Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hossen, Abdulnasir
Affiliations: Communication and Information Research Center, Sultan Qaboos University, 123 Muscat, Oman | E-mail: abhossen@squ.edu.om
Correspondence: [*] Corresponding author: Communication and Information Research Center, Sultan Qaboos University, 123 Muscat, Oman. E-mail: abhossen@squ.edu.om.
Abstract: BACKGROUND: Essential tremor (ET) and the tremor in Parkinson’s disease (PD) are the two most common pathological tremors with a certain overlap in the clinical presentation. OBJECTIVE: The main purpose of this work is to use an artificial neural network to select the best features and to discriminate between the two types of tremors. The features used are of hybrid type obtained from two different algorithms: the statistical signal characterization (SSC) of the signal describing its morphology, and the soft-decision wavelet-decomposition (SDWD) features extracted from the accelerometer and surface EMG signals. METHODS: The SSC method is used to obtain morphology-based features of the spectrum of the accelerometer and two surface EMG signals. The SDWD technique is used in this work to obtain the approximate spectral representation of both accelerometer and the two surface EMG signals. Two sets of data (training and test) are used in this paper. The training set consists of 21 ET subjects and 19 PD subjects, while the test set consists of 20 ET and 20 PD subjects. A neural network of the type feed forward back propagation has been used to combine best SSC features and best SDWD features of the accelerometer and EMG signals. RESULTS: Efficiency result of 92.5% was obtained using best hybrid features. CONCLUSIONS: The artificial neural network has been used successfully to combine two types of features in an automatic discrimination system between PD and ET.
Keywords: Artificial neural networks, statistical signal characterization, wavelet-decomposition, hybrid features, discrimination, PD, ET, accelerometer, EMG
DOI: 10.3233/THC-213324
Journal: Technology and Health Care, vol. 30, no. 3, pp. 691-702, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl