You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Design and control of a pneumatic musculoskeletal biped robot

Abstract

BACKGROUND:

Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks.

OBJECTIVE:

This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking.

METHODS:

According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments.

RESULTS:

Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy.

CONCLUSION:

The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

References

[1] 

Anton P., , Juraj S.. The use of pneumatic artificial muscles in robot construction. Industrial Robot: An International Journal. (2011) ; 38: (1): 11-19.

[2] 

Belforte G., , Eula G., , Appendino S.. Design and development of innovative textile pneumatic muscles. The Journal of The Textile Institute. (2012) ; 103: (7): 733-743.

[3] 

Villegas D., , Damme M.V., , Vanderborght B., , Beyl P., , Lefeber D.. Third - Generation pleated pneumatic artificial muscles for robotic applications: development and comparison with McKibben muscle. Advanced Robotics. (2012) ; 26: : 1205-1227.

[4] 

Nakanishi Y., , Izawa T., , Osada M., , Ito N., , Ohta S., , Urata J., , Inab M.. Development of musculoskeletal humanoid Kenzoh with mechanical compliance changeable tendons by nonlinear spring unit. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand. (2011) , pp. 2384-2389.

[5] 

Nakanishi Y., , Asano Y., , Kozuki T., , Mizoguchi H., , Motegi Y., , Osada M., , Shirai T., , Urata J., , Okada K., , Inaba M.. Design concept of detail musculoskeletal humanoid ``Kenshiro'' - toward a real human body musculoskeletal simulator. In: Proceedings of the 2012 12th IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan. (2012) ; pp. 1-6.

[6] 

Vanderborght B., , Ham Van R., , Verrelst B., , Damme Van M., , Lefeber D.. Overview of the Lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles. Advanced Robotics. (2008) ; 22: (10): 1027-1051.

[7] 

Verrelst B., , Vermeulen J., , Vanderborght B., , Ham Van R., , Naudet J., , Lefeber D., , Daerden F., , Damme Van M.. Motion generation and control for the pneumatic biped ``Lucy''. International Journal of Humanoid Robotics. (2006) ; 3: (1): 67-103.

[8] 

Vanderborght B., , Verrelst B., , Ham Van R., , Damme Van M., , Versluys R., , Lefeber D.. Treadmill walking of the pneumatic biped Lucy: walking at different speeds and step-lengths. International Applied Mechanics. (2008) ; 44: (7): 134-142.

[9] 

Hosoda K., , Narioka K.. Synergistic 3D limit cycle walking of an anthropomorphic biped robot. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA. (2007) ; pp. 470-475.

[10] 

Hosoda K., , Takuma T., , Nakamoto A., , Hayashi S.. Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion. Robotics and Autonomous Systems. (2008) ; 56: : 46-53.

[11] 

Narioka K., , Hosoda K.. Designing synergistic walking of a whole-body humanoid driven by pneumatic artificial muscles: an empirical study. Advanced Robotics. (2008) ; 22: : 1107-1123.

[12] 

Narioka K., , Tsugawa S., , Hosoda K.. 3D limit cycle walking of musculoskeletal humanoid robot with flat feet. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA. (2009) ; pp. 4676-4681.

[13] 

Ogawa K., , Narioka K., , Hosoda K.. Development of whole-body humanoid ``Pneumat-BS'' with pneumatic musculoskeletal system. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA. (2011) ; pp. 4838-4843.

[14] 

Narioka K., , Homma T., , Hosoda K.. Humanlike ankle-foot complex for a biped robot. In: Proceedings of the 2012 12th IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan. (2012) ; pp. 15-20.

[15] 

Narioka K., , Homma T., , Hosoda K.. Roll-over shapes of musculoskeletal biped walker. At-Automatisierungstechnik. (2013) ; 61: (1): 4-15.

[16] 

Niiyama R., , Kuniyoshi Y.. Design principle based on maximum output force profile for a musculoskeletal robot. Industrial Robot: An International Journal. (2010) ; 37: (3): 250-255.

[17] 

Shimizu M., , Suzuki K., , Narioka K., , Hosoda K.. Roll motion control by stretch reflex in a continuously jumping musculoskeletal biped robot. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal. (2012) ; pp. 1264-1269.

[18] 

Liu X., , Rosendo A., , Shimizu M., , Hosoda K.. Improving hopping stability of a biped by muscular stretch reflex. In: Proceedings of 2014 14th IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain. (2014) ; pp. 658-663.

[19] 

Rosendo A., , Liu X., , Shimizu M., , Hosoda K.. Stretch reflex improves rolling stability during hopping of a decerebrate biped system. Bioinspiration & biomimetics. (2015) ; 10: (1): 016008.

[20] 

Iijima H., , Sayama K., , Masuta H., , Takanishi A., , Lim H.. Mechanism of one-legged jumping robot with artificial musculoskeletal system. In: Proceedings of 2013 13th International Conference on Control, Automation and Systems, Gwangju, Korea. (2013) ; pp. 869-874.

[21] 

Tondu B.. Modeling of the McKibben artificial muscle: A review. Journal of Intelligent Material Systems and Structures. (2012) ; 23: (3): 225-253.

[22] 

Wang G., , Wereley N.M., , Pillsbury T.. Non-linear quasi-static model of pneumatic artificial muscle actuators. Journal of Intelligent Material Systems and Structures. (2015) ; 26: (5): 541-553.

[23] 

Sorge F.. Dynamical behavior of pneumatic artificial muscles. Meccanica. (2015) ; 50: : 1371-1386.

[24] 

Lewis M.A., , Klein T.J.. A robotic biarticulate leg model. In: Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA. (2008) ; pp. 57-60.

[25] 

Klein T.J., , Lewis M.A.. A robot leg based on mammalian muscle architecture. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China. (2009) ; pp. 2521-2526.