Temporal aspects of increases in eye-neck activation levels during visually deficient near work
Abstract
In an experimental study two levels of oculomotor load were induced via optical trial lenses. Trapezius muscle activity was measured with bipolar surface electromyography and normalized to a submaximal contraction. Sixty-six subjects with a median age of 36 (range 19–47, std 8) viewed a black and white Gabor grating (5 c/deg) for two 7-min periods monocularly through a 0 D lens or binocularly through -3.5 D lenses. The effect of time was separately regressed to EMG in two different subgroups of responders: a High-Oculomotor-Load (HOL) and a Low-Oculomotor-Load (LOL) group. A linear regression model was fitted on group level with exposure time on the x-axis and normalized trapezius muscle EMG (%RVE) on the y-axis. The slope coefficient was significantly positive in the -D blur condition for only the HOL subgroup of responders: 0.926 + Timemin 1-7 × 0.088 (p = 0.002, r2=0.865). There was no obvious sign of this activity to level off or to stabilize. These results suggest that professional information technology users that are exposed to a high level of oculomotor load, during extended times, are at an increased risk of exhibiting an increased trap.m. activity.