Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thomas, Anvina | Jose, Rejatha | Syed, Faiza | Wei, Ong Chib | Toma, Milana; *
Affiliations: [a] College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA | [b] School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore
Correspondence: [*] Corresponding author: Milan Toma, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, Northern Boulevard P.O. Box 8000, NY 11568, USA. E-mail: tomamil@tomamil.com.
Abstract: BACKGROUND: Cardiovascular diseases remain a leading cause of global morbidity and mortality, with heart attacks and strokes representing significant health challenges. The accurate, early diagnosis and management of these conditions are paramount in improving patient outcomes. The specific disease, cardiovascular occlusions, has been chosen for the study due to the significant impact it has on public health. Cardiovascular diseases are a leading cause of mortality globally, and occlusions, which are blockages in the blood vessels, are a critical factor contributing to these conditions. OBJECTIVE: By focusing on cardiovascular occlusions, the study aims to leverage machine learning to improve the prediction and management of these events, potentially helping to reduce the incidence of heart attacks, strokes, and other related health issues. The use of machine learning in this context offers the promise of developing more accurate and timely interventions, thus improving patient outcomes. METHODS: We analyze diverse datasets to assess the efficacy of various machine learning algorithms in predicting heart attacks and strokes, comparing their performance to pinpoint the most accurate and reliable models. Additionally, we classify individuals by their predicted risk levels and examine key features that correlate with the incidence of cardiovascular events. The PyCaret machine learning library’s Classification Module was key in developing predictive models which were evaluated with stratified cross-validation for reliable performance estimates. RESULTS: Our findings suggest that machine learning can significantly improve the prediction accuracy for heart attacks and strokes, facilitating earlier and more precise interventions. We also discuss the integration of machine learning models into clinical practice, addressing potential challenges and the need for healthcare professionals to interpret and apply these predictions effectively. CONCLUSIONS: The use of machine learning for risk stratification and the identification of modifiable factors may empower preemptive approaches to cardiovascular care, ultimately aiming to reduce the occurrence of life-threatening events and improve long-term patient health trajectories.
Keywords: Machine learning, cardiovascular diseases, heart attack, stroke, predictive modeling, risk factors, clinical decision-making
DOI: 10.3233/THC-240582
Journal: Technology and Health Care, vol. 32, no. 5, pp. 3535-3556, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl