Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Yang, T.H.J.a; * | Leung, S.K.W.b | Phipps, S.b | Reuben, R.L.a | McNeill, S.A.c | Habib, F.K.b | Schnieder, A.d | Stevens, R.d
Affiliations: [a] Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh, UK | [b] University of Edinburgh, School of Molecular and Clinical Medicine, Prostate Research Group, Edinburgh, UK | [c] Western General Hospital, Department of Urology, Edinburgh, UK | [d] Rutherford Appleton Laboratory, CCLRC, Didcot, Oxfordshire, UK | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Address for correspondence: T.H.J. Yang, Heriot-Watt University School of Engineering and Physical Sciences (Mechanical Engineering), Edinburgh, EH14 4AS, Scotland, UK. Tel.: +44 131 4514343; Fax: +44 131 4513129; E-mail: T.H.J.Yang@hw.ac.uk.
Abstract: In vitro macro- and micro-indentation test systems have been designed to measure the dynamic micro-mechanical properties of human prostate tissues at actuation frequencies between 5 Hz and 30 Hz, and 0.5 Hz and 20 Hz, respectively. The development of in vitro test systems was aimed at assessing the capacity of such an in vivo medical probe to provide information useful for the diagnosis of various prostate diseases. The macro-indentation test system is an established one, which we have used to determine structure-property relationships in human and canine prostate tissues and here we use it to validate a newly-developed micro-indentation test system using a tissue phantom. Mechanical testing was also carried out on sections of prostate tissue harvested from cystectomy and radical prostatectomy, diagnosed with bladder cancer and benign prostatic hyperplasia. Dynamic probing under displacement control was carried at pre-strains between 5% and 8% for macro-probing and at 5% pre-strain for micro-probing, and the general effect of pre-strain on the dynamic mechanical properties (described by the amplitude ratio between stress and strain, and the phase lag between strain and stress) of phantom and prostate tissues is presented. Specific point probing on epithelial and stromal histological components was also carried out showing a significant difference between the amplitude ratios of epithelial and stromal components for actuation frequencies exceeding 5 Hz. However, no significant difference was found between phase lags for epithelial and stromal tissues.
Keywords: Dynamic modulus, soft tissue biomechanics, BPH, prostate
DOI: 10.3233/THC-2006-144-511
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 281-296, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl