Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Subtitle:
Article type: Research Article
Authors: Prabha, S.a; * | Suganthi, S.S.b | Sujatha, C.M.a
Affiliations: [a] Department of Electronics and Communication Engineering, College of Engineering Guindy, Anna University, Chennai, India | [b] Non Invasive Imaging and Diagnostics Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
Correspondence: [*] Corresponding author: S. Prabha, Department of Electronics and Communication Engineering, College of Engineering Guindy, Anna University, Chennai, India. Tel.: +91 9962987495; E-mail:harprabha@gmail.com
Abstract: BACKGROUND: Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. OBJECTIVE: Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. METHODS: An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. RESULTS: Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. CONCLUSION: The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.
Keywords: Breast thermography, level sets, segmentation, denoising, Riesz transform
DOI: 10.3233/THC-150915
Journal: Technology and Health Care, vol. 23, no. 4, pp. 429-442, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl