29]. The
application of specific antagonists of proinflamma-
tory cytokines reduce systemic reactions caused by
LPS [30]. Antigen administration leads to activation of
many CNS structures which influence the sleep/wake
cycle, food intake, water-salt metabolism, stress reac-
tions etc.

The effect of antigen injection on noradrenergic
neurons

CNS reactions to antigen stimulus involve the
activation of different neurons affiliating with the
noradrenergic system which are involved in multiple
ascending neural pathways including catecholaminer-
gic “danger” pathways [31]. Activation of noradren-
ergic neurons within the nucleus of the solitary tract
and caudal ventrolateral medulla that inervate PVH
is necessary for a full HPA axis response to systemic
immune challenge [32, 33]. Noradrenaline stimulates
in the PVH corticotropin-releasing factor (CRF) gene
expression, which leads to activation of the HPA axis
[34].

At the same time LPS or IL-1 injection leads to
the activation of noradrenergic neurons in hypothala-
mus. Intravenous or i.c.v. injection of IL-1 stimulates
the increase of neuronal firing and c-fos expression in
PVH, Arc and SO [16–18]. Intravenous introduction
of LPS or IL-1 to animals leads to an increase in c-
Fos-protein expression in sympathetic preganglionic
neurons, and also to higher release of catecholamines
from the splenic nerve terminals [22, 35, 36]. The reac-
tions of catecholaminergic neurons to antigen injection
are often considered in connection with the influence of
antigen stimulus (or effects of cytokines, in particular,
IL-1), as mediators of the immune system, produced
in response to antigen injection) on HPA axis.

Intraperitoneal (i.p.) and intracerebroventricular
(i.c.v.) injection of IL-1, as well as in vitro application,
stimulates production of CRF in hypothalamic cells
[37]. The effects of IL-1 on HPA axis are mediated by
its influence on catecholaminergic neurons producing
CRF. Stimulation of HPA axis by IL-1 is blocked after
transection of noradrenergic fibers that end on CRF-
producing neurons in PVH as well as after noradrenalin
antagonist injection [38–41]. Besides, LPS injection
stimulates NO production in PVH that facilitates HPA
axis activation [42], the transcription of CRF receptor
being increased in this structure [43]. IL-6 and TNF-�
possess the same effects as IL-1 [44–46].

More recently it was shown that repeated injection of
antigen (within 6 days) doesn’t lead to reactions men-
tioned above. Apparently desensitization takes place,
HPA activation is blocked and anorexia develops [47].
Intraperitoneal (i.p.) LPS injection is known to cause
a significant increase in norepinephrine turnover in
LC of mice [48]—this represents a part of a neuronal
network that is specifically activated by prostaglandin
E2 to increase thermogenesis and produce fever [49].
Besides, nitric oxide in LC has been reported to be
a mediator of LPS-induced fever. Inhibition of NO-
synthase in rat LC delays hyperthermia caused by
LPS injection [50, 51]. Furthermore, LPS was shown
to activate �-adrenergic receptors and stimulate nore-
pinephrine release in the hypothalamic preoptic area,
which caused the lowering of arterial pressure and
could be a possible mechanism of endotoxic hypoten-
sion [52].

Cholinergic neurons after antigen injection

The studies of cholinergic neuron reaction to
immune challenge are focused on the activation of
vagal afferent fibers, ganglions and dorsal vagal com-
plex cells after antigen injection. The involvement of
vagus system will be discussed in more detail in the
part “Possible pathways of neuronal signal transmis-
sion from immune system to brain”.

Serotoninergic neurons after antigen injection

There are less and controversial data about reactions
of serotoninergic neurons to antigen. The application
of serotonin antagonist was shown to abolish anorexia
in rats cuased by LPS injection. The LPS-induced acti-
vation of raphe nuclei, central amygdala, nucleus of
solitary tract and PVH was also significantly decreased
[53]. Evidently, serotonin caused activation of neu-
ronal networks responsible for anorexia. Further, the
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application of various serotonin antagonists had no
effect on hypophagia in mice after i.p. IL-1 or LPS
injection [54]. This could lead to conclusion that sero-
tonin doesn’t participate in food intake regulation and
sickness behaviour. Besides, after intranigral or i.p.
LPS injections serotonin and dopamine turnover in the
midbrain, striatum and frontal cortex was increased,
and locomotor function was elevated [55, 56].

Dopaminergic neurons after antigen injection

The effect of LPS injections on reactions of
dopamine neurons is often used as a model for Parkin-
son’s disease [55, 57, 58]. For this purpose the antigen
is injected intranigral or intrastriatal. In both cases neu-
rodegenerative processes of dopaminergic neurons are
observed in substantia nigra as the result of inflamma-
tion. LPS injection leads to decrease of dopaminergic
neuron quantity at the ipsilateral side but increase at the
contralateral side [55, 57]. Development of neurode-
generative processes in this model possibly is caused
by the activation of NO production by glial cells that
inhibits the respiration of neurons in culture and stim-
ulates glutamate release by such neurons [59].

Intaperitoneal administration of LPS also affected
the dopaminergic system. Within 4 hours after in-
jection, the concentrations of dopamine and its metabo-
lites were significantly increased in the anterior
olfactory nucleus, although no changes were revealed
in cells of the olfactory bulbs [60, 61].

Neuropeptide Y containing neurons after antigen
injection

Since LPS injection influences various behavioural
reactions, including food uptake, it is very impor-
tant to study neuropeptide Y (NPY) neurons in order
to understand the mechanisms of sickness behaviour.
Recent studies reported that NPY-neurons are involved
in the CNS response to antigen. Within 2 hours after
i.p. injection of LPS (500 mg/kg) NPY expression
was decreased in the hypothalamus. Simultaneously a
decrease in food intake lasting 24 hours was observed.
The additional administration of NPY prevented the
development of anorexia [62]. The authors suggest that
the alterations in NPY synthesis after LPS injection
was probably mediated by insulin since insulin defi-
cient rats show no disturbances in food intake after
LPS injection. Insulin injections to such rats restore
the LPS-induced anorexia.

Other experiments showed that single or repeated
administration of LPS (100 mg/kg) for 6 days caused

no changes in expression of NPY and proopi-
omelanocortin (POMC) mRNA in neurons of Arc,
however, the appetite of treated animals was decreased
[47]. This contradiction may result from low dose
of an antigen. Reactions to higher doses are more
pronounced and can involve other mechanisms and
pathways of signal transmission in the CNS. It was also
shown that IL-1 injection caused c-fos gene expres-
sion in neurons of Arc, which contains both POMC
and NPY, and participates in the regulation of feeding
behaviour [63]. The authors suggest that neurons in the
Arc are more likely to be involved in the correction of
abnormal feeding function, than in the prevention of
anorexia development.

Investigations in NPY receptor knockout mice
showed that endogenous NPY must combine with its
receptor, Y2, in order to enable the CNS to react with
antigen. In these knockout mice body temperature and
corticosteron elevation in blood are less exspressed
after LPS injection compared to wild type animals. Y2
knockout mice are more susceptible to LPS induced
behavioural reactions (e.g. anxiety, decrease in loco-
motor function and social behaviour) [64].

Vasopressin-containing neurons after antigen
injection

LPS injection reduces diuresis and raises vaso-
pressin level in blood. LPS activates neurons in SO,
as revealed by their electric activity and by c-Fos pro-
tein mRNA expression, which begins at 30 minutes and
lasts more than 6 hours [65]. There is also an increase
of IL-6 mRNA in these neurons. The same effect is
observed after i.c.v. injection of IL-6. The administra-
tion of antibodies to IL-6 abolished the LPS-induced
activation of vasopressin-containing neurons in SO.
This provides evidence that IL-6 activates vasopressin
containing neurons in SO.

Priming with LPS i.p. strengthens the reaction of
vasopressin-containing neurons to hypertensive saline
injection. The enlargement of the axonal varicosi-
ties containing vasopressin was shown at 3 hours
after LPS injection. The subsequent injection of
hypertensive saline leads to considerable decrease in
vasopressin-immunoreactivity of axonal varicosities
in neurohypophysis and IL-1� and IL-6 synthesis
is induced in the posterior lobe of the pituitary
gland [66]. Furthermore a discrete reaction of PVH
cells is observed. Despite a lowered vasopressin
mRNA in neurons in 6 hours after LPS injection,
transcription of vasopressin in magnocellular PVH
remained unchanged. However, in parvocellular PVH
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the increase in vasopressin transcription was observed
after LPS administration and then after hypertensive
saline injection [66]. One should note that the effects
of LPS on neuron activation in the PVH and SO are
dose-dependent [67, 68].

On the one hand, injection of both low and high
doses of LPS leads to increase of c-Fos-immuno-
reactivity in vasopressin- and oxytocin-containing
neurons in PVH, SO and nucleus circularis (NC).
Furthermore, the activation of magnocellular PVH is
heterogeneous (the relative quantity of c-Fos-positive
cells in SO is considerably higher, than in PVH and
NC). Parvocellular PVH also revealed high level of
activation. Possibly due to the activation of magnocel-
lular SO, PVH and NC the LPS-induced increase in
peripheral secretion of vasopressin and oxytocin [69].

On the other hand, the application of an �1-
adrenoreceptor antagonist suppresses the LPS-induced
activation of neurons in PVH and SO only after injec-
tion of low doses of LPS [68]. Cycloxygenase inhibitor
indomethacin blocks expression of c-fos gene in PVH,
SO and LC also at low doses of LPS, at higher
doses this effect is not observed [67]. These find-
ings suggest that the effects of LPS on activation of
vasopressin-containing neurons most likely are medi-
ated by norepinephrine and prostaglandins.

Histaminergic neurons after antigen injection

Histaminergic neurons localized in tuberomammi-
lary hypothalamic nucleus are known to participate
in regulation of such physiological functions as
thermoregulation, awakening, maintenance of energy
balance, memory and training, which can be altered
after administration of antigens. LPS or IL-1 injec-
tion leads to an increase in histamine turnover in the
rat hypothalamus, and histamine itself has inhibitory
effect on LPS- and IL-1-induced fever, but facilitates
anorexia. TNF-� appears not to be involved in his-
taminergic pathways [70].

The effect of LPS injection on histaminergic neurons
of tuberomammilary hypothalamic nucleus is medi-
ated by the activation of catecholaminergic neurons
of the dorsal vagal complex since its inactivation by
local anesthetics leads to decrease in histaminergic
activation [71]. Vanadil-sulphate injection was shown
to block the neuro-immune interactions at the level
of vagal afferents that abolishes LPS-induced sickness
behaviour [72]. The investigation of histaminergic neu-
rons of tuberomammilary area revealed an increase in
their activation in rats after LPS injection during the
dark period [73].

The concentrations of histamine and its metabo-
lites in hypothalamus are increased 15 minutes after
LPS administration as indicated by the intensification
of histamine turnover in neurons [74, 75]. The appli-
cation of histamine receptor antagonists inhibits the
secretion of ACTH, �-endorphin and prolactin, which
was caused by LPS injection. This indicates that his-
taminergic neurons are involved of in the regulation of
systemic response to antigen [74-76].

Orexinergic neurons after antigen injection

Many studies on orexin (ORX) since its discovery in
1998 have revealed that ORX participates in regulation
of many vegetative functions (e.g. feeding behaviour,
sleep/wake cycle, thermoregulation, pain perception,
stress). Of the particular interest is the possible involv-
ing of orexin-containing neurons localised in LHA in
CNS reactions and in the systemic response to antigen
stimulus.

The activation of orexin-containing neurons
(assessed by c-Fos protein) caused by exploratory
behaviour in rats was considerably decreases after LPS
injection. At the same time LPS administration leads
to increase in c-Fos-positive orexin-containing neu-
rons at daytime [73]. On the contrary, at night, when
animals are active, LPS injection led to decrease in
activation of orexin-containing neurons that coincided
with some manifestations of sickness behaviour.

Mice, fed after 12 hours of starvation, and 6 hours
after LPS injection demonstrated a decrease of c-Fos
gene expression in orexin-positive neurons of LHA
that correlated with the lowered food intake [77].
Orexin-containing neurons change after LPS injection,
which leads to alterations of their immunoreactivity
demonstrated immunohistochemically in hypothala-
mic structures on brain slices. The dynamics of these
changes is dose-dependent. The administration of
500 mg/kg body weight of LPS leads to decrease in
quantity of orexin-positive neurons only after 6 hours
of injection (Fig. 3) [78]. This dose is rather high and
may be characterized as subseptic [79]. LPS admin-
istration in a dose of 25 mg/kg causes an increase in
quantity of orexin-positive neurons 2 and 4 hours after
injection (Fig. 4) [80]. The increase or decrease of
orexin content in neurons indicates a shift in balance
between synthesis and utilization of this neuropeptide
e.g. immunohistochemically revealed alterations may
result from the prevalence of one of these processes
over another.

Within 2 hours after the administration of both
25 mg/kg and 500 mg/kg of LPS, an increase in pre-
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Fig. 3. Orexin-positive neurons after LPS injection. A, B, C, D - microphotographs of orexin-containing neurons in LHA in 6 hours after saline
(A, C) or LPS 500 mg/kg (B, D) injection. A, B - ×10 magnification. C, D - ×40 magnification. E - the quantity of orexin-positive neurons in
2, 4, 6 hours after saline or LPS injection. * - P < 0,05 compared to the quantity of orexin-positive neurons after saline injection.

proorexin gene expression in hypothalamic cells was
shown, which was indicated by a quantitative increase
of preproorexin mRNA. There were no changes at 4
and 6 hours (Fig. 5) (Perekrest S.V. et al., unpublished
data). It may be concluded that Orexin-containing neu-
rons react differently to different doses of LPS. In all
cases preproorexin was increased, but orexin utiliza-
tion after a subseptic dose of LPS was more intensive,
shifting balance of orexin synthesis and consumption
towards increased utilization.

LPS, which is a T cell-independent antigen with high
immunogenicity, is often used to study neuro-immune
interactions. The effects of T cell-dependent antigens
(SEB, BSA) on the activation of various CNS struc-
tures are different from those of T cell-independent
antigens [21, 23]. The T cell-dependent antigen, BSA,
induces a similar reaction of orexin-containing neu-
rons to small doses of LPS (Abramova T.V. et al,
unpublished data), e.g. orexin-positive neurons are
increased within 2 and 4 hours after antigen injec-
tion (Fig. 6). LPS stimulates innate immunity whereas
BSA induces an antibody response. The central effects
of BSA, which is a weak antigen, are comparable
with the dynamics of small LPS doses. These data
indicate that orexin-containing neurons participate in

neuro-immune interactions during the inductive phase
of immune reactions. It may be concluded that orexin-
containing neurons are important for the development
of immune reactions and may play a role also in the
development of sickness behavior.

Various neurotransmitter systems are involved in the
reaction of CNS to antigen, which lead to the formation
of various pathways of systemic responses that affect
the regulation of various vegetative functions.

POSSIBLE PATHWAYS OF NEURONAL
SIGNAL TRANSDUCTION FROM IMMUNE
SYSTEM TO THE BRAIN

It is important to study the pathways of signal
transmission from the immune system to the CNS,
and examine the various patterns of activation and
the intensity of afferent signals. These are important
aspects of neuro-immune interactions. To date most
investigators studied the afferent fibers of the vagus
nerve for transmission of antigenic/inflammatory sig-
nals to the CNS.

It was discovered in 1994 [35] that the induction
of c-Fos-protein synthesis in cells of PVH and SO in
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Fig. 4. Orexin-positive neurons after LPS injection. A, B, C, D - microphotographs of orexin-containing neurons in LHA in 2 (A, B) and 4 (C,
D) hours after saline (A, C) or LPS (B, D) injection. ×10 magnification. E - the quantity of orexin-positive neurons in 2, 4, 6 hours after saline
(�) or LPS 25 mg/kg ( ) injection. * - P < 0,05 compared to the quantity of orexin-positive neurons after saline injection.

response to i.p. injection LPS was blocked by sub-
diafragmatic transection of the vagus nerve. Also it
has been shown that subdiafragmatic vagotomy atten-
uated the sickness behaviour, which was caused by
i.p. injection of LPS [81], the typical hyperalgesia
and hyperthermia were also abolished [82, 83], but
LPS-induced cytokines production in various organs,
including the CNS, as well as their blood level did
not change [81, 84–86]. One may conclude that intact
vagus nerve is necessary for the formation of adequate

CNS response to the intraperitoneal administration of
LPS. It is very likely that the subdiafragmatic afferent
fibers of vagus nerve do not participate in the develop-
ment of the LPS-induced anorexia [87].

The plasma levels of ACTH and corticosterone are
unchanged in vagotomized animals after i.p. injection
of TNF-� [88]. Similarly IL-1 injection to vagotomized
animals leads to increase in ACTH and corticosterone
levels in serum, but to a lesser degree, than in ani-
mals with intact vagus nerve [89, 90]. The effects of
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Fig. 5. Expression of prepro-orexin gene in hypothalamic cells in 2
hours after LPS injection. Injections: 1 – saline, 2 - LPS (25 mkg/kg),
3 - LPS (500 mkg/kg), * - P < 0,01, ** - P < 0,05 comparing to
prepro-orexin gene expression after saline injection.
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Fig. 6. The quantity of orexin-positive neurons in hypothalamic
structures after BSA injection Injections: � - saline - BSA
(25 mg/kg); * - P < 0,05 comparing to the quantity of orexin-positive
neurons after saline injection.

i.p. LPS injections on body temperature after vago-
tomy are dose-dependent. Subdiafragmatic vagotomy
had no influence on fever development at high dose of
LPS (1000 mg/kg) [91]. It should be mentioned that
vagotomy is less effective to elicit LPS- and IL-1-
induced CNS reactions in mice than in rats [92]. The
partial blockade of signal transmission after vagotomy
could be explained by the direct action of IL-1 and
IL-6 on CNS cells in the area postrema and organum
vasculosum lamina terminalis (OVLT) [93, 94].

The data on dendritic cell (DC) localization between
vagal fibers and in area postrema are of particular
interest [14, 95]. The presence of a wide spectrum of
receptors on DC membrane and the ability to synthe-
size proinflammatory cytokines in response to antigen
administration can play a key role for transmission
of signals from immune system to CNS. Afferent
vagal fiber terminals located near DC express recep-
tors to various mediators of immune system [96].
Intraperitoneal LPS injection increases the quantity of

peritoneal macrophages in the connective tissue near
vagal terminals, and leads to the increase of c-Fos-
immunoreactivity and expression of IL-1 R mRNA
in neurons of nodose ganglion of vagus [97]. Later
TLR4 and its mRNA have been revealed in these cells
that presumably create a basis for activation of vagal
afferent fibers at the level of nodose ganglion and
can explain the maintenance of CNS reactions to LPS
injection after subdiafragmatic vagotomy [98]. I.v. or
i.p. administration of IL-1 or LPS as well as SEB
causes c-Fos-protein expression in sensitive neurons
of parasympathetic ganglions [99, 100]. Using fluoro-
gold for retrograde transport Goehler et al. [14] have
revealed innervation of certain lymph nodes from the
jugular and nodose ganglion of vagus nerve.

Vagal afferent fibers are known to reach medulla
oblongata terminating in dorsal vagal complex, includ-
ing the area postrema, a nucleus of solitary tract and
dorsal nucleus of n. vagus. In a number of works it was
shown that there is an increase of c-Fos-protein expres-
sion in all the above mentioned structures 2 hours
after LPS injection [20, 101–105]. The activation of
higher CNS structures is also observed in the PVH,
structures of amygdala, and of thalamic nuclei. Three
possible targets have been suggested for increase of
cytokine level through n.vagus: PVH, thalamic nuclei
and amygdala [14].

An additional pathway of signal transduction from
the immune system to catecholaminergic neurons in
the medullary visceral zone and to central amygdala
nuclei through vagal fibers was observed using a triple-
labeling immunohistochemical method. An increase in
c-Fos-immunoreactivity in neurons of medullary vis-
ceral zone and in central amygdala nuclei was revealed
after i.p. LPS injection. Subdiafragmatic vagotomy
decreased the quantity of c-Fos-positive cells in these
structures [106]. The authors suggested that the cate-
cholaminergic neurons in the medullary visceral zone
serve as a neural relay station in the immune-to-
brain communication, transmitting information from
n. vagus to central amygdala nuclei.

When the dorsal vagal complex was inactivated with
local anesthetics, neuronal activation in the central
amygdala nuclei, lamina terminalis, PVH and ven-
tromedial preoptic area was considerably decreased
2 hours after i.p. LPS injection. The effects LPS
on animal behavior was completely abolished, which
serves as evidence for the involvement of dorsal vagal
complex in antigen mediated signaling of the neural
structures that modulate social behaviour [107].

Pathways of afferent signal transmission in bacte-
rial infections are closer to reality than LPS injection
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and are of particular interest. Oral inoculation with
Compylobacter jejuni leads to substantial increase in
c-fos gene expression in neurons of visceral sensory
nuclei in the brainstem (the nucleus of the solitary
tract and the lateral parabrachial nucleus) and PVH in
one and two days after the challenge [108, 109]. The
level of circulating proinflammatory cytokines (TNF-
�, IL-1 �, IL-6) in blood did not change. Research of
animal behaviour has revealed enhanced anxiety-like
behavior in infected mice [110]. This reaction, possi-
bly, is mediated by the activation of neurons in PVH,
basolateral nuclei of the amygdala, bed nucleus of the
stria terminalis and medial prefrontal cortex. In con-
trol animals, which instead of C. jejuni received saline,
anxiety-like behavior in holeboard was mediated by
activation of neurons in central and basolateral nuclei
of the amygdala.

These results deal with one pathway of information
transmission from the immune system to the CNS.
The existence of other pathways for this kind infor-
mation transmission cannot be excluded and requires
further research. It should be stressed that the data
mentioned above about the specificity of the pattern
of activation of hypothalamic structures after injection
of different antigens are consistent with the observa-
tions in different systems when the antigen is coming to
the brain after application through nervous or humoral
pathways.

CONCLUSIONS

Numerous observations indicate that antigenic stim-
ulation elicits a response in the CNS. Many studies
reported the activation of brain structures (mainly
hypothalamic) after antigen administration. The pat-
tern elicited depends on the nature, dose and intervals
of antigen injection. It appears that different antigens
generate specific signals that elicit in the nervous sys-
tem, and produce specific responses that correspond
to the received information. CNS reactions to differ-
ent antigens involve different neurotransmitter systems
that participate in the regulation of various physi-
ological processes, and the involvement of neurons
with different neurotransmitters creates a basis for
the formation of a systemic response to the applied
antigen. The pathways of transmission of informa-
tion from immune to nervous system partly clarify the
mechanisms of neuroimmune interactions after antigen
application. Taken together these results could serve as
the foundation of CNS reactions to immune challenge.
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